
GNU Compiler Collection Internals

For gcc version 4.2.1

Richard M. Stallman and the GCC Developer Community

Copyright c
 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with the Invariant Sections being \GNU General Public License"
and \Funding Free Software", the Front-Cover texts being (a) (see below), and with the
Back-Cover Texts being (b) (see below). A copy of the license is included in the section
entitled \GNU Free Documentation License".

(a) The FSF's Front-Cover Text is:

A GNU Manual

(b) The FSF's Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

i

Short Contents

Introduction . 1

1 Contributing to GCC Development 3

2 GCC and Portability . 5

3 Interfacing to GCC Output . 7

4 The GCC low-level runtime library 9

5 Language Front Ends in GCC . 21

6 Source Tree Structure and Build System 23

7 Option speci�cation �les. 51

8 Passes and Files of the Compiler . 55

9 Trees: The intermediate representation used by the C and C++

front ends . 69

10 Analysis and Optimization of GIMPLE Trees 107

11 Analysis and Representation of Loops 131

12 RTL Representation . 141

13 Control Flow Graph . 189

14 Machine Descriptions . 199

15 Target Description Macros and Functions 293

16 Host Con�guration . 439

17 Make�le Fragments . 443

18 collect2 . 447

19 Standard Header File Directories 449

20 Memory Management and Type Information 451

Funding Free Software . 457

The GNU Project and GNU/Linux. 459

GNU GENERAL PUBLIC LICENSE 461

GNU Free Documentation License . 467

Contributors to GCC . 475

Option Index. 491

Concept Index . 493

ii GNU Compiler Collection (GCC) Internals

iii

Table of Contents

Introduction . 1

1 Contributing to GCC Development 3

2 GCC and Portability . 5

3 Interfacing to GCC Output 7

4 The GCC low-level runtime library 9
4.1 Routines for integer arithmetic . 9

4.1.1 Arithmetic functions . 9
4.1.2 Comparison functions . 10
4.1.3 Trapping arithmetic functions . 11
4.1.4 Bit operations . 11

4.2 Routines for
oating point emulation . 12
4.2.1 Arithmetic functions . 12
4.2.2 Conversion functions . 13
4.2.3 Comparison functions . 14
4.2.4 Other
oating-point functions . 16

4.3 Routines for decimal
oating point emulation 16
4.3.1 Arithmetic functions . 16
4.3.2 Conversion functions . 17
4.3.3 Comparison functions . 18

4.4 Language-independent routines for exception handling 19
4.5 Miscellaneous runtime library routines . 20

4.5.1 Cache control functions . 20

5 Language Front Ends in GCC 21

6 Source Tree Structure and Build System . . . 23
6.1 Con�gure Terms and History . 23
6.2 Top Level Source Directory . 23
6.3 The `gcc' Subdirectory . 24

6.3.1 Subdirectories of `gcc' . 25
6.3.2 Con�guration in the `gcc' Directory . 25

6.3.2.1 Scripts Used by `configure' . 26
6.3.2.2 The `config.build'; `config.host'; and `config.gcc'

Files . 26
6.3.2.3 Files Created by configure . 26

6.3.3 Build System in the `gcc' Directory . 27
6.3.4 Make�le Targets . 27

iv GNU Compiler Collection (GCC) Internals

6.3.5 Library Source Files and Headers under the `gcc' Directory
. 30

6.3.6 Headers Installed by GCC . 30
6.3.7 Building Documentation . 30

6.3.7.1 Texinfo Manuals . 31
6.3.7.2 Man Page Generation . 31
6.3.7.3 Miscellaneous Documentation . 32

6.3.8 Anatomy of a Language Front End . 33
6.3.8.1 The Front End `language ' Directory 34
6.3.8.2 The Front End `config-lang.in' File 36

6.3.9 Anatomy of a Target Back End . 37
6.4 Testsuites . 38

6.4.1 Idioms Used in Testsuite Code . 38
6.4.2 Directives used within DejaGnu tests . 39
6.4.3 Ada Language Testsuites . 43
6.4.4 C Language Testsuites . 44
6.4.5 The Java library testsuites. 45
6.4.6 Support for testing gcov . 46
6.4.7 Support for testing pro�le-directed optimizations 47
6.4.8 Support for testing binary compatibility 47

7 Option speci�cation �les 51
7.1 Option �le format . 51
7.2 Option properties . 51

8 Passes and Files of the Compiler 55
8.1 Parsing pass . 55
8.2 Gimpli�cation pass . 56
8.3 Pass manager . 56
8.4 Tree-SSA passes . 57
8.5 RTL passes . 63

9 Trees: The intermediate representation used by
the C and C++ front ends 69

9.1 De�ciencies . 69
9.2 Overview . 69

9.2.1 Trees . 70
9.2.2 Identi�ers . 70
9.2.3 Containers . 71

9.3 Types . 71
9.4 Scopes. 76

9.4.1 Namespaces . 76
9.4.2 Classes . 77

9.5 Declarations . 79
9.5.1 Working with declarations . 79
9.5.2 Internal structure . 81

9.5.2.1 Current structure hierarchy . 82

v

9.5.2.2 Adding new DECL node types . 83
9.6 Functions . 84

9.6.1 Function Basics . 85
9.6.2 Function Bodies . 88

9.6.2.1 Statements . 88
9.7 Attributes in trees . 92
9.8 Expressions . 92

10 Analysis and Optimization of GIMPLE Trees
. 107

10.1 GENERIC . 107
10.2 GIMPLE . 107

10.2.1 Interfaces . 108
10.2.2 Temporaries . 108
10.2.3 Expressions . 109

10.2.3.1 Compound Expressions . 109
10.2.3.2 Compound Lvalues . 109
10.2.3.3 Conditional Expressions . 109
10.2.3.4 Logical Operators . 110

10.2.4 Statements . 110
10.2.4.1 Blocks . 110
10.2.4.2 Statement Sequences . 111
10.2.4.3 Empty Statements . 111
10.2.4.4 Loops . 111
10.2.4.5 Selection Statements . 111
10.2.4.6 Jumps . 111
10.2.4.7 Cleanups . 111
10.2.4.8 Exception Handling . 112

10.2.5 GIMPLE Example . 112
10.2.6 Rough GIMPLE Grammar . 114

10.3 Annotations . 116
10.4 Statement Operands . 117

10.4.1 Operand Iterators And Access Routines 118
10.4.2 Immediate Uses . 121

10.5 Static Single Assignment . 122
10.5.1 Preserving the SSA form . 123
10.5.2 Preserving the virtual SSA form . 125
10.5.3 Examining SSA_NAME nodes . 125
10.5.4 Walking use-def chains . 126
10.5.5 Walking the dominator tree . 126

10.6 Alias analysis . 126

vi GNU Compiler Collection (GCC) Internals

11 Analysis and Representation of Loops. . . . 131
11.1 Loop representation . 131
11.2 Loop querying . 132
11.3 Loop manipulation . 133
11.4 Loop-closed SSA form . 134
11.5 Scalar evolutions . 134
11.6 IV analysis on RTL . 135
11.7 Number of iterations analysis . 136
11.8 Data Dependency Analysis . 137
11.9 Linear loop transformations framework . 139

12 RTL Representation . 141
12.1 RTL Object Types . 141
12.2 RTL Classes and Formats . 142
12.3 Access to Operands . 144
12.4 Access to Special Operands . 145
12.5 Flags in an RTL Expression . 147
12.6 Machine Modes . 153
12.7 Constant Expression Types . 156
12.8 Registers and Memory . 158
12.9 RTL Expressions for Arithmetic . 163
12.10 Comparison Operations . 166
12.11 Bit-Fields . 168
12.12 Vector Operations . 168
12.13 Conversions. 169
12.14 Declarations . 170
12.15 Side E�ect Expressions . 170
12.16 Embedded Side-E�ects on Addresses . 175
12.17 Assembler Instructions as Expressions . 177
12.18 Insns . 177
12.19 RTL Representation of Function-Call Insns 186
12.20 Structure Sharing Assumptions . 186
12.21 Reading RTL . 187

13 Control Flow Graph . 189
13.1 Basic Blocks . 189
13.2 Edges . 190
13.3 Pro�le information . 193
13.4 Maintaining the CFG . 194
13.5 Liveness information . 196

vii

14 Machine Descriptions 199
14.1 Overview of How the Machine Description is Used 199
14.2 Everything about Instruction Patterns . 199
14.3 Example of define_insn . 200
14.4 RTL Template . 201
14.5 Output Templates and Operand Substitution 204
14.6 C Statements for Assembler Output . 206
14.7 Predicates . 207

14.7.1 Machine-Independent Predicates . 208
14.7.2 De�ning Machine-Speci�c Predicates 210

14.8 Operand Constraints . 211
14.8.1 Simple Constraints . 212
14.8.2 Multiple Alternative Constraints . 216
14.8.3 Register Class Preferences . 217
14.8.4 Constraint Modi�er Characters . 217
14.8.5 Constraints for Particular Machines 218
14.8.6 De�ning Machine-Speci�c Constraints 233
14.8.7 Testing constraints from C . 235

14.9 Standard Pattern Names For Generation 236
14.10 When the Order of Patterns Matters . 257
14.11 Interdependence of Patterns . 258
14.12 De�ning Jump Instruction Patterns . 259
14.13 De�ning Looping Instruction Patterns . 260
14.14 Canonicalization of Instructions . 262
14.15 De�ning RTL Sequences for Code Generation 263
14.16 De�ning How to Split Instructions . 266
14.17 Including Patterns in Machine Descriptions. 269

14.17.1 RTL Generation Tool Options for Directory Search 270
14.18 Machine-Speci�c Peephole Optimizers . 270

14.18.1 RTL to Text Peephole Optimizers . 270
14.18.2 RTL to RTL Peephole Optimizers . 272

14.19 Instruction Attributes . 274
14.19.1 De�ning Attributes and their Values 274
14.19.2 Attribute Expressions . 274
14.19.3 Assigning Attribute Values to Insns 277
14.19.4 Example of Attribute Speci�cations 278
14.19.5 Computing the Length of an Insn . 279
14.19.6 Constant Attributes . 280
14.19.7 Delay Slot Scheduling . 281
14.19.8 Specifying processor pipeline description 282

14.20 Conditional Execution . 287
14.21 Constant De�nitions . 288
14.22 Macros . 289

14.22.1 Mode Macros . 289
14.22.1.1 De�ning Mode Macros. 289
14.22.1.2 Substitution in Mode Macros 290
14.22.1.3 Mode Macro Examples . 290

14.22.2 Code Macros . 291

viii GNU Compiler Collection (GCC) Internals

15 Target Description Macros and Functions
. 293

15.1 The Global targetm Variable . 293
15.2 Controlling the Compilation Driver, `gcc' 293
15.3 Run-time Target Speci�cation . 301
15.4 De�ning data structures for per-function information. 303
15.5 Storage Layout. 304
15.6 Layout of Source Language Data Types . 313
15.7 Register Usage . 317

15.7.1 Basic Characteristics of Registers . 317
15.7.2 Order of Allocation of Registers. 319
15.7.3 How Values Fit in Registers . 319
15.7.4 Handling Leaf Functions . 321
15.7.5 Registers That Form a Stack . 322

15.8 Register Classes . 323
15.9 Obsolete Macros for De�ning Constraints 331
15.10 Stack Layout and Calling Conventions . 333

15.10.1 Basic Stack Layout . 333
15.10.2 Exception Handling Support . 337
15.10.3 Specifying How Stack Checking is Done 339
15.10.4 Registers That Address the Stack Frame 340
15.10.5 Eliminating Frame Pointer and Arg Pointer. 342
15.10.6 Passing Function Arguments on the Stack 343
15.10.7 Passing Arguments in Registers . 345
15.10.8 How Scalar Function Values Are Returned 350
15.10.9 How Large Values Are Returned . 351
15.10.10 Caller-Saves Register Allocation . 353
15.10.11 Function Entry and Exit . 353
15.10.12 Generating Code for Pro�ling . 357
15.10.13 Permitting tail calls. 357
15.10.14 Stack smashing protection . 358

15.11 Implementing the Varargs Macros . 358
15.12 Trampolines for Nested Functions . 360
15.13 Implicit Calls to Library Routines . 363
15.14 Addressing Modes . 364
15.15 Anchored Addresses . 368
15.16 Condition Code Status . 369
15.17 Describing Relative Costs of Operations 371
15.18 Adjusting the Instruction Scheduler . 375
15.19 Dividing the Output into Sections (Texts, Data, . . .) 381
15.20 Position Independent Code . 385
15.21 De�ning the Output Assembler Language 386

15.21.1 The Overall Framework of an Assembler File 386
15.21.2 Output of Data. 388
15.21.3 Output of Uninitialized Variables . 390
15.21.4 Output and Generation of Labels . 392
15.21.5 How Initialization Functions Are Handled 399
15.21.6 Macros Controlling Initialization Routines 400

ix

15.21.7 Output of Assembler Instructions . 402
15.21.8 Output of Dispatch Tables . 405
15.21.9 Assembler Commands for Exception Regions 407
15.21.10 Assembler Commands for Alignment 409

15.22 Controlling Debugging Information Format 410
15.22.1 Macros A�ecting All Debugging Formats 410
15.22.2 Speci�c Options for DBX Output . 411
15.22.3 Open-Ended Hooks for DBX Format 413
15.22.4 File Names in DBX Format . 414
15.22.5 Macros for SDB and DWARF Output 415
15.22.6 Macros for VMS Debug Format . 416

15.23 Cross Compilation and Floating Point . 416
15.24 Mode Switching Instructions . 418
15.25 De�ning target-speci�c uses of __attribute__ 419
15.26 De�ning coprocessor speci�cs for MIPS targets. 421
15.27 Parameters for Precompiled Header Validity Checking 421
15.28 C++ ABI parameters . 422
15.29 Miscellaneous Parameters . 423

16 Host Con�guration . 439
16.1 Host Common . 439
16.2 Host Filesystem . 440
16.3 Host Misc . 441

17 Make�le Fragments . 443
17.1 Target Make�le Fragments . 443
17.2 Host Make�le Fragments . 445

18 collect2 . 447

19 Standard Header File Directories 449

20 Memory Management and Type Information
. 451

20.1 The Inside of a GTY(()) . 451
20.2 Marking Roots for the Garbage Collector 455
20.3 Source Files Containing Type Information. 455

Funding Free Software . 457

The GNU Project and GNU/Linux 459

x GNU Compiler Collection (GCC) Internals

GNU GENERAL PUBLIC LICENSE 461
Preamble . 461
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION . 462
Appendix: How to Apply These Terms to Your New Programs 466

GNU Free Documentation License 467
ADDENDUM: How to use this License for your documents 473

Contributors to GCC . 475

Option Index . 491

Concept Index . 493

Introduction 1

Introduction

This manual documents the internals of the GNU compilers, including how to port them
to new targets and some information about how to write front ends for new languages. It
corresponds to the compilers version 4.2.1. The use of the GNU compilers is documented
in a separate manual. See section \Introduction" in Using the GNU Compiler Collection
(GCC).

This manual is mainly a reference manual rather than a tutorial. It discusses how to con-
tribute to GCC (see Chapter 1 [Contributing], page 3), the characteristics of the machines
supported by GCC as hosts and targets (see Chapter 2 [Portability], page 5), how GCC
relates to the ABIs on such systems (see Chapter 3 [Interface], page 7), and the character-
istics of the languages for which GCC front ends are written (see Chapter 5 [Languages],
page 21). It then describes the GCC source tree structure and build system, some of the
interfaces to GCC front ends, and how support for a target system is implemented in GCC.

Additional tutorial information is linked to from http://gcc.gnu.org/readings.html.

http://gcc.gnu.org/readings.html

2 GNU Compiler Collection (GCC) Internals

Chapter 1: Contributing to GCC Development 3

1 Contributing to GCC Development

If you would like to help pretest GCC releases to assure they work well, current development
sources are available by SVN (see http://gcc.gnu.org/svn.html). Source and binary
snapshots are also available for FTP; see http://gcc.gnu.org/snapshots.html.

If you would like to work on improvements to GCC, please read the advice at these URLs:
http://gcc.gnu.org/contribute.html
http://gcc.gnu.org/contributewhy.html

for information on how to make useful contributions and avoid duplication of e�ort. Sug-
gested projects are listed at http://gcc.gnu.org/projects/.

http://gcc.gnu.org/svn.html
http://gcc.gnu.org/snapshots.html
http://gcc.gnu.org/contribute.html
http://gcc.gnu.org/contributewhy.html
http://gcc.gnu.org/projects/

4 GNU Compiler Collection (GCC) Internals

Chapter 2: GCC and Portability 5

2 GCC and Portability

GCC itself aims to be portable to any machine where int is at least a 32-bit type. It aims
to target machines with a
at (non-segmented) byte addressed data address space (the code
address space can be separate). Target ABIs may have 8, 16, 32 or 64-bit int type. char
can be wider than 8 bits.

GCC gets most of the information about the target machine from a machine description
which gives an algebraic formula for each of the machine's instructions. This is a very clean
way to describe the target. But when the compiler needs information that is di�cult to
express in this fashion, ad-hoc parameters have been de�ned for machine descriptions. The
purpose of portability is to reduce the total work needed on the compiler; it was not of
interest for its own sake.

GCC does not contain machine dependent code, but it does contain code that depends on
machine parameters such as endianness (whether the most signi�cant byte has the highest
or lowest address of the bytes in a word) and the availability of autoincrement addressing. In
the RTL-generation pass, it is often necessary to have multiple strategies for generating code
for a particular kind of syntax tree, strategies that are usable for di�erent combinations of
parameters. Often, not all possible cases have been addressed, but only the common ones or
only the ones that have been encountered. As a result, a new target may require additional
strategies. You will know if this happens because the compiler will call abort. Fortunately,
the new strategies can be added in a machine-independent fashion, and will a�ect only the
target machines that need them.

6 GNU Compiler Collection (GCC) Internals

Chapter 3: Interfacing to GCC Output 7

3 Interfacing to GCC Output

GCC is normally con�gured to use the same function calling convention normally in use
on the target system. This is done with the machine-description macros described (see
Chapter 15 [Target Macros], page 293).

However, returning of structure and union values is done di�erently on some target ma-
chines. As a result, functions compiled with PCC returning such types cannot be called
from code compiled with GCC, and vice versa. This does not cause trouble often because
few Unix library routines return structures or unions.

GCC code returns structures and unions that are 1, 2, 4 or 8 bytes long in the same
registers used for int or double return values. (GCC typically allocates variables of such
types in registers also.) Structures and unions of other sizes are returned by storing them
into an address passed by the caller (usually in a register). The target hook TARGET_STRUCT_
VALUE_RTX tells GCC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size
by copying the data into an area of static storage, and then returning the address of that
storage as if it were a pointer value. The caller must copy the data from that memory area
to the place where the value is wanted. This is slower than the method used by GCC, and
fails to be reentrant.

On some target machines, such as RISC machines and the 80386, the standard system
convention is to pass to the subroutine the address of where to return the value. On these
machines, GCC has been con�gured to be compatible with the standard compiler, when
this method is used. It may not be compatible for structures of 1, 2, 4 or 8 bytes.

GCC uses the system's standard convention for passing arguments. On some machines,
the �rst few arguments are passed in registers; in others, all are passed on the stack. It
would be possible to use registers for argument passing on any machine, and this would
probably result in a signi�cant speedup. But the result would be complete incompatibility
with code that follows the standard convention. So this change is practical only if you
are switching to GCC as the sole C compiler for the system. We may implement register
argument passing on certain machines once we have a complete GNU system so that we
can compile the libraries with GCC.

On some machines (particularly the SPARC), certain types of arguments are passed \by
invisible reference". This means that the value is stored in memory, and the address of the
memory location is passed to the subroutine.

If you use longjmp, beware of automatic variables. ISO C says that automatic variables
that are not declared volatile have unde�ned values after a longjmp. And this is all GCC
promises to do, because it is very di�cult to restore register variables correctly, and one of
GCC's features is that it can put variables in registers without your asking it to.

8 GNU Compiler Collection (GCC) Internals

Chapter 4: The GCC low-level runtime library 9

4 The GCC low-level runtime library

GCC provides a low-level runtime library, `libgcc.a' or `libgcc_s.so.1' on some plat-
forms. GCC generates calls to routines in this library automatically, whenever it needs to
perform some operation that is too complicated to emit inline code for.

Most of the routines in libgcc handle arithmetic operations that the target processor
cannot perform directly. This includes integer multiply and divide on some machines, and
all
oating-point operations on other machines. libgcc also includes routines for exception
handling, and a handful of miscellaneous operations.

Some of these routines can be de�ned in mostly machine-independent C. Others must be
hand-written in assembly language for each processor that needs them.

GCC will also generate calls to C library routines, such as memcpy and memset, in some
cases. The set of routines that GCC may possibly use is documented in section \Other
Builtins" in Using the GNU Compiler Collection (GCC).

These routines take arguments and return values of a speci�c machine mode, not a speci�c
C type. See Section 12.6 [Machine Modes], page 153, for an explanation of this concept. For
illustrative purposes, in this chapter the
oating point type float is assumed to correspond
to SFmode; double to DFmode; and long double to both TFmode and XFmode. Similarly,
the integer types int and unsigned int correspond to SImode; long and unsigned long

to DImode; and long long and unsigned long long to TImode.

4.1 Routines for integer arithmetic

The integer arithmetic routines are used on platforms that don't provide hardware support
for arithmetic operations on some modes.

4.1.1 Arithmetic functions

[Runtime Function]int __ashlsi3 (int a, int b)
[Runtime Function]long __ashldi3 (long a, int b)
[Runtime Function]long long __ashlti3 (long long a, int b)

These functions return the result of shifting a left by b bits.

[Runtime Function]int __ashrsi3 (int a, int b)
[Runtime Function]long __ashrdi3 (long a, int b)
[Runtime Function]long long __ashrti3 (long long a, int b)

These functions return the result of arithmetically shifting a right by b bits.

[Runtime Function]int __divsi3 (int a, int b)
[Runtime Function]long __divdi3 (long a, long b)
[Runtime Function]long long __divti3 (long long a, long long b)

These functions return the quotient of the signed division of a and b.

[Runtime Function]int __lshrsi3 (int a, int b)
[Runtime Function]long __lshrdi3 (long a, int b)
[Runtime Function]long long __lshrti3 (long long a, int b)

These functions return the result of logically shifting a right by b bits.

10 GNU Compiler Collection (GCC) Internals

[Runtime Function]int __modsi3 (int a, int b)
[Runtime Function]long __moddi3 (long a, long b)
[Runtime Function]long long __modti3 (long long a, long long b)

These functions return the remainder of the signed division of a and b.

[Runtime Function]int __mulsi3 (int a, int b)
[Runtime Function]long __muldi3 (long a, long b)
[Runtime Function]long long __multi3 (long long a, long long b)

These functions return the product of a and b.

[Runtime Function]long __negdi2 (long a)
[Runtime Function]long long __negti2 (long long a)

These functions return the negation of a.

[Runtime Function]unsigned int __udivsi3 (unsigned int a, unsigned int b)
[Runtime Function]unsigned long __udivdi3 (unsigned long a, unsigned long b)
[Runtime Function]unsigned long long __udivti3 (unsigned long long a,

unsigned long long b)
These functions return the quotient of the unsigned division of a and b.

[Runtime Function]unsigned long __udivmoddi3 (unsigned long a, unsigned long
b, unsigned long *c)

[Runtime Function]unsigned long long __udivti3 (unsigned long long a,
unsigned long long b, unsigned long long *c)

These functions calculate both the quotient and remainder of the unsigned division
of a and b. The return value is the quotient, and the remainder is placed in variable
pointed to by c.

[Runtime Function]unsigned int __umodsi3 (unsigned int a, unsigned int b)
[Runtime Function]unsigned long __umoddi3 (unsigned long a, unsigned long b)
[Runtime Function]unsigned long long __umodti3 (unsigned long long a,

unsigned long long b)
These functions return the remainder of the unsigned division of a and b.

4.1.2 Comparison functions

The following functions implement integral comparisons. These functions implement a low-
level compare, upon which the higher level comparison operators (such as less than and
greater than or equal to) can be constructed. The returned values lie in the range zero
to two, to allow the high-level operators to be implemented by testing the returned result
using either signed or unsigned comparison.

[Runtime Function]int __cmpdi2 (long a, long b)
[Runtime Function]int __cmpti2 (long long a, long long b)

These functions perform a signed comparison of a and b. If a is less than b, they
return 0; if a is greater than b, they return 2; and if a and b are equal they return 1.

[Runtime Function]int __ucmpdi2 (unsigned long a, unsigned long b)
[Runtime Function]int __ucmpti2 (unsigned long long a, unsigned long long b)

These functions perform an unsigned comparison of a and b. If a is less than b, they
return 0; if a is greater than b, they return 2; and if a and b are equal they return 1.

Chapter 4: The GCC low-level runtime library 11

4.1.3 Trapping arithmetic functions

The following functions implement trapping arithmetic. These functions call the libc func-
tion abort upon signed arithmetic over
ow.

[Runtime Function]int __absvsi2 (int a)
[Runtime Function]long __absvdi2 (long a)

These functions return the absolute value of a.

[Runtime Function]int __addvsi3 (int a, int b)
[Runtime Function]long __addvdi3 (long a, long b)

These functions return the sum of a and b; that is a + b .

[Runtime Function]int __mulvsi3 (int a, int b)
[Runtime Function]long __mulvdi3 (long a, long b)

The functions return the product of a and b; that is a * b .

[Runtime Function]int __negvsi2 (int a)
[Runtime Function]long __negvdi2 (long a)

These functions return the negation of a; that is -a .

[Runtime Function]int __subvsi3 (int a, int b)
[Runtime Function]long __subvdi3 (long a, long b)

These functions return the di�erence between b and a; that is a - b .

4.1.4 Bit operations

[Runtime Function]int __clzsi2 (int a)
[Runtime Function]int __clzdi2 (long a)
[Runtime Function]int __clzti2 (long long a)

These functions return the number of leading 0-bits in a, starting at the most signif-
icant bit position. If a is zero, the result is unde�ned.

[Runtime Function]int __ctzsi2 (int a)
[Runtime Function]int __ctzdi2 (long a)
[Runtime Function]int __ctzti2 (long long a)

These functions return the number of trailing 0-bits in a, starting at the least signif-
icant bit position. If a is zero, the result is unde�ned.

[Runtime Function]int __ffsdi2 (long a)
[Runtime Function]int __ffsti2 (long long a)

These functions return the index of the least signi�cant 1-bit in a, or the value zero
if a is zero. The least signi�cant bit is index one.

[Runtime Function]int __paritysi2 (int a)
[Runtime Function]int __paritydi2 (long a)
[Runtime Function]int __parityti2 (long long a)

These functions return the value zero if the number of bits set in a is even, and the
value one otherwise.

12 GNU Compiler Collection (GCC) Internals

[Runtime Function]int __popcountsi2 (int a)
[Runtime Function]int __popcountdi2 (long a)
[Runtime Function]int __popcountti2 (long long a)

These functions return the number of bits set in a.

4.2 Routines for
oating point emulation

The software
oating point library is used on machines which do not have hardware support
for
oating point. It is also used whenever `-msoft-float' is used to disable generation of

oating point instructions. (Not all targets support this switch.)

For compatibility with other compilers, the
oating point emulation routines can be
renamed with the DECLARE_LIBRARY_RENAMES macro (see Section 15.13 [Library Calls],
page 363). In this section, the default names are used.

Presently the library does not support XFmode, which is used for long double on some
architectures.

4.2.1 Arithmetic functions

[Runtime Function]float __addsf3 (
oat a,
oat b)
[Runtime Function]double __adddf3 (double a, double b)
[Runtime Function]long double __addtf3 (long double a, long double b)
[Runtime Function]long double __addxf3 (long double a, long double b)

These functions return the sum of a and b.

[Runtime Function]float __subsf3 (
oat a,
oat b)
[Runtime Function]double __subdf3 (double a, double b)
[Runtime Function]long double __subtf3 (long double a, long double b)
[Runtime Function]long double __subxf3 (long double a, long double b)

These functions return the di�erence between b and a; that is, a� b.

[Runtime Function]float __mulsf3 (
oat a,
oat b)
[Runtime Function]double __muldf3 (double a, double b)
[Runtime Function]long double __multf3 (long double a, long double b)
[Runtime Function]long double __mulxf3 (long double a, long double b)

These functions return the product of a and b.

[Runtime Function]float __divsf3 (
oat a,
oat b)
[Runtime Function]double __divdf3 (double a, double b)
[Runtime Function]long double __divtf3 (long double a, long double b)
[Runtime Function]long double __divxf3 (long double a, long double b)

These functions return the quotient of a and b; that is, a=b.

[Runtime Function]float __negsf2 (
oat a)
[Runtime Function]double __negdf2 (double a)
[Runtime Function]long double __negtf2 (long double a)
[Runtime Function]long double __negxf2 (long double a)

These functions return the negation of a. They simply
ip the sign bit, so they can
produce negative zero and negative NaN.

Chapter 4: The GCC low-level runtime library 13

4.2.2 Conversion functions

[Runtime Function]double __extendsfdf2 (
oat a)
[Runtime Function]long double __extendsftf2 (
oat a)
[Runtime Function]long double __extendsfxf2 (
oat a)
[Runtime Function]long double __extenddftf2 (double a)
[Runtime Function]long double __extenddfxf2 (double a)

These functions extend a to the wider mode of their return type.

[Runtime Function]double __truncxfdf2 (long double a)
[Runtime Function]double __trunctfdf2 (long double a)
[Runtime Function]float __truncxfsf2 (long double a)
[Runtime Function]float __trunctfsf2 (long double a)
[Runtime Function]float __truncdfsf2 (double a)

These functions truncate a to the narrower mode of their return type, rounding toward
zero.

[Runtime Function]int __fixsfsi (
oat a)
[Runtime Function]int __fixdfsi (double a)
[Runtime Function]int __fixtfsi (long double a)
[Runtime Function]int __fixxfsi (long double a)

These functions convert a to a signed integer, rounding toward zero.

[Runtime Function]long __fixsfdi (
oat a)
[Runtime Function]long __fixdfdi (double a)
[Runtime Function]long __fixtfdi (long double a)
[Runtime Function]long __fixxfdi (long double a)

These functions convert a to a signed long, rounding toward zero.

[Runtime Function]long long __fixsfti (
oat a)
[Runtime Function]long long __fixdfti (double a)
[Runtime Function]long long __fixtfti (long double a)
[Runtime Function]long long __fixxfti (long double a)

These functions convert a to a signed long long, rounding toward zero.

[Runtime Function]unsigned int __fixunssfsi (
oat a)
[Runtime Function]unsigned int __fixunsdfsi (double a)
[Runtime Function]unsigned int __fixunstfsi (long double a)
[Runtime Function]unsigned int __fixunsxfsi (long double a)

These functions convert a to an unsigned integer, rounding toward zero. Negative
values all become zero.

[Runtime Function]unsigned long __fixunssfdi (
oat a)
[Runtime Function]unsigned long __fixunsdfdi (double a)
[Runtime Function]unsigned long __fixunstfdi (long double a)
[Runtime Function]unsigned long __fixunsxfdi (long double a)

These functions convert a to an unsigned long, rounding toward zero. Negative values
all become zero.

14 GNU Compiler Collection (GCC) Internals

[Runtime Function]unsigned long long __fixunssfti (
oat a)
[Runtime Function]unsigned long long __fixunsdfti (double a)
[Runtime Function]unsigned long long __fixunstfti (long double a)
[Runtime Function]unsigned long long __fixunsxfti (long double a)

These functions convert a to an unsigned long long, rounding toward zero. Negative
values all become zero.

[Runtime Function]float __floatsisf (int i)
[Runtime Function]double __floatsidf (int i)
[Runtime Function]long double __floatsitf (int i)
[Runtime Function]long double __floatsixf (int i)

These functions convert i, a signed integer, to
oating point.

[Runtime Function]float __floatdisf (long i)
[Runtime Function]double __floatdidf (long i)
[Runtime Function]long double __floatditf (long i)
[Runtime Function]long double __floatdixf (long i)

These functions convert i, a signed long, to
oating point.

[Runtime Function]float __floattisf (long long i)
[Runtime Function]double __floattidf (long long i)
[Runtime Function]long double __floattitf (long long i)
[Runtime Function]long double __floattixf (long long i)

These functions convert i, a signed long long, to
oating point.

[Runtime Function]float __floatunsisf (unsigned int i)
[Runtime Function]double __floatunsidf (unsigned int i)
[Runtime Function]long double __floatunsitf (unsigned int i)
[Runtime Function]long double __floatunsixf (unsigned int i)

These functions convert i, an unsigned integer, to
oating point.

[Runtime Function]float __floatundisf (unsigned long i)
[Runtime Function]double __floatundidf (unsigned long i)
[Runtime Function]long double __floatunditf (unsigned long i)
[Runtime Function]long double __floatundixf (unsigned long i)

These functions convert i, an unsigned long, to
oating point.

[Runtime Function]float __floatuntisf (unsigned long long i)
[Runtime Function]double __floatuntidf (unsigned long long i)
[Runtime Function]long double __floatuntitf (unsigned long long i)
[Runtime Function]long double __floatuntixf (unsigned long long i)

These functions convert i, an unsigned long long, to
oating point.

4.2.3 Comparison functions

There are two sets of basic comparison functions.

[Runtime Function]int __cmpsf2 (
oat a,
oat b)
[Runtime Function]int __cmpdf2 (double a, double b)

Chapter 4: The GCC low-level runtime library 15

[Runtime Function]int __cmptf2 (long double a, long double b)
These functions calculate a <=> b. That is, if a is less than b, they return �1; if
a is greater than b, they return 1; and if a and b are equal they return 0. If either
argument is NaN they return 1, but you should not rely on this; if NaN is a possibility,
use one of the higher-level comparison functions.

[Runtime Function]int __unordsf2 (
oat a,
oat b)
[Runtime Function]int __unorddf2 (double a, double b)
[Runtime Function]int __unordtf2 (long double a, long double b)

These functions return a nonzero value if either argument is NaN, otherwise 0.

There is also a complete group of higher level functions which correspond directly to
comparison operators. They implement the ISO C semantics for
oating-point comparisons,
taking NaN into account. Pay careful attention to the return values de�ned for each set.
Under the hood, all of these routines are implemented as

if (__unordXf2 (a, b))
return E;

return __cmpXf2 (a, b);

where E is a constant chosen to give the proper behavior for NaN. Thus, the meaning
of the return value is di�erent for each set. Do not rely on this implementation; only the
semantics documented below are guaranteed.

[Runtime Function]int __eqsf2 (
oat a,
oat b)
[Runtime Function]int __eqdf2 (double a, double b)
[Runtime Function]int __eqtf2 (long double a, long double b)

These functions return zero if neither argument is NaN, and a and b are equal.

[Runtime Function]int __nesf2 (
oat a,
oat b)
[Runtime Function]int __nedf2 (double a, double b)
[Runtime Function]int __netf2 (long double a, long double b)

These functions return a nonzero value if either argument is NaN, or if a and b are
unequal.

[Runtime Function]int __gesf2 (
oat a,
oat b)
[Runtime Function]int __gedf2 (double a, double b)
[Runtime Function]int __getf2 (long double a, long double b)

These functions return a value greater than or equal to zero if neither argument is
NaN, and a is greater than or equal to b.

[Runtime Function]int __ltsf2 (
oat a,
oat b)
[Runtime Function]int __ltdf2 (double a, double b)
[Runtime Function]int __lttf2 (long double a, long double b)

These functions return a value less than zero if neither argument is NaN, and a is
strictly less than b.

[Runtime Function]int __lesf2 (
oat a,
oat b)
[Runtime Function]int __ledf2 (double a, double b)
[Runtime Function]int __letf2 (long double a, long double b)

These functions return a value less than or equal to zero if neither argument is NaN,
and a is less than or equal to b.

16 GNU Compiler Collection (GCC) Internals

[Runtime Function]int __gtsf2 (
oat a,
oat b)
[Runtime Function]int __gtdf2 (double a, double b)
[Runtime Function]int __gttf2 (long double a, long double b)

These functions return a value greater than zero if neither argument is NaN, and a is
strictly greater than b.

4.2.4 Other
oating-point functions

[Runtime Function]float __powisf2 (
oat a, int b)
[Runtime Function]double __powidf2 (double a, int b)
[Runtime Function]long double __powitf2 (long double a, int b)
[Runtime Function]long double __powixf2 (long double a, int b)

These functions convert raise a to the power b.

[Runtime Function]complex float __mulsc3 (
oat a,
oat b,
oat c,
oat d)
[Runtime Function]complex double __muldc3 (double a, double b, double c,

double d)
[Runtime Function]complex long double __multc3 (long double a, long double

b, long double c, long double d)
[Runtime Function]complex long double __mulxc3 (long double a, long double

b, long double c, long double d)
These functions return the product of a + ib and c + id, following the rules of C99
Annex G.

[Runtime Function]complex float __divsc3 (
oat a,
oat b,
oat c,
oat d)
[Runtime Function]complex double __divdc3 (double a, double b, double c,

double d)
[Runtime Function]complex long double __divtc3 (long double a, long double

b, long double c, long double d)
[Runtime Function]complex long double __divxc3 (long double a, long double

b, long double c, long double d)
These functions return the quotient of a + ib and c + id (i.e., (a + ib)=(c + id)),
following the rules of C99 Annex G.

4.3 Routines for decimal
oating point emulation

The software decimal
oating point library implements IEEE 754R decimal
oating point
arithmetic and is only activated on selected targets.

4.3.1 Arithmetic functions

[Runtime Function]_Decimal32 __addsd3 (Decimal32 a, Decimal32 b)
[Runtime Function]_Decimal64 __adddd3 (Decimal64 a, Decimal64 b)
[Runtime Function]_Decimal128 __addtd3 (Decimal128 a, Decimal128 b)

These functions return the sum of a and b.

[Runtime Function]_Decimal32 __subsd3 (Decimal32 a, Decimal32 b)
[Runtime Function]_Decimal64 __subdd3 (Decimal64 a, Decimal64 b)
[Runtime Function]_Decimal128 __subtd3 (Decimal128 a, Decimal128 b)

These functions return the di�erence between b and a; that is, a� b.

Chapter 4: The GCC low-level runtime library 17

[Runtime Function]_Decimal32 __mulsd3 (Decimal32 a, Decimal32 b)
[Runtime Function]_Decimal64 __muldd3 (Decimal64 a, Decimal64 b)
[Runtime Function]_Decimal128 __multd3 (Decimal128 a, Decimal128 b)

These functions return the product of a and b.

[Runtime Function]_Decimal32 __divsd3 (Decimal32 a, Decimal32 b)
[Runtime Function]_Decimal64 __divdd3 (Decimal64 a, Decimal64 b)
[Runtime Function]_Decimal128 __divtd3 (Decimal128 a, Decimal128 b)

These functions return the quotient of a and b; that is, a=b.

[Runtime Function]_Decimal32 __negsd2 (Decimal32 a)
[Runtime Function]_Decimal64 __negdd2 (Decimal64 a)
[Runtime Function]_Decimal128 __negtd2 (Decimal128 a)

These functions return the negation of a. They simply
ip the sign bit, so they can
produce negative zero and negative NaN.

4.3.2 Conversion functions

[Runtime Function]_Decimal64 __extendsddd2 (Decimal32 a)
[Runtime Function]_Decimal128 __extendsdtd2 (Decimal32 a)
[Runtime Function]_Decimal128 __extendddtd2 (Decimal64 a)
[Runtime Function]_Decimal32 __extendsfsd (
oat a)
[Runtime Function]double __extendsddf (Decimal32 a)
[Runtime Function]long double __extendsdxf (Decimal32 a)
[Runtime Function]_Decimal64 __extendsfdd (
oat a)
[Runtime Function]_Decimal64 __extenddfdd (double a)
[Runtime Function]long double __extendddxf (Decimal64 a)
[Runtime Function]_Decimal128 __extendsftd (
oat a)
[Runtime Function]_Decimal128 __extenddftd (double a)
[Runtime Function]_Decimal128 __extendxftd (long double a)

These functions extend a to the wider mode of their return type.

[Runtime Function]_Decimal32 __truncddsd2 (Decimal64 a)
[Runtime Function]_Decimal32 __trunctdsd2 (Decimal128 a)
[Runtime Function]_Decimal64 __trunctddd2 (Decimal128 a)
[Runtime Function]float __truncsdsf (Decimal32 a)
[Runtime Function]_Decimal32 __truncdfsd (double a)
[Runtime Function]_Decimal32 __truncxfsd (long double a)
[Runtime Function]float __truncddsf (Decimal64 a)
[Runtime Function]double __truncdddf (Decimal64 a)
[Runtime Function]_Decimal64 __truncxfdd (long double a)
[Runtime Function]float __trunctdsf (Decimal128 a)
[Runtime Function]double __trunctddf (Decimal128 a)
[Runtime Function]long double __trunctdxf (Decimal128 a)

These functions truncate a to the narrower mode of their return type.

[Runtime Function]int __fixsdsi (Decimal32 a)
[Runtime Function]int __fixddsi (Decimal64 a)

18 GNU Compiler Collection (GCC) Internals

[Runtime Function]int __fixtdsi (Decimal128 a)
These functions convert a to a signed integer.

[Runtime Function]long __fixsddi (Decimal32 a)
[Runtime Function]long __fixdddi (Decimal64 a)
[Runtime Function]long __fixtddi (Decimal128 a)

These functions convert a to a signed long.

[Runtime Function]unsigned int __fixunssdsi (Decimal32 a)
[Runtime Function]unsigned int __fixunsddsi (Decimal64 a)
[Runtime Function]unsigned int __fixunstdsi (Decimal128 a)

These functions convert a to an unsigned integer. Negative values all become zero.

[Runtime Function]unsigned long __fixunssddi (Decimal32 a)
[Runtime Function]unsigned long __fixunsdddi (Decimal64 a)
[Runtime Function]unsigned long __fixunstddi (Decimal128 a)

These functions convert a to an unsigned long. Negative values all become zero.

[Runtime Function]_Decimal32 __floatsisd (int i)
[Runtime Function]_Decimal64 __floatsidd (int i)
[Runtime Function]_Decimal128 __floatsitd (int i)

These functions convert i, a signed integer, to decimal
oating point.

[Runtime Function]_Decimal32 __floatdisd (long i)
[Runtime Function]_Decimal64 __floatdidd (long i)
[Runtime Function]_Decimal128 __floatditd (long i)

These functions convert i, a signed long, to decimal
oating point.

[Runtime Function]_Decimal32 __floatunssisd (unsigned int i)
[Runtime Function]_Decimal64 __floatunssidd (unsigned int i)
[Runtime Function]_Decimal128 __floatunssitd (unsigned int i)

These functions convert i, an unsigned integer, to decimal
oating point.

[Runtime Function]_Decimal32 __floatunsdisd (unsigned long i)
[Runtime Function]_Decimal64 __floatunsdidd (unsigned long i)
[Runtime Function]_Decimal128 __floatunsditd (unsigned long i)

These functions convert i, an unsigned long, to decimal
oating point.

4.3.3 Comparison functions

[Runtime Function]int __unordsd2 (Decimal32 a, Decimal32 b)
[Runtime Function]int __unorddd2 (Decimal64 a, Decimal64 b)
[Runtime Function]int __unordtd2 (Decimal128 a, Decimal128 b)

These functions return a nonzero value if either argument is NaN, otherwise 0.

There is also a complete group of higher level functions which correspond directly to
comparison operators. They implement the ISO C semantics for
oating-point comparisons,
taking NaN into account. Pay careful attention to the return values de�ned for each set.
Under the hood, all of these routines are implemented as

Chapter 4: The GCC low-level runtime library 19

if (__unordXd2 (a, b))
return E;

return __cmpXd2 (a, b);

where E is a constant chosen to give the proper behavior for NaN. Thus, the meaning
of the return value is di�erent for each set. Do not rely on this implementation; only the
semantics documented below are guaranteed.

[Runtime Function]int __eqsd2 (Decimal32 a, Decimal32 b)
[Runtime Function]int __eqdd2 (Decimal64 a, Decimal64 b)
[Runtime Function]int __eqtd2 (Decimal128 a, Decimal128 b)

These functions return zero if neither argument is NaN, and a and b are equal.

[Runtime Function]int __nesd2 (Decimal32 a, Decimal32 b)
[Runtime Function]int __nedd2 (Decimal64 a, Decimal64 b)
[Runtime Function]int __netd2 (Decimal128 a, Decimal128 b)

These functions return a nonzero value if either argument is NaN, or if a and b are
unequal.

[Runtime Function]int __gesd2 (Decimal32 a, Decimal32 b)
[Runtime Function]int __gedd2 (Decimal64 a, Decimal64 b)
[Runtime Function]int __getd2 (Decimal128 a, Decimal128 b)

These functions return a value greater than or equal to zero if neither argument is
NaN, and a is greater than or equal to b.

[Runtime Function]int __ltsd2 (Decimal32 a, Decimal32 b)
[Runtime Function]int __ltdd2 (Decimal64 a, Decimal64 b)
[Runtime Function]int __lttd2 (Decimal128 a, Decimal128 b)

These functions return a value less than zero if neither argument is NaN, and a is
strictly less than b.

[Runtime Function]int __lesd2 (Decimal32 a, Decimal32 b)
[Runtime Function]int __ledd2 (Decimal64 a, Decimal64 b)
[Runtime Function]int __letd2 (Decimal128 a, Decimal128 b)

These functions return a value less than or equal to zero if neither argument is NaN,
and a is less than or equal to b.

[Runtime Function]int __gtsd2 (Decimal32 a, Decimal32 b)
[Runtime Function]int __gtdd2 (Decimal64 a, Decimal64 b)
[Runtime Function]int __gttd2 (Decimal128 a, Decimal128 b)

These functions return a value greater than zero if neither argument is NaN, and a is
strictly greater than b.

4.4 Language-independent routines for exception handling

document me!

_Unwind_DeleteException
_Unwind_Find_FDE
_Unwind_ForcedUnwind
_Unwind_GetGR
_Unwind_GetIP

20 GNU Compiler Collection (GCC) Internals

_Unwind_GetLanguageSpecificData
_Unwind_GetRegionStart
_Unwind_GetTextRelBase
_Unwind_GetDataRelBase
_Unwind_RaiseException
_Unwind_Resume
_Unwind_SetGR
_Unwind_SetIP
_Unwind_FindEnclosingFunction
_Unwind_SjLj_Register
_Unwind_SjLj_Unregister
_Unwind_SjLj_RaiseException
_Unwind_SjLj_ForcedUnwind
_Unwind_SjLj_Resume
__deregister_frame
__deregister_frame_info
__deregister_frame_info_bases
__register_frame
__register_frame_info
__register_frame_info_bases
__register_frame_info_table
__register_frame_info_table_bases
__register_frame_table

4.5 Miscellaneous runtime library routines

4.5.1 Cache control functions

[Runtime Function]void __clear_cache (char *beg, char *end)
This function clears the instruction cache between beg and end.

Chapter 5: Language Front Ends in GCC 21

5 Language Front Ends in GCC

The interface to front ends for languages in GCC, and in particular the tree structure (see
Chapter 9 [Trees], page 69), was initially designed for C, and many aspects of it are still
somewhat biased towards C and C-like languages. It is, however, reasonably well suited to
other procedural languages, and front ends for many such languages have been written for
GCC.

Writing a compiler as a front end for GCC, rather than compiling directly to assembler
or generating C code which is then compiled by GCC, has several advantages:

� GCC front ends bene�t from the support for many di�erent target machines already
present in GCC.

� GCC front ends bene�t from all the optimizations in GCC. Some of these, such as
alias analysis, may work better when GCC is compiling directly from source code then
when it is compiling from generated C code.

� Better debugging information is generated when compiling directly from source code
than when going via intermediate generated C code.

Because of the advantages of writing a compiler as a GCC front end, GCC front ends
have also been created for languages very di�erent from those for which GCC was designed,
such as the declarative logic/functional language Mercury. For these reasons, it may also
be useful to implement compilers created for specialized purposes (for example, as part of
a research project) as GCC front ends.

22 GNU Compiler Collection (GCC) Internals

Chapter 6: Source Tree Structure and Build System 23

6 Source Tree Structure and Build System

This chapter describes the structure of the GCC source tree, and how GCC is built.
The user documentation for building and installing GCC is in a separate manual
(http://gcc.gnu.org/install/), with which it is presumed that you are familiar.

6.1 Con�gure Terms and History

The con�gure and build process has a long and colorful history, and can be confusing
to anyone who doesn't know why things are the way they are. While there are other
documents which describe the con�guration process in detail, here are a few things that
everyone working on GCC should know.

There are three system names that the build knows about: the machine you are building
on (build), the machine that you are building for (host), and the machine that GCC will
produce code for (target). When you con�gure GCC, you specify these with `--build=',
`--host=', and `--target='.

Specifying the host without specifying the build should be avoided, as configure may
(and once did) assume that the host you specify is also the build, which may not be true.

If build, host, and target are all the same, this is called a native. If build and host are the
same but target is di�erent, this is called a cross. If build, host, and target are all di�erent
this is called a canadian (for obscure reasons dealing with Canada's political party and the
background of the person working on the build at that time). If host and target are the
same, but build is di�erent, you are using a cross-compiler to build a native for a di�erent
system. Some people call this a host-x-host, crossed native, or cross-built native. If build
and target are the same, but host is di�erent, you are using a cross compiler to build a cross
compiler that produces code for the machine you're building on. This is rare, so there is no
common way of describing it. There is a proposal to call this a crossback.

If build and host are the same, the GCC you are building will also be used to build the
target libraries (like libstdc++). If build and host are di�erent, you must have already
build and installed a cross compiler that will be used to build the target libraries (if you
con�gured with `--target=foo-bar', this compiler will be called foo-bar-gcc).

In the case of target libraries, the machine you're building for is the machine you speci�ed
with `--target'. So, build is the machine you're building on (no change there), host is the
machine you're building for (the target libraries are built for the target, so host is the target
you speci�ed), and target doesn't apply (because you're not building a compiler, you're
building libraries). The con�gure/make process will adjust these variables as needed. It
also sets $with_cross_host to the original `--host' value in case you need it.

The libiberty support library is built up to three times: once for the host, once for the
target (even if they are the same), and once for the build if build and host are di�erent.
This allows it to be used by all programs which are generated in the course of the build
process.

6.2 Top Level Source Directory

The top level source directory in a GCC distribution contains several �les and directories
that are shared with other software distributions such as that of GNU Binutils. It also
contains several subdirectories that contain parts of GCC and its runtime libraries:

http://gcc.gnu.org/install/

24 GNU Compiler Collection (GCC) Internals

`boehm-gc'
The Boehm conservative garbage collector, used as part of the Java runtime
library.

`contrib' Contributed scripts that may be found useful in conjunction with GCC. One
of these, `contrib/texi2pod.pl', is used to generate man pages from Texinfo
manuals as part of the GCC build process.

`fastjar' An implementation of the jar command, used with the Java front end.

`gcc' The main sources of GCC itself (except for runtime libraries), including op-
timizers, support for di�erent target architectures, language front ends, and
testsuites. See Section 6.3 [The `gcc' Subdirectory], page 24, for details.

`include' Headers for the libiberty library.

`libada' The Ada runtime library.

`libcpp' The C preprocessor library.

`libgfortran'
The Fortran runtime library.

`libffi' The libffi library, used as part of the Java runtime library.

`libiberty'
The libiberty library, used for portability and for some generally useful data
structures and algorithms. See section \Introduction" in gnu libiberty , for
more information about this library.

`libjava' The Java runtime library.

`libmudflap'
The libmudflap library, used for instrumenting pointer and array dereferencing
operations.

`libobjc' The Objective-C and Objective-C++ runtime library.

`libstdc++-v3'
The C++ runtime library.

`maintainer-scripts'
Scripts used by the gccadmin account on gcc.gnu.org.

`zlib' The zlib compression library, used by the Java front end and as part of the
Java runtime library.

The build system in the top level directory, including how recursion into subdirectories
works and how building runtime libraries for multilibs is handled, is documented in a sepa-
rate manual, included with GNU Binutils. See section \GNU con�gure and build system"
in The GNU con�gure and build system, for details.

6.3 The `gcc' Subdirectory

The `gcc' directory contains many �les that are part of the C sources of GCC, other �les used
as part of the con�guration and build process, and subdirectories including documentation
and a testsuite. The �les that are sources of GCC are documented in a separate chapter.
See Chapter 8 [Passes and Files of the Compiler], page 55.

Chapter 6: Source Tree Structure and Build System 25

6.3.1 Subdirectories of `gcc'

The `gcc' directory contains the following subdirectories:

`language '
Subdirectories for various languages. Directories containing a �le
`config-lang.in' are language subdirectories. The contents of the
subdirectories `cp' (for C++), `objc' (for Objective-C) and `objcp' (for
Objective-C++) are documented in this manual (see Chapter 8 [Passes and
Files of the Compiler], page 55); those for other languages are not. See
Section 6.3.8 [Anatomy of a Language Front End], page 33, for details of the
�les in these directories.

`config' Con�guration �les for supported architectures and operating systems. See Sec-
tion 6.3.9 [Anatomy of a Target Back End], page 37, for details of the �les in
this directory.

`doc' Texinfo documentation for GCC, together with automatically generated man
pages and support for converting the installation manual to HTML. See Sec-
tion 6.3.7 [Documentation], page 30.

`fixinc' The support for �xing system headers to work with GCC. See `fixinc/README'
for more information. The headers �xed by this mechanism are installed in
`libsubdir/include'. Along with those headers, `README-fixinc' is also in-
stalled, as `libsubdir/include/README'.

`ginclude'
System headers installed by GCC, mainly those required by the C standard of
freestanding implementations. See Section 6.3.6 [Headers Installed by GCC],
page 30, for details of when these and other headers are installed.

`intl' GNU libintl, from GNU gettext, for systems which do not include it in libc.
Properly, this directory should be at top level, parallel to the `gcc' directory.

`po' Message catalogs with translations of messages produced by GCC into various
languages, `language.po'. This directory also contains `gcc.pot', the template
for these message catalogues, `exgettext', a wrapper around gettext to ex-
tract the messages from the GCC sources and create `gcc.pot', which is run
by `make gcc.pot', and `EXCLUDES', a list of �les from which messages should
not be extracted.

`testsuite'
The GCC testsuites (except for those for runtime libraries). See Section 6.4
[Testsuites], page 38.

6.3.2 Con�guration in the `gcc' Directory

The `gcc' directory is con�gured with an Autoconf-generated script `configure'. The
`configure' script is generated from `configure.ac' and `aclocal.m4'. From the �les
`configure.ac' and `acconfig.h', Autoheader generates the �le `config.in'. The �le
`cstamp-h.in' is used as a timestamp.

26 GNU Compiler Collection (GCC) Internals

6.3.2.1 Scripts Used by `configure'

`configure' uses some other scripts to help in its work:

� The standard GNU `config.sub' and `config.guess' �les, kept in the top level direc-
tory, are used. FIXME: when is the `config.guess' �le in the `gcc' directory (that
just calls the top level one) used?

� The �le `config.gcc' is used to handle con�guration speci�c to the particular target
machine. The �le `config.build' is used to handle con�guration speci�c to the par-
ticular build machine. The �le `config.host' is used to handle con�guration speci�c
to the particular host machine. (In general, these should only be used for features
that cannot reasonably be tested in Autoconf feature tests.) See Section 6.3.2.2 [The
`config.build'; `config.host'; and `config.gcc' Files], page 26, for details of the
contents of these �les.

� Each language subdirectory has a �le `language/config-lang.in' that is used for
front-end-speci�c con�guration. See Section 6.3.8.2 [The Front End `config-lang.in'
File], page 36, for details of this �le.

� A helper script `configure.frag' is used as part of creating the output of `configure'.

6.3.2.2 The `config.build'; `config.host'; and `config.gcc' Files

The `config.build' �le contains speci�c rules for particular systems which GCC is built
on. This should be used as rarely as possible, as the behavior of the build system can always
be detected by autoconf.

The `config.host' �le contains speci�c rules for particular systems which GCC will run
on. This is rarely needed.

The `config.gcc' �le contains speci�c rules for particular systems which GCC will gen-
erate code for. This is usually needed.

Each �le has a list of the shell variables it sets, with descriptions, at the top of the �le.

FIXME: document the contents of these �les, and what variables should be set to control
build, host and target con�guration.

6.3.2.3 Files Created by configure

Here we spell out what �les will be set up by `configure' in the `gcc' directory. Some
other �les are created as temporary �les in the con�guration process, and are not used in
the subsequent build; these are not documented.

� `Makefile' is constructed from `Makefile.in', together with the host and target frag-
ments (see Chapter 17 [Make�le Fragments], page 443) `t-target ' and `x-host ' from
`config', if any, and language Make�le fragments `language/Make-lang.in'.

� `auto-host.h' contains information about the host machine determined by
`configure'. If the host machine is di�erent from the build machine, then
`auto-build.h' is also created, containing such information about the build machine.

� `config.status' is a script that may be run to recreate the current con�guration.

� `configargs.h' is a header containing details of the arguments passed to `configure'
to con�gure GCC, and of the thread model used.

� `cstamp-h' is used as a timestamp.

Chapter 6: Source Tree Structure and Build System 27

� `fixinc/Makefile' is constructed from `fixinc/Makefile.in'.

� `gccbug', a script for reporting bugs in GCC, is constructed from `gccbug.in'.

� `intl/Makefile' is constructed from `intl/Makefile.in'.

� `mklibgcc', a shell script to create a Make�le to build libgcc, is constructed from
`mklibgcc.in'.

� If a language `config-lang.in' �le (see Section 6.3.8.2 [The Front End
`config-lang.in' File], page 36) sets outputs, then the �les listed in outputs there
are also generated.

The following con�guration headers are created from the Make�le, using `mkconfig.sh',
rather than directly by `configure'. `config.h', `bconfig.h' and `tconfig.h' all contain
the `xm-machine.h' header, if any, appropriate to the host, build and target machines
respectively, the con�guration headers for the target, and some de�nitions; for the host
and build machines, these include the autocon�gured headers generated by `configure'.
The other con�guration headers are determined by `config.gcc'. They also contain the
typedefs for rtx, rtvec and tree.

� `config.h', for use in programs that run on the host machine.

� `bconfig.h', for use in programs that run on the build machine.

� `tconfig.h', for use in programs and libraries for the target machine.

� `tm_p.h', which includes the header `machine-protos.h' that contains prototypes for
functions in the target `.c' �le. FIXME: why is such a separate header necessary?

6.3.3 Build System in the `gcc' Directory

FIXME: describe the build system, including what is built in what stages. Also list the
various source �les that are used in the build process but aren't source �les of GCC itself
and so aren't documented below (see Chapter 8 [Passes], page 55).

6.3.4 Make�le Targets

These targets are available from the `gcc' directory:

all This is the default target. Depending on what your build/host/target con�gu-
ration is, it coordinates all the things that need to be built.

doc Produce info-formatted documentation and man pages. Essentially it calls
`make man' and `make info'.

dvi Produce DVI-formatted documentation.

pdf Produce PDF-formatted documentation.

html Produce HTML-formatted documentation.

man Generate man pages.

info Generate info-formatted pages.

mostlyclean

Delete the �les made while building the compiler.

clean That, and all the other �les built by `make all'.

28 GNU Compiler Collection (GCC) Internals

distclean

That, and all the �les created by configure.

maintainer-clean

Distclean plus any �le that can be generated from other �les. Note that addi-
tional tools may be required beyond what is normally needed to build gcc.

srcextra Generates �les in the source directory that do not exist in CVS but should go
into a release tarball. One example is `gcc/java/parse.c' which is generated
from the CVS source �le `gcc/java/parse.y'.

srcinfo

srcman Copies the info-formatted and manpage documentation into the source directory
usually for the purpose of generating a release tarball.

install Installs gcc.

uninstall

Deletes installed �les.

check Run the testsuite. This creates a `testsuite' subdirectory that has various
`.sum' and `.log' �les containing the results of the testing. You can run subsets
with, for example, `make check-gcc'. You can specify speci�c tests by setting
RUNTESTFLAGS to be the name of the `.exp' �le, optionally followed by (for
some tests) an equals and a �le wildcard, like:

make check-gcc RUNTESTFLAGS="execute.exp=19980413-*"

Note that running the testsuite may require additional tools be installed, such
as TCL or dejagnu.

The toplevel tree from which you start GCC compilation is not the GCC directory,
but rather a complex Make�le that coordinates the various steps of the build, including
bootstrapping the compiler and using the new compiler to build target libraries.

When GCC is con�gured for a native con�guration, the default action for make is to
do a full three-stage bootstrap. This means that GCC is built three times|once with the
native compiler, once with the native-built compiler it just built, and once with the compiler
it built the second time. In theory, the last two should produce the same results, which
`make compare' can check. Each stage is con�gured separately and compiled into a separate
directory, to minimize problems due to ABI incompatibilities between the native compiler
and GCC.

If you do a change, rebuilding will also start from the �rst stage and \bubble" up the
change through the three stages. Each stage is taken from its build directory (if it had
been built previously), rebuilt, and copied to its subdirectory. This will allow you to, for
example, continue a bootstrap after �xing a bug which causes the stage2 build to crash.
It does not provide as good coverage of the compiler as bootstrapping from scratch, but it
ensures that the new code is syntactically correct (e.g. that you did not use GCC extensions
by mistake), and avoids spurious bootstrap comparison failures1.

Other targets available from the top level include:

1 Except if the compiler was buggy and miscompiled some of the �les that were not modi�ed. In this case,
it's best to use make restrap.

Chapter 6: Source Tree Structure and Build System 29

bootstrap-lean

Like bootstrap, except that the various stages are removed once they're no
longer needed. This saves disk space.

bootstrap2

bootstrap2-lean

Performs only the �rst two stages of bootstrap. Unlike a three-stage bootstrap,
this does not perform a comparison to test that the compiler is running prop-
erly. Note that the disk space required by a \lean" bootstrap is approximately
independent of the number of stages.

stageN-bubble (N = 1...4)

Rebuild all the stages up to N, with the appropriate
ags, \bubbling" the
changes as described above.

all-stageN (N = 1...4)

Assuming that stage N has already been built, rebuild it with the appropriate

ags. This is rarely needed.

cleanstrap

Remove everything (`make clean') and rebuilds (`make bootstrap').

compare Compares the results of stages 2 and 3. This ensures that the compiler is
running properly, since it should produce the same object �les regardless of
how it itself was compiled.

profiledbootstrap

Builds a compiler with pro�ling feedback information. For more information,
see section \Building with pro�le feedback" in Installing GCC .

restrap Restart a bootstrap, so that everything that was not built with the system
compiler is rebuilt.

stageN-start (N = 1...4)

For each package that is bootstrapped, rename directories so that, for example,
`gcc' points to the stageN GCC, compiled with the stageN-1 GCC2.

You will invoke this target if you need to test or debug the stageN GCC. If
you only need to execute GCC (but you need not run `make' either to rebuild it
or to run test suites), you should be able to work directly in the `stageN-gcc'
directory. This makes it easier to debug multiple stages in parallel.

stage For each package that is bootstrapped, relocate its build directory to indicate
its stage. For example, if the `gcc' directory points to the stage2 GCC, after
invoking this target it will be renamed to `stage2-gcc'.

If you wish to use non-default GCC
ags when compiling the stage2 and stage3 compilers,
set BOOT_CFLAGS on the command line when doing `make'.

Usually, the �rst stage only builds the languages that the compiler is written in: typically,
C and maybe Ada. If you are debugging a miscompilation of a di�erent stage2 front-end (for
example, of the Fortran front-end), you may want to have front-ends for other languages in

2 Customarily, the system compiler is also termed the `stage0' GCC.

30 GNU Compiler Collection (GCC) Internals

the �rst stage as well. To do so, set STAGE1_LANGUAGES on the command line when doing
`make'.

For example, in the aforementioned scenario of debugging a Fortran front-end miscompi-
lation caused by the stage1 compiler, you may need a command like

make stage2-bubble STAGE1_LANGUAGES=c,fortran

Alternatively, you can use per-language targets to build and test languages that are not
enabled by default in stage1. For example, make f951 will build a Fortran compiler even in
the stage1 build directory.

6.3.5 Library Source Files and Headers under the `gcc' Directory

FIXME: list here, with explanation, all the C source �les and headers under the `gcc'
directory that aren't built into the GCC executable but rather are part of runtime libraries
and object �les, such as `crtstuff.c' and `unwind-dw2.c'. See Section 6.3.6 [Headers
Installed by GCC], page 30, for more information about the `ginclude' directory.

6.3.6 Headers Installed by GCC

In general, GCC expects the system C library to provide most of the headers to be used
with it. However, GCC will �x those headers if necessary to make them work with GCC,
and will install some headers required of freestanding implementations. These headers are
installed in `libsubdir/include'. Headers for non-C runtime libraries are also installed
by GCC; these are not documented here. (FIXME: document them somewhere.)

Several of the headers GCC installs are in the `ginclude' directory. These headers,
`iso646.h', `stdarg.h', `stdbool.h', and `stddef.h', are installed in `libsub-
dir/include', unless the target Make�le fragment (see Section 17.1 [Target Fragment],
page 443) overrides this by setting USER_H.

In addition to these headers and those generated by �xing system headers to work with
GCC, some other headers may also be installed in `libsubdir/include'. `config.gcc'
may set extra_headers; this speci�es additional headers under `config' to be installed on
some systems.

GCC installs its own version of <float.h>, from `ginclude/float.h'. This is done to
cope with command-line options that change the representation of
oating point numbers.

GCC also installs its own version of <limits.h>; this is generated from `glimits.h', to-
gether with `limitx.h' and `limity.h' if the system also has its own version of <limits.h>.
(GCC provides its own header because it is required of ISO C freestanding implementations,
but needs to include the system header from its own header as well because other stan-
dards such as POSIX specify additional values to be de�ned in <limits.h>.) The system's
<limits.h> header is used via `libsubdir/include/syslimits.h', which is copied from
`gsyslimits.h' if it does not need �xing to work with GCC; if it needs �xing, `syslimits.h'
is the �xed copy.

6.3.7 Building Documentation

The main GCC documentation is in the form of manuals in Texinfo format. These are
installed in Info format; DVI versions may be generated by `make dvi', PDF versions by
`make pdf', and HTML versions by make html. In addition, some man pages are generated
from the Texinfo manuals, there are some other text �les with miscellaneous documentation,

Chapter 6: Source Tree Structure and Build System 31

and runtime libraries have their own documentation outside the `gcc' directory. FIXME:
document the documentation for runtime libraries somewhere.

6.3.7.1 Texinfo Manuals

The manuals for GCC as a whole, and the C and C++ front ends, are in �les `doc/*.texi'.
Other front ends have their own manuals in �les `language/*.texi'. Common �les
`doc/include/*.texi' are provided which may be included in multiple manuals; the
following �les are in `doc/include':

`fdl.texi'
The GNU Free Documentation License.

`funding.texi'
The section \Funding Free Software".

`gcc-common.texi'
Common de�nitions for manuals.

`gpl.texi'
The GNU General Public License.

`texinfo.tex'
A copy of `texinfo.tex' known to work with the GCC manuals.

DVI-formatted manuals are generated by `make dvi', which uses texi2dvi (via the Make-
�le macro $(TEXI2DVI)). PDF-formatted manuals are generated by `make pdf', which uses
texi2pdf (via the Make�le macro $(TEXI2PDF)). HTML formatted manuals are generated
by make html. Info manuals are generated by `make info' (which is run as part of a boot-
strap); this generates the manuals in the source directory, using makeinfo via the Make�le
macro $(MAKEINFO), and they are included in release distributions.

Manuals are also provided on the GCC web site, in both HTML and PostScript forms.
This is done via the script `maintainer-scripts/update_web_docs'. Each manual to be
provided online must be listed in the de�nition of MANUALS in that �le; a �le `name.texi'
must only appear once in the source tree, and the output manual must have the same
name as the source �le. (However, other Texinfo �les, included in manuals but not them-
selves the root �les of manuals, may have names that appear more than once in the source
tree.) The manual �le `name.texi' should only include other �les in its own directory or in
`doc/include'. HTML manuals will be generated by `makeinfo --html', PostScript manu-
als by texi2dvi and dvips, and PDF manuals by texi2pdf. All Texinfo �les that are parts
of manuals must be checked into CVS, even if they are generated �les, for the generation
of online manuals to work.

The installation manual, `doc/install.texi', is also provided on the GCC web site. The
HTML version is generated by the script `doc/install.texi2html'.

6.3.7.2 Man Page Generation

Because of user demand, in addition to full Texinfo manuals, man pages are provided which
contain extracts from those manuals. These man pages are generated from the Texinfo
manuals using `contrib/texi2pod.pl' and pod2man. (The man page for g++, `cp/g++.1',
just contains a `.so' reference to `gcc.1', but all the other man pages are generated from
Texinfo manuals.)

32 GNU Compiler Collection (GCC) Internals

Because many systems may not have the necessary tools installed to generate the man
pages, they are only generated if the `configure' script detects that recent enough tools
are installed, and the Make�les allow generating man pages to fail without aborting the
build. Man pages are also included in release distributions. They are generated in the
source directory.

Magic comments in Texinfo �les starting `@c man' control what parts of a Texinfo �le
go into a man page. Only a subset of Texinfo is supported by `texi2pod.pl', and it may
be necessary to add support for more Texinfo features to this script when generating new
man pages. To improve the man page output, some special Texinfo macros are provided in
`doc/include/gcc-common.texi' which `texi2pod.pl' understands:

@gcctabopt

Use in the form `@table @gcctabopt' for tables of options, where for printed
output the e�ect of `@code' is better than that of `@option' but for man page
output a di�erent e�ect is wanted.

@gccoptlist

Use for summary lists of options in manuals.

@gol Use at the end of each line inside `@gccoptlist'. This is necessary to avoid
problems with di�erences in how the `@gccoptlist' macro is handled by dif-
ferent Texinfo formatters.

FIXME: describe the `texi2pod.pl' input language and magic comments in more detail.

6.3.7.3 Miscellaneous Documentation

In addition to the formal documentation that is installed by GCC, there are several other
text �les with miscellaneous documentation:

`ABOUT-GCC-NLS'
Notes on GCC's Native Language Support. FIXME: this should be part of this
manual rather than a separate �le.

`ABOUT-NLS'
Notes on the Free Translation Project.

`COPYING' The GNU General Public License.

`COPYING.LIB'
The GNU Lesser General Public License.

`*ChangeLog*'
`*/ChangeLog*'

Change log �les for various parts of GCC.

`LANGUAGES'
Details of a few changes to the GCC front-end interface. FIXME: the infor-
mation in this �le should be part of general documentation of the front-end
interface in this manual.

`ONEWS' Information about new features in old versions of GCC. (For recent versions,
the information is on the GCC web site.)

Chapter 6: Source Tree Structure and Build System 33

`README.Portability'
Information about portability issues when writing code in GCC. FIXME: why
isn't this part of this manual or of the GCC Coding Conventions?

`SERVICE' A pointer to the GNU Service Directory.

FIXME: document such �les in subdirectories, at least `config', `cp', `objc', `testsuite'.

6.3.8 Anatomy of a Language Front End

A front end for a language in GCC has the following parts:

� A directory `language ' under `gcc' containing source �les for that front end. See
Section 6.3.8.1 [The Front End `language ' Directory], page 34, for details.

� Amention of the language in the list of supported languages in `gcc/doc/install.texi'.

� A mention of the name under which the language's runtime library is recog-
nized by `--enable-shared=package ' in the documentation of that option in
`gcc/doc/install.texi'.

� A mention of any special prerequisites for building the front end in the documentation
of prerequisites in `gcc/doc/install.texi'.

� Details of contributors to that front end in `gcc/doc/contrib.texi'. If the details are
in that front end's own manual then there should be a link to that manual's list in
`contrib.texi'.

� Information about support for that language in `gcc/doc/frontends.texi'.

� Information about standards for that language, and the front end's support for them,
in `gcc/doc/standards.texi'. This may be a link to such information in the front
end's own manual.

� Details of source �le su�xes for that language and `-x lang ' options supported, in
`gcc/doc/invoke.texi'.

� Entries in default_compilers in `gcc.c' for source �le su�xes for that language.

� Preferably testsuites, which may be under `gcc/testsuite' or runtime library direc-
tories. FIXME: document somewhere how to write testsuite harnesses.

� Probably a runtime library for the language, outside the `gcc' directory. FIXME:
document this further.

� Details of the directories of any runtime libraries in `gcc/doc/sourcebuild.texi'.

If the front end is added to the o�cial GCC CVS repository, the following are also
necessary:

� At least one Bugzilla component for bugs in that front end and runtime libraries. This
category needs to be mentioned in `gcc/gccbug.in', as well as being added to the
Bugzilla database.

� Normally, one or more maintainers of that front end listed in `MAINTAINERS'.

� Mentions on the GCC web site in `index.html' and `frontends.html', with any rele-
vant links on `readings.html'. (Front ends that are not an o�cial part of GCC may
also be listed on `frontends.html', with relevant links.)

� A news item on `index.html', and possibly an announcement on the
gcc-announce@gcc.gnu.org mailing list.

mailto:gcc-announce@gcc.gnu.org

34 GNU Compiler Collection (GCC) Internals

� The front end's manuals should be mentioned in `maintainer-scripts/update_web_docs'
(see Section 6.3.7.1 [Texinfo Manuals], page 31) and the online manuals should be
linked to from `onlinedocs/index.html'.

� Any old releases or CVS repositories of the front end, before its in-
clusion in GCC, should be made available on the GCC FTP site
ftp://gcc.gnu.org/pub/gcc/old-releases/.

� The release and snapshot script `maintainer-scripts/gcc_release'
should be updated to generate appropriate tarballs for this front
end. The associated `maintainer-scripts/snapshot-README' and
`maintainer-scripts/snapshot-index.html' �les should be updated to list
the tarballs and di�s for this front end.

� If this front end includes its own version �les that include the current date,
`maintainer-scripts/update_version' should be updated accordingly.

� `CVSROOT/modules' in the GCC CVS repository should be updated.

6.3.8.1 The Front End `language ' Directory

A front end `language ' directory contains the source �les of that front end (but not of any
runtime libraries, which should be outside the `gcc' directory). This includes documenta-
tion, and possibly some subsidiary programs build alongside the front end. Certain �les are
special and other parts of the compiler depend on their names:

`config-lang.in'
This �le is required in all language subdirectories. See Section 6.3.8.2 [The
Front End `config-lang.in' File], page 36, for details of its contents

`Make-lang.in'
This �le is required in all language subdirectories. It contains targets
lang.hook (where lang is the setting of language in `config-lang.in') for
the following values of hook , and any other Make�le rules required to build
those targets (which may if necessary use other Make�les speci�ed in outputs

in `config-lang.in', although this is deprecated). It also adds any testsuite
targets that can use the standard rule in `gcc/Makefile.in' to the variable
lang_checks.

all.cross

start.encap

rest.encap

FIXME: exactly what goes in each of these targets?

tags Build an etags `TAGS' �le in the language subdirectory in the source
tree.

info Build info documentation for the front end, in the build directory.
This target is only called by `make bootstrap' if a suitable version
of makeinfo is available, so does not need to check for this, and
should fail if an error occurs.

dvi Build DVI documentation for the front end, in the build directory.
This should be done using $(TEXI2DVI), with appropriate `-I' ar-
guments pointing to directories of included �les.

ftp://gcc.gnu.org/pub/gcc/old-releases/

Chapter 6: Source Tree Structure and Build System 35

pdf Build PDF documentation for the front end, in the build direc-
tory. This should be done using $(TEXI2PDF), with appropriate
`-I' arguments pointing to directories of included �les.

html Build HTML documentation for the front end, in the build direc-
tory.

man Build generated man pages for the front end from Texinfo man-
uals (see Section 6.3.7.2 [Man Page Generation], page 31), in the
build directory. This target is only called if the necessary tools are
available, but should ignore errors so as not to stop the build if
errors occur; man pages are optional and the tools involved may be
installed in a broken way.

install-common

Install everything that is part of the front end, apart from the
compiler executables listed in compilers in `config-lang.in'.

install-info

Install info documentation for the front end, if it is present in the
source directory. This target should have dependencies on info �les
that should be installed.

install-man

Install man pages for the front end. This target should ignore
errors.

srcextra Copies its dependencies into the source directory. This generally
should be used for generated �les such as Bison output �les
which are not present in CVS, but should be included in any
release tarballs. This target will be executed during a bootstrap
if `--enable-generated-files-in-srcdir' was speci�ed as a
`configure' option.

srcinfo

srcman Copies its dependencies into the source directory.
These targets will be executed during a bootstrap if
`--enable-generated-files-in-srcdir' was speci�ed as a
`configure' option.

uninstall

Uninstall �les installed by installing the compiler. This is currently
documented not to be supported, so the hook need not do anything.

mostlyclean

clean

distclean

maintainer-clean

The language parts of the standard GNU `*clean' targets. See
section \Standard Targets for Users" in GNU Coding Standards,
for details of the standard targets. For GCC, maintainer-clean
should delete all generated �les in the source directory that are

36 GNU Compiler Collection (GCC) Internals

not checked into CVS, but should not delete anything checked into
CVS.

stage1

stage2

stage3

stage4

stageprofile

stagefeedback

Move to the stage directory �les not included in stagestuff in
`config-lang.in' or otherwise moved by the main `Makefile'.

`lang.opt'
This �le registers the set of switches that the front end accepts on the command
line, and their `--help' text. See Chapter 7 [Options], page 51.

`lang-specs.h'
This �le provides entries for default_compilers in `gcc.c' which override the
default of giving an error that a compiler for that language is not installed.

`language-tree.def'
This �le, which need not exist, de�nes any language-speci�c tree codes.

6.3.8.2 The Front End `config-lang.in' File

Each language subdirectory contains a `config-lang.in' �le. In addition the main direc-
tory contains `c-config-lang.in', which contains limited information for the C language.
This �le is a shell script that may de�ne some variables describing the language:

language This de�nition must be present, and gives the name of the language for some
purposes such as arguments to `--enable-languages'.

lang_requires

If de�ned, this variable lists (space-separated) language front ends other than
C that this front end requires to be enabled (with the names given being their
language settings). For example, the Java front end depends on the C++ front
end, so sets `lang_requires=c++'.

subdir_requires

If de�ned, this variable lists (space-separated) front end directories other than
C that this front end requires to be present. For example, the Objective-C++
front end uses source �les from the C++ and Objective-C front ends, so sets
`subdir_requires="cp objc"'.

target_libs

If de�ned, this variable lists (space-separated) targets in the top level `Makefile'
to build the runtime libraries for this language, such as target-libobjc.

lang_dirs

If de�ned, this variable lists (space-separated) top level directories (parallel to
`gcc'), apart from the runtime libraries, that should not be con�gured if this
front end is not built.

Chapter 6: Source Tree Structure and Build System 37

build_by_default

If de�ned to `no', this language front end is not built unless enabled in a
`--enable-languages' argument. Otherwise, front ends are built by default,
subject to any special logic in `configure.ac' (as is present to disable the Ada
front end if the Ada compiler is not already installed).

boot_language

If de�ned to `yes', this front end is built in stage 1 of the bootstrap. This is
only relevant to front ends written in their own languages.

compilers

If de�ned, a space-separated list of compiler executables that will be run by the
driver. The names here will each end with `\$(exeext)'.

stagestuff

If de�ned, a space-separated list of �les that should be moved to the `stagen '
directories in each stage of bootstrap.

outputs If de�ned, a space-separated list of �les that should be generated by `configure'
substituting values in them. This mechanism can be used to create a �le `lan-
guage/Makefile' from `language/Makefile.in', but this is deprecated, build-
ing everything from the single `gcc/Makefile' is preferred.

gtfiles If de�ned, a space-separated list of �les that should be scanned by gengtype.c
to generate the garbage collection tables and routines for this language. This
excludes the �les that are common to all front ends. See Chapter 20 [Type
Information], page 451.

need_gmp If de�ned to `yes', this frontend requires the GMP library. Enables con�gure
tests for GMP, which set GMPLIBS and GMPINC appropriately.

6.3.9 Anatomy of a Target Back End

A back end for a target architecture in GCC has the following parts:

� A directory `machine ' under `gcc/config', containing a machine description
`machine.md' �le (see Chapter 14 [Machine Descriptions], page 199), header �les
`machine.h' and `machine-protos.h' and a source �le `machine.c' (see Chapter 15
[Target Description Macros and Functions], page 293), possibly a target Make�le
fragment `t-machine ' (see Section 17.1 [The Target Make�le Fragment], page 443),
and maybe some other �les. The names of these �les may be changed from the
defaults given by explicit speci�cations in `config.gcc'.

� If necessary, a �le `machine-modes.def' in the `machine ' directory, containing addi-
tional machine modes to represent condition codes. See Section 15.16 [Condition Code],
page 369, for further details.

� An optional `machine.opt' �le in the `machine ' directory, containing a list of target-
speci�c options. You can also add other option �les using the extra_options variable
in `config.gcc'. See Chapter 7 [Options], page 51.

� Entries in `config.gcc' (see Section 6.3.2.2 [The `config.gcc' File], page 26) for the
systems with this target architecture.

38 GNU Compiler Collection (GCC) Internals

� Documentation in `gcc/doc/invoke.texi' for any command-line options supported by
this target (see Section 15.3 [Run-time Target Speci�cation], page 301). This means
both entries in the summary table of options and details of the individual options.

� Documentation in `gcc/doc/extend.texi' for any target-speci�c attributes supported
(see Section 15.25 [De�ning target-speci�c uses of __attribute__], page 419), including
where the same attribute is already supported on some targets, which are enumerated
in the manual.

� Documentation in `gcc/doc/extend.texi' for any target-speci�c pragmas supported.

� Documentation in `gcc/doc/extend.texi' of any target-speci�c built-in functions sup-
ported.

� Documentation in `gcc/doc/extend.texi' of any target-speci�c format checking styles
supported.

� Documentation in `gcc/doc/md.texi' of any target-speci�c constraint letters (see Sec-
tion 14.8.5 [Constraints for Particular Machines], page 218).

� A note in `gcc/doc/contrib.texi' under the person or people who contributed the
target support.

� Entries in `gcc/doc/install.texi' for all target triplets supported with this target
architecture, giving details of any special notes about installation for this target, or
saying that there are no special notes if there are none.

� Possibly other support outside the `gcc' directory for runtime libraries. FIXME: refer-
ence docs for this. The libstdc++ porting manual needs to be installed as info for this
to work, or to be a chapter of this manual.

If the back end is added to the o�cial GCC CVS repository, the following are also
necessary:

� An entry for the target architecture in `readings.html' on the GCC web site, with
any relevant links.

� Details of the properties of the back end and target architecture in `backends.html'
on the GCC web site.

� A news item about the contribution of support for that target architecture, in
`index.html' on the GCC web site.

� Normally, one or more maintainers of that target listed in `MAINTAINERS'. Some existing
architectures may be unmaintained, but it would be unusual to add support for a target
that does not have a maintainer when support is added.

6.4 Testsuites

GCC contains several testsuites to help maintain compiler quality. Most of the runtime
libraries and language front ends in GCC have testsuites. Currently only the C language
testsuites are documented here; FIXME: document the others.

6.4.1 Idioms Used in Testsuite Code

In general, C testcases have a trailing `-n.c', starting with `-1.c', in case other testcases
with similar names are added later. If the test is a test of some well-de�ned feature, it
should have a name referring to that feature such as `feature-1.c'. If it does not test a

Chapter 6: Source Tree Structure and Build System 39

well-de�ned feature but just happens to exercise a bug somewhere in the compiler, and a
bug report has been �led for this bug in the GCC bug database, `prbug-number-1.c' is
the appropriate form of name. Otherwise (for miscellaneous bugs not �led in the GCC bug
database), and previously more generally, test cases are named after the date on which they
were added. This allows people to tell at a glance whether a test failure is because of a
recently found bug that has not yet been �xed, or whether it may be a regression, but does
not give any other information about the bug or where discussion of it may be found. Some
other language testsuites follow similar conventions.

In the `gcc.dg' testsuite, it is often necessary to test that an error is indeed a hard error
and not just a warning|for example, where it is a constraint violation in the C standard,
which must become an error with `-pedantic-errors'. The following idiom, where the
�rst line shown is line line of the �le and the line that generates the error, is used for this:

/* { dg-bogus "warning" "warning in place of error" } */
/* { dg-error "regexp" "message" { target *-*-* } line } */

It may be necessary to check that an expression is an integer constant expression and has
a certain value. To check that E has value V , an idiom similar to the following is used:

char x[((E) == (V) ? 1 : -1)];

In `gcc.dg' tests, __typeof__ is sometimes used to make assertions about the types of
expressions. See, for example, `gcc.dg/c99-condexpr-1.c'. The more subtle uses depend
on the exact rules for the types of conditional expressions in the C standard; see, for example,
`gcc.dg/c99-intconst-1.c'.

It is useful to be able to test that optimizations are being made properly. This cannot
be done in all cases, but it can be done where the optimization will lead to code being
optimized away (for example, where
ow analysis or alias analysis should show that certain
code cannot be called) or to functions not being called because they have been expanded
as built-in functions. Such tests go in `gcc.c-torture/execute'. Where code should be
optimized away, a call to a nonexistent function such as link_failure () may be inserted;
a de�nition

#ifndef __OPTIMIZE__
void
link_failure (void)
{
abort ();

}
#endif

will also be needed so that linking still succeeds when the test is run without optimization.
When all calls to a built-in function should have been optimized and no calls to the non-
built-in version of the function should remain, that function may be de�ned as static to
call abort () (although redeclaring a function as static may not work on all targets).

All testcases must be portable. Target-speci�c testcases must have appropriate code to
avoid causing failures on unsupported systems; unfortunately, the mechanisms for this di�er
by directory.

FIXME: discuss non-C testsuites here.

6.4.2 Directives used within DejaGnu tests

Test directives appear within comments in a test source �le and begin with dg-. Some of
these are de�ned within DejaGnu and others are local to the GCC testsuite.

40 GNU Compiler Collection (GCC) Internals

The order in which test directives appear in a test can be important: directives local to
GCC sometimes override information used by the DejaGnu directives, which know nothing
about the GCC directives, so the DejaGnu directives must precede GCC directives.

Several test directives include selectors which are usually preceded by the keyword target

or xfail. A selector is: one or more target triplets, possibly including wildcard charac-
ters; a single e�ective-target keyword; or a logical expression. Depending on the con-
text, the selector speci�es whether a test is skipped and reported as unsupported or is
expected to fail. Use `*-*-*' to match any target. E�ective-target keywords are de�ned in
`target-supports.exp' in the GCC testsuite.

A selector expression appears within curly braces and uses a single logical operator: one
of `!', `&&', or `||'. An operand is another selector expression, an e�ective-target keyword,
a single target triplet, or a list of target triplets within quotes or curly braces. For example:

{ target { ! "hppa*-*-* ia64*-*-*" } }
{ target { powerpc*-*-* && lp64 } }
{ xfail { lp64 || vect_no_align } }

{ dg-do do-what-keyword [{ target/xfail selector }] }

do-what-keyword speci�es how the test is compiled and whether it is executed.
It is one of:

preprocess

Compile with `-E' to run only the preprocessor.

assemble Compile with `-S' to produce an assembly code �le.

compile Compile with `-c' to produce a relocatable object �le.

link Compile, assemble, and link to produce an executable �le.

run Produce and run an executable �le, which is expected to return an
exit code of 0.

The default is compile. That can be overridden for a set of tests by rede�ning
dg-do-what-default within the .exp �le for those tests.

If the directive includes the optional `{ target selector }' then the test is
skipped unless the target system is included in the list of target triplets or
matches the e�ective-target keyword.

If the directive includes the optional `{ xfail selector }' and the selector is
met then the test is expected to fail. For dg-do run, execution is expected to
fail but compilation is expected to pass.

{ dg-options options [{ target selector }] }

This DejaGnu directive provides a list of compiler options, to be used if the
target system matches selector, that replace the default options used for this
set of tests.

{ dg-skip-if comment { selector } { include-opts } { exclude-opts } }

Skip the test if the test system is included in selector and if each of the options
in include-opts is in the set of options with which the test would be compiled
and if none of the options in exclude-opts is in the set of options with which
the test would be compiled.

Use `"*"' for an empty include-opts list and `""' for an empty exclude-opts list.

Chapter 6: Source Tree Structure and Build System 41

{ dg-xfail-if comment { selector } { include-opts } { exclude-opts } }

Expect the test to fail if the conditions (which are the same as for dg-skip-if)
are met.

{ dg-require-support args }

Skip the test if the target does not provide the required support; see
`gcc-dg.exp' in the GCC testsuite for the actual directives. These directives
must appear after any dg-do directive in the test. They require at least one
argument, which can be an empty string if the speci�c procedure does not
examine the argument.

{ dg-require-effective-target keyword }

Skip the test if the test target, including current multilib
ags, is not covered
by the e�ective-target keyword. This directive must appear after any dg-do

directive in the test.

{ dg-shouldfail comment { selector } { include-opts } { exclude-opts } }

Expect the test executable to return a nonzero exit status if the conditions
(which are the same as for dg-skip-if) are met.

{ dg-error regexp [comment [{ target/xfail selector } [line] }]] }

This DejaGnu directive appears on a source line that is expected to get an error
message, or else speci�es the source line associated with the message. If there is
no message for that line or if the text of that message is not matched by regexp
then the check fails and comment is included in the FAIL message. The check
does not look for the string `"error"' unless it is part of regexp.

{ dg-warning regexp [comment [{ target/xfail selector } [line] }]] }

This DejaGnu directive appears on a source line that is expected to get a
warning message, or else speci�es the source line associated with the message.
If there is no message for that line or if the text of that message is not matched
by regexp then the check fails and comment is included in the FAIL message.
The check does not look for the string `"warning"' unless it is part of regexp.

{ dg-bogus regexp [comment [{ target/xfail selector } [line] }]] }

This DejaGnu directive appears on a source line that should not get a message
matching regexp, or else speci�es the source line associated with the bogus
message. It is usually used with `xfail' to indicate that the message is a
known problem for a particular set of targets.

{ dg-excess-errors comment [{ target/xfail selector }] }

This DejaGnu directive indicates that the test is expected to fail due to compiler
messages that are not handled by `dg-error', `dg-warning' or `dg-bogus'.

{ dg-output regexp [{ target/xfail selector }] }

This DejaGnu directive compares regexp to the combined output that the test
executable writes to `stdout' and `stderr'.

{ dg-prune-output regexp }

Prune messages matching regexp from test output.

42 GNU Compiler Collection (GCC) Internals

{ dg-additional-files "filelist" }

Specify additional �les, other than source �les, that must be copied to the
system where the compiler runs.

{ dg-additional-sources "filelist" }

Specify additional source �les to appear in the compile line following the main
test �le.

{ dg-final { local-directive } }

This DejaGnu directive is placed within a comment anywhere in the source �le
and is processed after the test has been compiled and run. Multiple `dg-final'
commands are processed in the order in which they appear in the source �le.

The GCC testsuite de�nes the following directives to be used within dg-final.

cleanup-coverage-files

Removes coverage data �les generated for this test.

cleanup-repo-files

Removes �les generated for this test for `-frepo'.

cleanup-rtl-dump suffix

Removes RTL dump �les generated for this test.

cleanup-tree-dump suffix

Removes tree dump �les matching su�x which were generated for
this test.

cleanup-saved-temps

Removes �les for the current test which were kept for
`--save-temps'.

scan-file filename regexp [{ target/xfail selector }]

Passes if regexp matches text in �lename.

scan-file-not filename regexp [{ target/xfail selector }]

Passes if regexp does not match text in �lename.

scan-hidden symbol [{ target/xfail selector }]

Passes if symbol is de�ned as a hidden symbol in the test's assembly
output.

scan-not-hidden symbol [{ target/xfail selector }]

Passes if symbol is not de�ned as a hidden symbol in the test's
assembly output.

scan-assembler-times regex num [{ target/xfail selector }]

Passes if regex is matched exactly num times in the test's assembler
output.

scan-assembler regex [{ target/xfail selector }]

Passes if regex matches text in the test's assembler output.

scan-assembler-not regex [{ target/xfail selector }]

Passes if regex does not match text in the test's assembler output.

Chapter 6: Source Tree Structure and Build System 43

scan-assembler-dem regex [{ target/xfail selector }]

Passes if regex matches text in the test's demangled assembler out-
put.

scan-assembler-dem-not regex [{ target/xfail selector }]

Passes if regex does not match text in the test's demangled assem-
bler output.

scan-tree-dump-times regex num suffix [{ target/xfail selector }]

Passes if regex is found exactly num times in the dump �le with
su�x su�x.

scan-tree-dump regex suffix [{ target/xfail selector }]

Passes if regex matches text in the dump �le with su�x su�x.

scan-tree-dump-not regex suffix [{ target/xfail selector }]

Passes if regex does not match text in the dump �le with su�x
su�x.

scan-tree-dump-dem regex suffix [{ target/xfail selector }]

Passes if regex matches demangled text in the dump �le with su�x
su�x.

scan-tree-dump-dem-not regex suffix [{ target/xfail selector }]

Passes if regex does not match demangled text in the dump �le
with su�x su�x.

output-exists [{ target/xfail selector }]

Passes if compiler output �le exists.

output-exists-not [{ target/xfail selector }]

Passes if compiler output �le does not exist.

run-gcov sourcefile

Check line counts in gcov tests.

run-gcov [branches] [calls] { opts sourcefile }

Check branch and/or call counts, in addition to line counts, in gcov

tests.

6.4.3 Ada Language Testsuites

The Ada testsuite includes executable tests from the ACATS 2.5 testsuite, publicly available
at http://www.adaic.org/compilers/acats/2.5

These tests are integrated in the GCC testsuite in the `gcc/testsuite/ada/acats' di-
rectory, and enabled automatically when running make check, assuming the Ada language
has been enabled when con�guring GCC.

You can also run the Ada testsuite independently, using make check-ada, or run a subset
of the tests by specifying which chapter to run, e.g.:

$ make check-ada CHAPTERS="c3 c9"

The tests are organized by directory, each directory corresponding to a chapter of the Ada
Reference Manual. So for example, c9 corresponds to chapter 9, which deals with tasking
features of the language.

http://www.adaic.org/compilers/acats/2.5

44 GNU Compiler Collection (GCC) Internals

There is also an extra chapter called `gcc' containing a template for creating new exe-
cutable tests.

The tests are run using two sh scripts: `run_acats' and `run_all.sh'. To run the
tests using a simulator or a cross target, see the small customization section at the top of
`run_all.sh'.

These tests are run using the build tree: they can be run without doing a make install.

6.4.4 C Language Testsuites

GCC contains the following C language testsuites, in the `gcc/testsuite' directory:

`gcc.dg' This contains tests of particular features of the C compiler, using the more
modern `dg' harness. Correctness tests for various compiler features should go
here if possible.

Magic comments determine whether the �le is preprocessed, compiled, linked
or run. In these tests, error and warning message texts are compared against
expected texts or regular expressions given in comments. These tests are run
with the options `-ansi -pedantic' unless other options are given in the test.
Except as noted below they are not run with multiple optimization options.

`gcc.dg/compat'
This subdirectory contains tests for binary compatibility using `compat.exp',
which in turn uses the language-independent support (see Section 6.4.8 [Support
for testing binary compatibility], page 47).

`gcc.dg/cpp'
This subdirectory contains tests of the preprocessor.

`gcc.dg/debug'
This subdirectory contains tests for debug formats. Tests in this subdirectory
are run for each debug format that the compiler supports.

`gcc.dg/format'
This subdirectory contains tests of the `-Wformat' format checking. Tests in
this directory are run with and without `-DWIDE'.

`gcc.dg/noncompile'
This subdirectory contains tests of code that should not compile and does not
need any special compilation options. They are run with multiple optimization
options, since sometimes invalid code crashes the compiler with optimization.

`gcc.dg/special'
FIXME: describe this.

`gcc.c-torture'
This contains particular code fragments which have historically broken easily.
These tests are run with multiple optimization options, so tests for features
which only break at some optimization levels belong here. This also contains
tests to check that certain optimizations occur. It might be worthwhile to
separate the correctness tests cleanly from the code quality tests, but it hasn't
been done yet.

Chapter 6: Source Tree Structure and Build System 45

`gcc.c-torture/compat'
FIXME: describe this.

This directory should probably not be used for new tests.

`gcc.c-torture/compile'
This testsuite contains test cases that should compile, but do not need to link
or run. These test cases are compiled with several di�erent combinations of
optimization options. All warnings are disabled for these test cases, so this
directory is not suitable if you wish to test for the presence or absence of
compiler warnings. While special options can be set, and tests disabled on
speci�c platforms, by the use of `.x' �les, mostly these test cases should not
contain platform dependencies. FIXME: discuss how de�nes such as NO_LABEL_
VALUES and STACK_SIZE are used.

`gcc.c-torture/execute'
This testsuite contains test cases that should compile, link and run; otherwise
the same comments as for `gcc.c-torture/compile' apply.

`gcc.c-torture/execute/ieee'
This contains tests which are speci�c to IEEE
oating point.

`gcc.c-torture/unsorted'
FIXME: describe this.

This directory should probably not be used for new tests.

`gcc.c-torture/misc-tests'
This directory contains C tests that require special handling. Some of these
tests have individual expect �les, and others share special-purpose expect �les:

`bprob*.c'
Test `-fbranch-probabilities' using `bprob.exp', which in
turn uses the generic, language-independent framework (see
Section 6.4.7 [Support for testing pro�le-directed optimizations],
page 47).

`dg-*.c' Test the testsuite itself using `dg-test.exp'.

`gcov*.c' Test gcov output using `gcov.exp', which in turn uses the
language-independent support (see Section 6.4.6 [Support for
testing gcov], page 46).

`i386-pf-*.c'
Test i386-speci�c support for data prefetch using
`i386-prefetch.exp'.

FIXME: merge in `testsuite/README.gcc' and discuss the format of test cases and
magic comments more.

6.4.5 The Java library testsuites.

Runtime tests are executed via `make check' in the `target/libjava/testsuite' directory
in the build tree. Additional runtime tests can be checked into this testsuite.

46 GNU Compiler Collection (GCC) Internals

Regression testing of the core packages in libgcj is also covered by the Mauve testsuite.
The Mauve Project develops tests for the Java Class Libraries. These tests are run as
part of libgcj testing by placing the Mauve tree within the libjava testsuite sources at
`libjava/testsuite/libjava.mauve/mauve', or by specifying the location of that tree
when invoking `make', as in `make MAUVEDIR=~/mauve check'.

To detect regressions, a mechanism in `mauve.exp' compares the failures for a test run
against the list of expected failures in `libjava/testsuite/libjava.mauve/xfails' from
the source hierarchy. Update this �le when adding new failing tests to Mauve, or when
�xing bugs in libgcj that had caused Mauve test failures.

The Jacks project provides a testsuite for Java compilers that can be used
to test changes that a�ect the GCJ front end. This testsuite is run as part
of Java testing by placing the Jacks tree within the libjava testsuite sources at
`libjava/testsuite/libjava.jacks/jacks'.

We encourage developers to contribute test cases to Mauve and Jacks.

6.4.6 Support for testing gcov

Language-independent support for testing gcov, and for checking that branch pro�ling
produces expected values, is provided by the expect �le `gcov.exp'. gcov tests also rely
on procedures in `gcc.dg.exp' to compile and run the test program. A typical gcov test
contains the following DejaGnu commands within comments:

{ dg-options "-fprofile-arcs -ftest-coverage" }
{ dg-do run { target native } }
{ dg-final { run-gcov sourcefile } }

Checks of gcov output can include line counts, branch percentages, and call return per-
centages. All of these checks are requested via commands that appear in comments in the
test's source �le. Commands to check line counts are processed by default. Commands to
check branch percentages and call return percentages are processed if the run-gcov com-
mand has arguments branches or calls, respectively. For example, the following speci�es
checking both, as well as passing `-b' to gcov:

{ dg-final { run-gcov branches calls { -b sourcefile } } }

A line count command appears within a comment on the source line that is expected to
get the speci�ed count and has the form count(cnt). A test should only check line counts
for lines that will get the same count for any architecture.

Commands to check branch percentages (branch) and call return percentages (returns)
are very similar to each other. A beginning command appears on or before the �rst of a
range of lines that will report the percentage, and the ending command follows that range
of lines. The beginning command can include a list of percentages, all of which are expected
to be found within the range. A range is terminated by the next command of the same kind.
A command branch(end) or returns(end) marks the end of a range without starting a
new one. For example:

if (i > 10 && j > i && j < 20) /* branch(27 50 75) */
/* branch(end) */

foo (i, j);

For a call return percentage, the value speci�ed is the percentage of calls reported to
return. For a branch percentage, the value is either the expected percentage or 100 mi-

http://sourceware.org/mauve/
http://sourceware.org/mauve/jacks.html

Chapter 6: Source Tree Structure and Build System 47

nus that value, since the direction of a branch can di�er depending on the target or the
optimization level.

Not all branches and calls need to be checked. A test should not check for branches that
might be optimized away or replaced with predicated instructions. Don't check for calls
inserted by the compiler or ones that might be inlined or optimized away.

A single test can check for combinations of line counts, branch percentages, and call
return percentages. The command to check a line count must appear on the line that will
report that count, but commands to check branch percentages and call return percentages
can bracket the lines that report them.

6.4.7 Support for testing pro�le-directed optimizations

The �le `profopt.exp' provides language-independent support for checking correct execu-
tion of a test built with pro�le-directed optimization. This testing requires that a test
program be built and executed twice. The �rst time it is compiled to generate pro�le data,
and the second time it is compiled to use the data that was generated during the �rst
execution. The second execution is to verify that the test produces the expected results.

To check that the optimization actually generated better code, a test can be built and
run a third time with normal optimizations to verify that the performance is better with the
pro�le-directed optimizations. `profopt.exp' has the beginnings of this kind of support.

`profopt.exp' provides generic support for pro�le-directed optimizations. Each set of
tests that uses it provides information about a speci�c optimization:

tool tool being tested, e.g., gcc

profile_option

options used to generate pro�le data

feedback_option

options used to optimize using that pro�le data

prof_ext su�x of pro�le data �les

PROFOPT_OPTIONS

list of options with which to run each test, similar to the lists for torture tests

6.4.8 Support for testing binary compatibility

The �le `compat.exp' provides language-independent support for binary compatibility test-
ing. It supports testing interoperability of two compilers that follow the same ABI, or of
multiple sets of compiler options that should not a�ect binary compatibility. It is intended
to be used for testsuites that complement ABI testsuites.

A test supported by this framework has three parts, each in a separate source �le: a main
program and two pieces that interact with each other to split up the functionality being
tested.

`testname_main.suffix '
Contains the main program, which calls a function in �le `testname_x.suffix '.

`testname_x.suffix '
Contains at least one call to a function in `testname_y.suffix '.

48 GNU Compiler Collection (GCC) Internals

`testname_y.suffix '
Shares data with, or gets arguments from, `testname_x.suffix '.

Within each test, the main program and one functional piece are compiled by the GCC
under test. The other piece can be compiled by an alternate compiler. If no alternate
compiler is speci�ed, then all three source �les are all compiled by the GCC under test.
You can specify pairs of sets of compiler options. The �rst element of such a pair speci�es
options used with the GCC under test, and the second element of the pair speci�es options
used with the alternate compiler. Each test is compiled with each pair of options.

`compat.exp' de�nes default pairs of compiler options. These can be overridden by de�n-
ing the environment variable COMPAT_OPTIONS as:

COMPAT_OPTIONS="[list [list {tst1} {alt1}]
...[list {tstn} {altn}]]"

where tsti and alti are lists of options, with tsti used by the compiler under test and alti
used by the alternate compiler. For example, with [list [list {-g -O0} {-O3}] [list

{-fpic} {-fPIC -O2}]], the test is �rst built with `-g -O0' by the compiler under test and
with `-O3' by the alternate compiler. The test is built a second time using `-fpic' by the
compiler under test and `-fPIC -O2' by the alternate compiler.

An alternate compiler is speci�ed by de�ning an environment variable to be the full
pathname of an installed compiler; for C de�ne ALT_CC_UNDER_TEST, and for C++ de�ne
ALT_CXX_UNDER_TEST. These will be written to the `site.exp' �le used by DejaGnu. The
default is to build each test with the compiler under test using the �rst of each pair of
compiler options from COMPAT_OPTIONS. When ALT_CC_UNDER_TEST or ALT_CXX_UNDER_

TEST is same, each test is built using the compiler under test but with combinations of the
options from COMPAT_OPTIONS.

To run only the C++ compatibility suite using the compiler under test and another version
of GCC using speci�c compiler options, do the following from `objdir/gcc':

rm site.exp
make -k \
ALT_CXX_UNDER_TEST=${alt_prefix}/bin/g++ \
COMPAT_OPTIONS="lists as shown above" \
check-c++ \
RUNTESTFLAGS="compat.exp"

A test that fails when the source �les are compiled with di�erent compilers, but passes
when the �les are compiled with the same compiler, demonstrates incompatibility of the
generated code or runtime support. A test that fails for the alternate compiler but passes
for the compiler under test probably tests for a bug that was �xed in the compiler under
test but is present in the alternate compiler.

The binary compatibility tests support a small number of test framework commands that
appear within comments in a test �le.

dg-require-*

These commands can be used in `testname_main.suffix ' to skip the test if
speci�c support is not available on the target.

dg-options

The speci�ed options are used for compiling this particular source �le, ap-
pended to the options from COMPAT_OPTIONS. When this command appears in
`testname_main.suffix ' the options are also used to link the test program.

Chapter 6: Source Tree Structure and Build System 49

dg-xfail-if

This command can be used in a secondary source �le to specify that compilation
is expected to fail for particular options on particular targets.

50 GNU Compiler Collection (GCC) Internals

Chapter 7: Option speci�cation �les 51

7 Option speci�cation �les

Most GCC command-line options are described by special option de�nition �les, the names
of which conventionally end in .opt. This chapter describes the format of these �les.

7.1 Option �le format

Option �les are a simple list of records in which each �eld occupies its own line and in which
the records themselves are separated by blank lines. Comments may appear on their own
line anywhere within the �le and are preceded by semicolons. Whitespace is allowed before
the semicolon.

The �les can contain the following types of record:

� A language de�nition record. These records have two �elds: the string `Language' and
the name of the language. Once a language has been declared in this way, it can be
used as an option property. See Section 7.2 [Option properties], page 51.

� An option de�nition record. These records have the following �elds:

1. the name of the option, with the leading \-" removed

2. a space-separated list of option properties (see Section 7.2 [Option properties],
page 51)

3. the help text to use for `--help' (omitted if the second �eld contains the
Undocumented property).

By default, all options beginning with \f", \W" or \m" are implicitly assumed to take a
\no-" form. This form should not be listed separately. If an option beginning with one
of these letters does not have a \no-" form, you can use the RejectNegative property
to reject it.

The help text is automatically line-wrapped before being displayed. Normally the name
of the option is printed on the left-hand side of the output and the help text is printed
on the right. However, if the help text contains a tab character, the text to the left of
the tab is used instead of the option's name and the text to the right of the tab forms
the help text. This allows you to elaborate on what type of argument the option takes.

� A target mask record. These records have one �eld of the form `Mask(x)'. The options-
processing script will automatically allocate a bit in target_flags (see Section 15.3
[Run-time Target], page 301) for each mask name x and set the macro MASK_x to the
appropriate bitmask. It will also declare a TARGET_x macro that has the value 1 when
bit MASK_x is set and 0 otherwise.

They are primarily intended to declare target masks that are not associated with user
options, either because these masks represent internal switches or because the options
are not available on all con�gurations and yet the masks always need to be de�ned.

7.2 Option properties

The second �eld of an option record can specify the following properties:

Common The option is available for all languages and targets.

Target The option is available for all languages but is target-speci�c.

52 GNU Compiler Collection (GCC) Internals

language The option is available when compiling for the given language.

It is possible to specify several di�erent languages for the same option. Each
language must have been declared by an earlier Language record. See Sec-
tion 7.1 [Option �le format], page 51.

RejectNegative

The option does not have a \no-" form. All options beginning with \f", \W"
or \m" are assumed to have a \no-" form unless this property is used.

Negative(othername)

The option will turn o� another option othername, which is the the option
name with the leading \-" removed. This chain action will propagate through
the Negative property of the option to be turned o�.

Joined

Separate The option takes a mandatory argument. Joined indicates that the option and
argument can be included in the same argv entry (as with -mflush-func=name ,
for example). Separate indicates that the option and argument can be separate
argv entries (as with -o). An option is allowed to have both of these properties.

JoinedOrMissing

The option takes an optional argument. If the argument is given, it will be part
of the same argv entry as the option itself.

This property cannot be used alongside Joined or Separate.

UInteger The option's argument is a non-negative integer. The option parser will check
and convert the argument before passing it to the relevant option handler.

Var(var) The state of this option should be stored in variable var. The way that the
state is stored depends on the type of option:

� If the option uses the Mask or InverseMask properties, var is the integer
variable that contains the mask.

� If the option is a normal on/o� switch, var is an integer variable that is
nonzero when the option is enabled. The options parser will set the variable
to 1 when the positive form of the option is used and 0 when the \no-"
form is used.

� If the option takes an argument and has the UInteger property, var is an
integer variable that stores the value of the argument.

� Otherwise, if the option takes an argument, var is a pointer to the argument
string. The pointer will be null if the argument is optional and wasn't given.

The option-processing script will usually declare var in `options.c' and leave
it to be zero-initialized at start-up time. You can modify this behavior using
VarExists and Init.

Var(var, set)

The option controls an integer variable var and is active when var equals set.
The option parser will set var to set when the positive form of the option is
used and !set when the \no-" form is used.

var is declared in the same way as for the single-argument form described above.

Chapter 7: Option speci�cation �les 53

VarExists

The variable speci�ed by the Var property already exists. No de�nition should
be added to `options.c' in response to this option record.

You should use this property only if the variable is declared outside `options.c'.

Init(value)

The variable speci�ed by the Var property should be statically initialized to
value.

Mask(name)

The option is associated with a bit in the target_flags variable (see Sec-
tion 15.3 [Run-time Target], page 301) and is active when that bit is set. You
may also specify Var to select a variable other than target_flags.

The options-processing script will automatically allocate a unique bit for the
option. If the option is attached to `target_flags', the script will set the
macro MASK_name to the appropriate bitmask. It will also declare a TARGET_

name macro that has the value 1 when the option is active and 0 otherwise. If
you use Var to attach the option to a di�erent variable, the associated macros
are called OPTION_MASK_name and OPTION_name respectively.

You can disable automatic bit allocation using MaskExists.

InverseMask(othername)

InverseMask(othername, thisname)

The option is the inverse of another option that has the Mask(othername) prop-
erty. If thisname is given, the options-processing script will declare a TARGET_

thisname macro that is 1 when the option is active and 0 otherwise.

MaskExists

The mask speci�ed by the Mask property already exists. No MASK or TARGET
de�nitions should be added to `options.h' in response to this option record.

The main purpose of this property is to support synonymous options. The
�rst option should use `Mask(name)' and the others should use `Mask(name)
MaskExists'.

Report The state of the option should be printed by `-fverbose-asm'.

Undocumented

The option is deliberately missing documentation and should not be included
in the `--help' output.

Condition(cond)

The option should only be accepted if preprocessor condition cond is true. Note
that any C declarations associated with the option will be present even if cond
is false; cond simply controls whether the option is accepted and whether it is
printed in the `--help' output.

54 GNU Compiler Collection (GCC) Internals

Chapter 8: Passes and Files of the Compiler 55

8 Passes and Files of the Compiler

This chapter is dedicated to giving an overview of the optimization and code generation
passes of the compiler. In the process, it describes some of the language front end interface,
though this description is no where near complete.

8.1 Parsing pass

The language front end is invoked only once, via lang_hooks.parse_file, to parse the
entire input. The language front end may use any intermediate language representation
deemed appropriate. The C front end uses GENERIC trees (CROSSREF), plus a double
handful of language speci�c tree codes de�ned in `c-common.def'. The Fortran front end
uses a completely di�erent private representation.

At some point the front end must translate the representation used in the front end to a
representation understood by the language-independent portions of the compiler. Current
practice takes one of two forms. The C front end manually invokes the gimpli�er (CROSS-
REF) on each function, and uses the gimpli�er callbacks to convert the language-speci�c
tree nodes directly to GIMPLE (CROSSREF) before passing the function o� to be com-
piled. The Fortran front end converts from a private representation to GENERIC, which is
later lowered to GIMPLE when the function is compiled. Which route to choose probably
depends on how well GENERIC (plus extensions) can be made to match up with the source
language and necessary parsing data structures.

BUG: Gimpli�cation must occur before nested function lowering, and nested function
lowering must be done by the front end before passing the data o� to cgraph.

TODO: Cgraph should control nested function lowering. It would only be invoked when
it is certain that the outer-most function is used.

TODO: Cgraph needs a gimplify function callback. It should be invoked when (1) it is
certain that the function is used, (2) warning
ags speci�ed by the user require some amount
of compilation in order to honor, (3) the language indicates that semantic analysis is not
complete until gimpli�cation occurs. Hum. . . this sounds overly complicated. Perhaps we
should just have the front end gimplify always; in most cases it's only one function call.

The front end needs to pass all function de�nitions and top level declarations o� to the
middle-end so that they can be compiled and emitted to the object �le. For a simple
procedural language, it is usually most convenient to do this as each top level declaration
or de�nition is seen. There is also a distinction to be made between generating functional
code and generating complete debug information. The only thing that is absolutely required
for functional code is that function and data de�nitions be passed to the middle-end. For
complete debug information, function, data and type declarations should all be passed as
well.

In any case, the front end needs each complete top-level function or data declaration,
and each data de�nition should be passed to rest_of_decl_compilation. Each complete
type de�nition should be passed to rest_of_type_compilation. Each function de�nition
should be passed to cgraph_finalize_function.

TODO: I know rest of compilation currently has all sorts of rtl-generation semantics.
I plan to move all code generation bits (both tree and rtl) to compile function. Should
we hide cgraph from the front ends and move back to rest of compilation as the o�cial

56 GNU Compiler Collection (GCC) Internals

interface? Possibly we should rename all three interfaces such that the names match in
some meaningful way and that is more descriptive than "rest of".

The middle-end will, at its option, emit the function and data de�nitions immediately or
queue them for later processing.

8.2 Gimpli�cation pass

Gimpli�cation is a whimsical term for the process of converting the intermediate repre-
sentation of a function into the GIMPLE language (CROSSREF). The term stuck, and so
words like \gimpli�cation", \gimplify", \gimpli�er" and the like are sprinkled throughout
this section of code.

While a front end may certainly choose to generate GIMPLE directly if it chooses, this
can be a moderately complex process unless the intermediate language used by the front
end is already fairly simple. Usually it is easier to generate GENERIC trees plus extensions
and let the language-independent gimpli�er do most of the work.

The main entry point to this pass is gimplify_function_tree located in `gimplify.c'.
From here we process the entire function gimplifying each statement in turn. The main
workhorse for this pass is gimplify_expr. Approximately everything passes through here
at least once, and it is from here that we invoke the lang_hooks.gimplify_expr callback.

The callback should examine the expression in question and return GS_UNHANDLED if the
expression is not a language speci�c construct that requires attention. Otherwise it should
alter the expression in some way to such that forward progress is made toward producing
valid GIMPLE. If the callback is certain that the transformation is complete and the
expression is valid GIMPLE, it should return GS_ALL_DONE. Otherwise it should return
GS_OK, which will cause the expression to be processed again. If the callback encounters
an error during the transformation (because the front end is relying on the gimpli�cation
process to �nish semantic checks), it should return GS_ERROR.

8.3 Pass manager

The pass manager is located in `passes.c', `tree-optimize.c' and `tree-pass.h'. Its
job is to run all of the individual passes in the correct order, and take care of standard
bookkeeping that applies to every pass.

The theory of operation is that each pass de�nes a structure that represents everything
we need to know about that pass|when it should be run, how it should be run, what
intermediate language form or on-the-side data structures it needs. We register the pass to
be run in some particular order, and the pass manager arranges for everything to happen
in the correct order.

The actuality doesn't completely live up to the theory at present. Command-line switches
and timevar_id_t enumerations must still be de�ned elsewhere. The pass manager vali-
dates constraints but does not attempt to (re-)generate data structures or lower intermediate
language form based on the requirements of the next pass. Nevertheless, what is present is
useful, and a far sight better than nothing at all.

TODO: describe the global variables set up by the pass manager, and a brief description
of how a new pass should use it. I need to look at what info rtl passes use �rst...

Chapter 8: Passes and Files of the Compiler 57

8.4 Tree-SSA passes

The following brie
y describes the tree optimization passes that are run after gimpli�cation
and what source �les they are located in.

� Remove useless statements

This pass is an extremely simple sweep across the gimple code in which we identify
obviously dead code and remove it. Here we do things like simplify if statements
with constant conditions, remove exception handling constructs surrounding code that
obviously cannot throw, remove lexical bindings that contain no variables, and other
assorted simplistic cleanups. The idea is to get rid of the obvious stu� quickly rather
than wait until later when it's more work to get rid of it. This pass is located in
`tree-cfg.c' and described by pass_remove_useless_stmts.

� Mud
ap declaration registration

If mud
ap (see section \-fmud
ap -fmud
apth -fmud
apir" in Using the GNU Compiler
Collection (GCC)) is enabled, we generate code to register some variable declarations
with the mud
ap runtime. Speci�cally, the runtime tracks the lifetimes of those variable
declarations that have their addresses taken, or whose bounds are unknown at compile
time (extern). This pass generates new exception handling constructs (try/finally),
and so must run before those are lowered. In addition, the pass enqueues declarations
of static variables whose lifetimes extend to the entire program. The pass is located in
`tree-mudflap.c' and is described by pass_mudflap_1.

� OpenMP lowering

If OpenMP generation (`-fopenmp') is enabled, this pass lowers OpenMP constructs
into GIMPLE.

Lowering of OpenMP constructs involves creating replacement expressions for local
variables that have been mapped using data sharing clauses, exposing the control
ow
of most synchronization directives and adding region markers to facilitate the creation
of the control
ow graph. The pass is located in `omp-low.c' and is described by
pass_lower_omp.

� OpenMP expansion

If OpenMP generation (`-fopenmp') is enabled, this pass expands parallel regions
into their own functions to be invoked by the thread library. The pass is located
in `omp-low.c' and is described by pass_expand_omp.

� Lower control
ow

This pass
attens if statements (COND_EXPR) and moves lexical bindings (BIND_EXPR)
out of line. After this pass, all if statements will have exactly two goto statements in
its then and else arms. Lexical binding information for each statement will be found
in TREE_BLOCK rather than being inferred from its position under a BIND_EXPR. This
pass is found in `gimple-low.c' and is described by pass_lower_cf.

� Lower exception handling control
ow

This pass decomposes high-level exception handling constructs (TRY_FINALLY_EXPR and
TRY_CATCH_EXPR) into a form that explicitly represents the control
ow involved. After
this pass, lookup_stmt_eh_region will return a non-negative number for any state-
ment that may have EH control
ow semantics; examine tree_can_throw_internal

58 GNU Compiler Collection (GCC) Internals

or tree_can_throw_external for exact semantics. Exact control
ow may be ex-
tracted from foreach_reachable_handler. The EH region nesting tree is de�ned in
`except.h' and built in `except.c'. The lowering pass itself is in `tree-eh.c' and is
described by pass_lower_eh.

� Build the control
ow graph

This pass decomposes a function into basic blocks and creates all of the edges that
connect them. It is located in `tree-cfg.c' and is described by pass_build_cfg.

� Find all referenced variables

This pass walks the entire function and collects an array of all variables referenced
in the function, referenced_vars. The index at which a variable is found in the
array is used as a UID for the variable within this function. This data is needed by
the SSA rewriting routines. The pass is located in `tree-dfa.c' and is described by
pass_referenced_vars.

� Enter static single assignment form

This pass rewrites the function such that it is in SSA form. After this pass, all is_
gimple_reg variables will be referenced by SSA_NAME, and all occurrences of other
variables will be annotated with VDEFS and VUSES; PHI nodes will have been inserted
as necessary for each basic block. This pass is located in `tree-ssa.c' and is described
by pass_build_ssa.

� Warn for uninitialized variables

This pass scans the function for uses of SSA_NAMEs that are fed by default de�nition.
For non-parameter variables, such uses are uninitialized. The pass is run twice, before
and after optimization. In the �rst pass we only warn for uses that are positively
uninitialized; in the second pass we warn for uses that are possibly uninitialized. The
pass is located in `tree-ssa.c' and is de�ned by pass_early_warn_uninitialized

and pass_late_warn_uninitialized.

� Dead code elimination

This pass scans the function for statements without side e�ects whose result is unused.
It does not do memory life analysis, so any value that is stored in memory is considered
used. The pass is run multiple times throughout the optimization process. It is located
in `tree-ssa-dce.c' and is described by pass_dce.

� Dominator optimizations

This pass performs trivial dominator-based copy and constant propagation, expression
simpli�cation, and jump threading. It is run multiple times throughout the optimiza-
tion process. It it located in `tree-ssa-dom.c' and is described by pass_dominator.

� Redundant PHI elimination

This pass removes PHI nodes for which all of the arguments are the same value, ex-
cluding feedback. Such degenerate forms are typically created by removing unreachable
code. The pass is run multiple times throughout the optimization process. It is located
in `tree-ssa.c' and is described by pass_redundant_phi.o

� Forward propagation of single-use variables

This pass attempts to remove redundant computation by substituting variables that are
used once into the expression that uses them and seeing if the result can be simpli�ed.
It is located in `tree-ssa-forwprop.c' and is described by pass_forwprop.

Chapter 8: Passes and Files of the Compiler 59

� Copy Renaming

This pass attempts to change the name of compiler temporaries involved in copy oper-
ations such that SSA->normal can coalesce the copy away. When compiler temporaries
are copies of user variables, it also renames the compiler temporary to the user variable
resulting in better use of user symbols. It is located in `tree-ssa-copyrename.c' and
is described by pass_copyrename.

� PHI node optimizations

This pass recognizes forms of PHI inputs that can be represented as conditional expres-
sions and rewrites them into straight line code. It is located in `tree-ssa-phiopt.c'
and is described by pass_phiopt.

� May-alias optimization

This pass performs a
ow sensitive SSA-based points-to analysis. The resulting may-
alias, must-alias, and escape analysis information is used to promote variables from
in-memory addressable objects to non-aliased variables that can be renamed into SSA
form. We also update the VDEF/VUSE memory tags for non-renameable aggregates so
that we get fewer false kills. The pass is located in `tree-ssa-alias.c' and is described
by pass_may_alias.

Interprocedural points-to information is located in `tree-ssa-structalias.c' and de-
scribed by pass_ipa_pta.

� Pro�ling

This pass rewrites the function in order to collect runtime block and value pro�ling
data. Such data may be fed back into the compiler on a subsequent run so as to
allow optimization based on expected execution frequencies. The pass is located in
`predict.c' and is described by pass_profile.

� Lower complex arithmetic

This pass rewrites complex arithmetic operations into their component scalar arith-
metic operations. The pass is located in `tree-complex.c' and is described by pass_

lower_complex.

� Scalar replacement of aggregates

This pass rewrites suitable non-aliased local aggregate variables into a set of scalar
variables. The resulting scalar variables are rewritten into SSA form, which allows
subsequent optimization passes to do a signi�cantly better job with them. The pass is
located in `tree-sra.c' and is described by pass_sra.

� Dead store elimination

This pass eliminates stores to memory that are subsequently overwritten by another
store, without any intervening loads. The pass is located in `tree-ssa-dse.c' and is
described by pass_dse.

� Tail recursion elimination

This pass transforms tail recursion into a loop. It is located in `tree-tailcall.c' and
is described by pass_tail_recursion.

� Forward store motion

This pass sinks stores and assignments down the
owgraph closer to it's use point. The
pass is located in `tree-ssa-sink.c' and is described by pass_sink_code.

60 GNU Compiler Collection (GCC) Internals

� Partial redundancy elimination

This pass eliminates partially redundant computations, as well as performing load
motion. The pass is located in `tree-ssa-pre.c' and is described by pass_pre.

Just before partial redundancy elimination, if `-funsafe-math-optimizations' is on,
GCC tries to convert divisions to multiplications by the reciprocal. The pass is located
in `tree-ssa-math-opts.c' and is described by pass_cse_reciprocal.

� Full redundancy elimination

This is a simpler form of PRE that only eliminate redundancies that occur an all paths.
It is located in `tree-ssa-pre.c' and described by pass_fre.

� Loop optimization

The main driver of the pass is placed in `tree-ssa-loop.c' and described by pass_

loop.

The optimizations performed by this pass are:

Loop invariant motion. This pass moves only invariants that would be hard to handle
on rtl level (function calls, operations that expand to nontrivial sequences of insns).
With `-funswitch-loops' it also moves operands of conditions that are invariant out of
the loop, so that we can use just trivial invariantness analysis in loop unswitching. The
pass also includes store motion. The pass is implemented in `tree-ssa-loop-im.c'.

Canonical induction variable creation. This pass creates a simple counter for number
of iterations of the loop and replaces the exit condition of the loop using it, in case
when a complicated analysis is necessary to determine the number of iterations. Later
optimizations then may determine the number easily. The pass is implemented in
`tree-ssa-loop-ivcanon.c'.

Induction variable optimizations. This pass performs standard induction variable op-
timizations, including strength reduction, induction variable merging and induction
variable elimination. The pass is implemented in `tree-ssa-loop-ivopts.c'.

Loop unswitching. This pass moves the conditional jumps that are invariant out of the
loops. To achieve this, a duplicate of the loop is created for each possible outcome of
conditional jump(s). The pass is implemented in `tree-ssa-loop-unswitch.c'. This
pass should eventually replace the rtl-level loop unswitching in `loop-unswitch.c', but
currently the rtl-level pass is not completely redundant yet due to de�ciencies in tree
level alias analysis.

The optimizations also use various utility functions contained in `tree-ssa-loop-manip.c',
`cfgloop.c', `cfgloopanal.c' and `cfgloopmanip.c'.

Vectorization. This pass transforms loops to operate on vector types instead of scalar
types. Data parallelism across loop iterations is exploited to group data elements from
consecutive iterations into a vector and operate on them in parallel. Depending on
available target support the loop is conceptually unrolled by a factor VF (vectorization
factor), which is the number of elements operated upon in parallel in each iteration, and
the VF copies of each scalar operation are fused to form a vector operation. Additional
loop transformations such as peeling and versioning may take place to align the number
of iterations, and to align the memory accesses in the loop. The pass is implemented in
`tree-vectorizer.c' (the main driver and general utilities), `tree-vect-analyze.c'
and `tree-vect-transform.c'. Analysis of data references is in `tree-data-ref.c'.

Chapter 8: Passes and Files of the Compiler 61

� Tree level if-conversion for vectorizer

This pass applies if-conversion to simple loops to help vectorizer. We identify if con-
vertible loops, if-convert statements and merge basic blocks in one big block. The idea
is to present loop in such form so that vectorizer can have one to one mapping between
statements and available vector operations. This patch re-introduces COND EXPR at
GIMPLE level. This pass is located in `tree-if-conv.c' and is described by pass_

if_conversion.

� Conditional constant propagation

This pass relaxes a lattice of values in order to identify those that must be constant
even in the presence of conditional branches. The pass is located in `tree-ssa-ccp.c'
and is described by pass_ccp.

A related pass that works on memory loads and stores, and not just register values, is
located in `tree-ssa-ccp.c' and described by pass_store_ccp.

� Conditional copy propagation

This is similar to constant propagation but the lattice of values is the \copy-of" relation.
It eliminates redundant copies from the code. The pass is located in `tree-ssa-copy.c'
and described by pass_copy_prop.

A related pass that works on memory copies, and not just register copies, is located in
`tree-ssa-copy.c' and described by pass_store_copy_prop.

� Value range propagation

This transformation is similar to constant propagation but instead of propagating sin-
gle constant values, it propagates known value ranges. The implementation is based on
Patterson's range propagation algorithm (Accurate Static Branch Prediction by Value
Range Propagation, J. R. C. Patterson, PLDI '95). In contrast to Patterson's algo-
rithm, this implementation does not propagate branch probabilities nor it uses more
than a single range per SSA name. This means that the current implementation cannot
be used for branch prediction (though adapting it would not be di�cult). The pass is
located in `tree-vrp.c' and is described by pass_vrp.

� Folding built-in functions

This pass simpli�es built-in functions, as applicable, with constant arguments or with
inferrable string lengths. It is located in `tree-ssa-ccp.c' and is described by pass_

fold_builtins.

� Split critical edges

This pass identi�es critical edges and inserts empty basic blocks such that the edge
is no longer critical. The pass is located in `tree-cfg.c' and is described by pass_

split_crit_edges.

� Control dependence dead code elimination

This pass is a stronger form of dead code elimination that can eliminate unnecessary
control
ow statements. It is located in `tree-ssa-dce.c' and is described by pass_

cd_dce.

� Tail call elimination

This pass identi�es function calls that may be rewritten into jumps. No code trans-
formation is actually applied here, but the data and control
ow problem is solved.

62 GNU Compiler Collection (GCC) Internals

The code transformation requires target support, and so is delayed until RTL. In the
meantime CALL_EXPR_TAILCALL is set indicating the possibility. The pass is located in
`tree-tailcall.c' and is described by pass_tail_calls. The RTL transformation
is handled by fixup_tail_calls in `calls.c'.

� Warn for function return without value

For non-void functions, this pass locates return statements that do not specify a value
and issues a warning. Such a statement may have been injected by falling o� the end
of the function. This pass is run last so that we have as much time as possible to prove
that the statement is not reachable. It is located in `tree-cfg.c' and is described by
pass_warn_function_return.

� Mud
ap statement annotation

If mud
ap is enabled, we rewrite some memory accesses with code to validate that
the memory access is correct. In particular, expressions involving pointer dereferences
(INDIRECT_REF, ARRAY_REF, etc.) are replaced by code that checks the selected address
range against the mud
ap runtime's database of valid regions. This check includes
an inline lookup into a direct-mapped cache, based on shift/mask operations of the
pointer value, with a fallback function call into the runtime. The pass is located in
`tree-mudflap.c' and is described by pass_mudflap_2.

� Leave static single assignment form

This pass rewrites the function such that it is in normal form. At the same time, we
eliminate as many single-use temporaries as possible, so the intermediate language is
no longer GIMPLE, but GENERIC. The pass is located in `tree-outof-ssa.c' and
is described by pass_del_ssa.

� Merge PHI nodes that feed into one another

This is part of the CFG cleanup passes. It attempts to join PHI nodes from a
forwarder CFG block into another block with PHI nodes. The pass is located in
`tree-cfgcleanup.c' and is described by pass_merge_phi.

� Return value optimization

If a function always returns the same local variable, and that local variable is an
aggregate type, then the variable is replaced with the return value for the function
(i.e., the function's DECL RESULT). This is equivalent to the C++ named return
value optimization applied to GIMPLE. The pass is located in `tree-nrv.c' and is
described by pass_nrv.

� Return slot optimization

If a function returns a memory object and is called as var = foo(), this pass tries to
change the call so that the address of var is sent to the caller to avoid an extra memory
copy. This pass is located in tree-nrv.c and is described by pass_return_slot.

� Optimize calls to __builtin_object_size

This is a propagation pass similar to CCP that tries to remove calls to __builtin_

object_size when the size of the object can be computed at compile-time. This pass
is located in `tree-object-size.c' and is described by pass_object_sizes.

� Loop invariant motion

This pass removes expensive loop-invariant computations out of loops. The pass is
located in `tree-ssa-loop.c' and described by pass_lim.

Chapter 8: Passes and Files of the Compiler 63

� Loop nest optimizations

This is a family of loop transformations that works on loop nests. It includes loop
interchange, scaling, skewing and reversal and they are all geared to the optimiza-
tion of data locality in array traversals and the removal of dependencies that hamper
optimizations such as loop parallelization and vectorization. The pass is located in
`tree-loop-linear.c' and described by pass_linear_transform.

� Removal of empty loops

This pass removes loops with no code in them. The pass is located in
`tree-ssa-loop-ivcanon.c' and described by pass_empty_loop.

� Unrolling of small loops

This pass completely unrolls loops with few iterations. The pass is located in
`tree-ssa-loop-ivcanon.c' and described by pass_complete_unroll.

� Array prefetching

This pass issues prefetch instructions for array references inside loops. The pass is
located in `tree-ssa-loop-prefetch.c' and described by pass_loop_prefetch.

� Reassociation

This pass rewrites arithmetic expressions to enable optimizations that operate
on them, like redundancy elimination and vectorization. The pass is located in
`tree-ssa-reassoc.c' and described by pass_reassoc.

� Optimization of stdarg functions

This pass tries to avoid the saving of register arguments into the stack on entry to
stdarg functions. If the function doesn't use any va_start macros, no registers need
to be saved. If va_start macros are used, the va_list variables don't escape the
function, it is only necessary to save registers that will be used in va_arg macros.
For instance, if va_arg is only used with integral types in the function,
oating point
registers don't need to be saved. This pass is located in tree-stdarg.c and described
by pass_stdarg.

8.5 RTL passes

The following brie
y describes the rtl generation and optimization passes that are run after
tree optimization.

� RTL generation

The source �les for RTL generation include `stmt.c', `calls.c', `expr.c', `explow.c',
`expmed.c', `function.c', `optabs.c' and `emit-rtl.c'. Also, the �le `insn-emit.c',
generated from the machine description by the program genemit, is used in this pass.
The header �le `expr.h' is used for communication within this pass.

The header �les `insn-flags.h' and `insn-codes.h', generated from the machine
description by the programs genflags and gencodes, tell this pass which standard
names are available for use and which patterns correspond to them.

� Generate exception handling landing pads

This pass generates the glue that handles communication between the exception han-
dling library routines and the exception handlers within the function. Entry points in

64 GNU Compiler Collection (GCC) Internals

the function that are invoked by the exception handling library are called landing pads.
The code for this pass is located within `except.c'.

� Cleanup control
ow graph

This pass removes unreachable code, simpli�es jumps to next, jumps to jump, jumps
across jumps, etc. The pass is run multiple times. For historical reasons, it is occasion-
ally referred to as the \jump optimization pass". The bulk of the code for this pass is
in `cfgcleanup.c', and there are support routines in `cfgrtl.c' and `jump.c'.

� Common subexpression elimination

This pass removes redundant computation within basic blocks, and optimizes address-
ing modes based on cost. The pass is run twice. The source is located in `cse.c'.

� Global common subexpression elimination.

This pass performs two di�erent types of GCSE depending on whether you are opti-
mizing for size or not (LCM based GCSE tends to increase code size for a gain in speed,
while Morel-Renvoise based GCSE does not). When optimizing for size, GCSE is done
using Morel-Renvoise Partial Redundancy Elimination, with the exception that it does
not try to move invariants out of loops|that is left to the loop optimization pass. If
MR PRE GCSE is done, code hoisting (aka uni�cation) is also done, as well as load
motion. If you are optimizing for speed, LCM (lazy code motion) based GCSE is done.
LCM is based on the work of Knoop, Ruthing, and Ste�en. LCM based GCSE also does
loop invariant code motion. We also perform load and store motion when optimizing
for speed. Regardless of which type of GCSE is used, the GCSE pass also performs
global constant and copy propagation. The source �le for this pass is `gcse.c', and the
LCM routines are in `lcm.c'.

� Loop optimization

This pass performs several loop related optimizations. The source �les `cfgloopanal.c'
and `cfgloopmanip.c' contain generic loop analysis and manipulation code. Initializa-
tion and �nalization of loop structures is handled by `loop-init.c'. A loop invariant
motion pass is implemented in `loop-invariant.c'. Basic block level optimizations|
unrolling, peeling and unswitching loops| are implemented in `loop-unswitch.c'
and `loop-unroll.c'. Replacing of the exit condition of loops by special machine-
dependent instructions is handled by `loop-doloop.c'.

� Jump bypassing

This pass is an aggressive form of GCSE that transforms the control
ow graph of a
function by propagating constants into conditional branch instructions. The source �le
for this pass is `gcse.c'.

� If conversion

This pass attempts to replace conditional branches and surrounding assignments with
arithmetic, boolean value producing comparison instructions, and conditional move
instructions. In the very last invocation after reload, it will generate predicated in-
structions when supported by the target. The pass is located in `ifcvt.c'.

� Web construction

This pass splits independent uses of each pseudo-register. This can improve e�ect of the
other transformation, such as CSE or register allocation. Its source �les are `web.c'.

Chapter 8: Passes and Files of the Compiler 65

� Life analysis

This pass computes which pseudo-registers are live at each point in the program, and
makes the �rst instruction that uses a value point at the instruction that computed the
value. It then deletes computations whose results are never used, and combines memory
references with add or subtract instructions to make autoincrement or autodecrement
addressing. The pass is located in `flow.c'.

� Instruction combination

This pass attempts to combine groups of two or three instructions that are related by
data
ow into single instructions. It combines the RTL expressions for the instructions
by substitution, simpli�es the result using algebra, and then attempts to match the
result against the machine description. The pass is located in `combine.c'.

� Register movement

This pass looks for cases where matching constraints would force an instruction to
need a reload, and this reload would be a register-to-register move. It then attempts
to change the registers used by the instruction to avoid the move instruction. The pass
is located in `regmove.c'.

� Optimize mode switching

This pass looks for instructions that require the processor to be in a speci�c \mode"
and minimizes the number of mode changes required to satisfy all users. What these
modes are, and what they apply to are completely target-speci�c. The source is located
in `mode-switching.c'.

� Modulo scheduling

This pass looks at innermost loops and reorders their instructions by overlapping di�er-
ent iterations. Modulo scheduling is performed immediately before instruction schedul-
ing. The pass is located in (`modulo-sched.c').

� Instruction scheduling

This pass looks for instructions whose output will not be available by the time that it
is used in subsequent instructions. Memory loads and
oating point instructions often
have this behavior on RISC machines. It re-orders instructions within a basic block to
try to separate the de�nition and use of items that otherwise would cause pipeline stalls.
This pass is performed twice, before and after register allocation. The pass is located in
`haifa-sched.c', `sched-deps.c', `sched-ebb.c', `sched-rgn.c' and `sched-vis.c'.

� Register allocation

These passes make sure that all occurrences of pseudo registers are eliminated, either
by allocating them to a hard register, replacing them by an equivalent expression (e.g.
a constant) or by placing them on the stack. This is done in several subpasses:

� Register class preferencing. The RTL code is scanned to �nd out which register
class is best for each pseudo register. The source �le is `regclass.c'.

� Local register allocation. This pass allocates hard registers to pseudo registers
that are used only within one basic block. Because the basic block is linear, it
can use fast and powerful techniques to do a decent job. The source is located in
`local-alloc.c'.

66 GNU Compiler Collection (GCC) Internals

� Global register allocation. This pass allocates hard registers for the remaining
pseudo registers (those whose life spans are not contained in one basic block). The
pass is located in `global.c'.

� Reloading. This pass renumbers pseudo registers with the hardware registers num-
bers they were allocated. Pseudo registers that did not get hard registers are re-
placed with stack slots. Then it �nds instructions that are invalid because a value
has failed to end up in a register, or has ended up in a register of the wrong kind.
It �xes up these instructions by reloading the problematical values temporarily
into registers. Additional instructions are generated to do the copying.

The reload pass also optionally eliminates the frame pointer and inserts instruc-
tions to save and restore call-clobbered registers around calls.

Source �les are `reload.c' and `reload1.c', plus the header `reload.h' used for
communication between them.

� Basic block reordering

This pass implements pro�le guided code positioning. If pro�le information is not avail-
able, various types of static analysis are performed to make the predictions normally
coming from the pro�le feedback (IE execution frequency, branch probability, etc). It
is implemented in the �le `bb-reorder.c', and the various prediction routines are in
`predict.c'.

� Variable tracking

This pass computes where the variables are stored at each position in code and gener-
ates notes describing the variable locations to RTL code. The location lists are then
generated according to these notes to debug information if the debugging information
format supports location lists.

� Delayed branch scheduling

This optional pass attempts to �nd instructions that can go into the delay slots of other
instructions, usually jumps and calls. The source �le name is `reorg.c'.

� Branch shortening

On many RISC machines, branch instructions have a limited range. Thus, longer
sequences of instructions must be used for long branches. In this pass, the compiler
�gures out what how far each instruction will be from each other instruction, and
therefore whether the usual instructions, or the longer sequences, must be used for
each branch.

� Register-to-stack conversion

Conversion from usage of some hard registers to usage of a register stack may be done
at this point. Currently, this is supported only for the
oating-point registers of the
Intel 80387 coprocessor. The source �le name is `reg-stack.c'.

� Final

This pass outputs the assembler code for the function. The source �les are `final.c'
plus `insn-output.c'; the latter is generated automatically from the machine descrip-
tion by the tool `genoutput'. The header �le `conditions.h' is used for communication
between these �les. If mud
ap is enabled, the queue of deferred declarations and any
addressed constants (e.g., string literals) is processed by mudflap_finish_file into a
synthetic constructor function containing calls into the mud
ap runtime.

Chapter 8: Passes and Files of the Compiler 67

� Debugging information output

This is run after �nal because it must output the stack slot o�sets for pseudo registers
that did not get hard registers. Source �les are `dbxout.c' for DBX symbol table
format, `sdbout.c' for SDB symbol table format, `dwarfout.c' for DWARF symbol
table format, �les `dwarf2out.c' and `dwarf2asm.c' for DWARF2 symbol table format,
and `vmsdbgout.c' for VMS debug symbol table format.

68 GNU Compiler Collection (GCC) Internals

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 69

9 Trees: The intermediate representation used by
the C and C++ front ends

This chapter documents the internal representation used by GCC to represent C and C++
source programs. When presented with a C or C++ source program, GCC parses the
program, performs semantic analysis (including the generation of error messages), and then
produces the internal representation described here. This representation contains a complete
representation for the entire translation unit provided as input to the front end. This
representation is then typically processed by a code-generator in order to produce machine
code, but could also be used in the creation of source browsers, intelligent editors, automatic
documentation generators, interpreters, and any other programs needing the ability to
process C or C++ code.

This chapter explains the internal representation. In particular, it documents the internal
representation for C and C++ source constructs, and the macros, functions, and variables
that can be used to access these constructs. The C++ representation is largely a superset
of the representation used in the C front end. There is only one construct used in C that
does not appear in the C++ front end and that is the GNU \nested function" extension.
Many of the macros documented here do not apply in C because the corresponding language
constructs do not appear in C.

If you are developing a \back end", be it is a code-generator or some other tool, that uses
this representation, you may occasionally �nd that you need to ask questions not easily
answered by the functions and macros available here. If that situation occurs, it is quite
likely that GCC already supports the functionality you desire, but that the interface is
simply not documented here. In that case, you should ask the GCC maintainers (via mail
to gcc@gcc.gnu.org) about documenting the functionality you require. Similarly, if you
�nd yourself writing functions that do not deal directly with your back end, but instead
might be useful to other people using the GCC front end, you should submit your patches
for inclusion in GCC.

9.1 De�ciencies

There are many places in which this document is incomplet and incorrekt. It is, as of yet,
only preliminary documentation.

9.2 Overview

The central data structure used by the internal representation is the tree. These nodes,
while all of the C type tree, are of many varieties. A tree is a pointer type, but the object
to which it points may be of a variety of types. From this point forward, we will refer to
trees in ordinary type, rather than in this font, except when talking about the actual C
type tree.

You can tell what kind of node a particular tree is by using the TREE_CODE macro. Many,
many macros take trees as input and return trees as output. However, most macros require
a certain kind of tree node as input. In other words, there is a type-system for trees, but it
is not re
ected in the C type-system.

For safety, it is useful to con�gure GCC with `--enable-checking'. Although this results
in a signi�cant performance penalty (since all tree types are checked at run-time), and is

mailto:gcc@gcc.gnu.org

70 GNU Compiler Collection (GCC) Internals

therefore inappropriate in a release version, it is extremely helpful during the development
process.
Many macros behave as predicates. Many, although not all, of these predicates end in

`_P'. Do not rely on the result type of these macros being of any particular type. You may,
however, rely on the fact that the type can be compared to 0, so that statements like

if (TEST_P (t) && !TEST_P (y))
x = 1;

and
int i = (TEST_P (t) != 0);

are legal. Macros that return int values now may be changed to return tree values, or
other pointers in the future. Even those that continue to return int may return multiple
nonzero codes where previously they returned only zero and one. Therefore, you should not
write code like

if (TEST_P (t) == 1)

as this code is not guaranteed to work correctly in the future.

You should not take the address of values returned by the macros or functions described
here. In particular, no guarantee is given that the values are lvalues.

In general, the names of macros are all in uppercase, while the names of functions are
entirely in lowercase. There are rare exceptions to this rule. You should assume that any
macro or function whose name is made up entirely of uppercase letters may evaluate its
arguments more than once. You may assume that a macro or function whose name is made
up entirely of lowercase letters will evaluate its arguments only once.

The error_mark_node is a special tree. Its tree code is ERROR_MARK, but since there is
only ever one node with that code, the usual practice is to compare the tree against error_
mark_node. (This test is just a test for pointer equality.) If an error has occurred during
front-end processing the
ag errorcount will be set. If the front end has encountered code
it cannot handle, it will issue a message to the user and set sorrycount. When these

ags are set, any macro or function which normally returns a tree of a particular kind may
instead return the error_mark_node. Thus, if you intend to do any processing of erroneous
code, you must be prepared to deal with the error_mark_node.

Occasionally, a particular tree slot (like an operand to an expression, or a particular �eld
in a declaration) will be referred to as \reserved for the back end". These slots are used to
store RTL when the tree is converted to RTL for use by the GCC back end. However, if
that process is not taking place (e.g., if the front end is being hooked up to an intelligent
editor), then those slots may be used by the back end presently in use.

If you encounter situations that do not match this documentation, such as tree nodes of
types not mentioned here, or macros documented to return entities of a particular kind that
instead return entities of some di�erent kind, you have found a bug, either in the front end
or in the documentation. Please report these bugs as you would any other bug.

9.2.1 Trees

This section is not here yet.

9.2.2 Identi�ers

An IDENTIFIER_NODE represents a slightly more general concept that the standard C or
C++ concept of identi�er. In particular, an IDENTIFIER_NODE may contain a `$', or other
extraordinary characters.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 71

There are never two distinct IDENTIFIER_NODEs representing the same identi�er. There-
fore, you may use pointer equality to compare IDENTIFIER_NODEs, rather than using a
routine like strcmp.

You can use the following macros to access identi�ers:

IDENTIFIER_POINTER

The string represented by the identi�er, represented as a char*. This string is
always NUL-terminated, and contains no embedded NUL characters.

IDENTIFIER_LENGTH

The length of the string returned by IDENTIFIER_POINTER, not including the
trailing NUL. This value of IDENTIFIER_LENGTH (x) is always the same as
strlen (IDENTIFIER_POINTER (x)).

IDENTIFIER_OPNAME_P

This predicate holds if the identi�er represents the name of an overloaded
operator. In this case, you should not depend on the contents of either the
IDENTIFIER_POINTER or the IDENTIFIER_LENGTH.

IDENTIFIER_TYPENAME_P

This predicate holds if the identi�er represents the name of a user-de�ned con-
version operator. In this case, the TREE_TYPE of the IDENTIFIER_NODE holds
the type to which the conversion operator converts.

9.2.3 Containers

Two common container data structures can be represented directly with tree nodes. A
TREE_LIST is a singly linked list containing two trees per node. These are the TREE_

PURPOSE and TREE_VALUE of each node. (Often, the TREE_PURPOSE contains some kind of
tag, or additional information, while the TREE_VALUE contains the majority of the payload.
In other cases, the TREE_PURPOSE is simply NULL_TREE, while in still others both the TREE_
PURPOSE and TREE_VALUE are of equal stature.) Given one TREE_LIST node, the next node
is found by following the TREE_CHAIN. If the TREE_CHAIN is NULL_TREE, then you have
reached the end of the list.

A TREE_VEC is a simple vector. The TREE_VEC_LENGTH is an integer (not a tree) giving the
number of nodes in the vector. The nodes themselves are accessed using the TREE_VEC_ELT
macro, which takes two arguments. The �rst is the TREE_VEC in question; the second is an
integer indicating which element in the vector is desired. The elements are indexed from
zero.

9.3 Types

All types have corresponding tree nodes. However, you should not assume that there is
exactly one tree node corresponding to each type. There are often several nodes each of
which correspond to the same type.

For the most part, di�erent kinds of types have di�erent tree codes. (For example, pointer
types use a POINTER_TYPE code while arrays use an ARRAY_TYPE code.) However, pointers to
member functions use the RECORD_TYPE code. Therefore, when writing a switch statement
that depends on the code associated with a particular type, you should take care to handle
pointers to member functions under the RECORD_TYPE case label.

72 GNU Compiler Collection (GCC) Internals

In C++, an array type is not quali�ed; rather the type of the array elements is quali�ed.
This situation is re
ected in the intermediate representation. The macros described here
will always examine the quali�cation of the underlying element type when applied to an
array type. (If the element type is itself an array, then the recursion continues until a
non-array type is found, and the quali�cation of this type is examined.) So, for example,
CP_TYPE_CONST_P will hold of the type const int ()[7], denoting an array of seven ints.

The following functions and macros deal with cv-quali�cation of types:

CP_TYPE_QUALS

This macro returns the set of type quali�ers applied to this type. This value is
TYPE_UNQUALIFIED if no quali�ers have been applied. The TYPE_QUAL_CONST

bit is set if the type is const-quali�ed. The TYPE_QUAL_VOLATILE bit is set if
the type is volatile-quali�ed. The TYPE_QUAL_RESTRICT bit is set if the type
is restrict-quali�ed.

CP_TYPE_CONST_P

This macro holds if the type is const-quali�ed.

CP_TYPE_VOLATILE_P

This macro holds if the type is volatile-quali�ed.

CP_TYPE_RESTRICT_P

This macro holds if the type is restrict-quali�ed.

CP_TYPE_CONST_NON_VOLATILE_P

This predicate holds for a type that is const-quali�ed, but not volatile-
quali�ed; other cv-quali�ers are ignored as well: only the const-ness is tested.

TYPE_MAIN_VARIANT

This macro returns the unquali�ed version of a type. It may be applied to an
unquali�ed type, but it is not always the identity function in that case.

A few other macros and functions are usable with all types:

TYPE_SIZE

The number of bits required to represent the type, represented as an INTEGER_

CST. For an incomplete type, TYPE_SIZE will be NULL_TREE.

TYPE_ALIGN

The alignment of the type, in bits, represented as an int.

TYPE_NAME

This macro returns a declaration (in the form of a TYPE_DECL) for the type.
(Note this macro does not return a IDENTIFIER_NODE, as you might expect,
given its name!) You can look at the DECL_NAME of the TYPE_DECL to obtain
the actual name of the type. The TYPE_NAME will be NULL_TREE for a type that
is not a built-in type, the result of a typedef, or a named class type.

CP_INTEGRAL_TYPE

This predicate holds if the type is an integral type. Notice that in C++, enu-
merations are not integral types.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 73

ARITHMETIC_TYPE_P

This predicate holds if the type is an integral type (in the C++ sense) or a

oating point type.

CLASS_TYPE_P

This predicate holds for a class-type.

TYPE_BUILT_IN

This predicate holds for a built-in type.

TYPE_PTRMEM_P

This predicate holds if the type is a pointer to data member.

TYPE_PTR_P

This predicate holds if the type is a pointer type, and the pointee is not a data
member.

TYPE_PTRFN_P

This predicate holds for a pointer to function type.

TYPE_PTROB_P

This predicate holds for a pointer to object type. Note however that it does not
hold for the generic pointer to object type void *. You may use TYPE_PTROBV_P
to test for a pointer to object type as well as void *.

same_type_p

This predicate takes two types as input, and holds if they are the same type.
For example, if one type is a typedef for the other, or both are typedefs
for the same type. This predicate also holds if the two trees given as input
are simply copies of one another; i.e., there is no di�erence between them at
the source level, but, for whatever reason, a duplicate has been made in the
representation. You should never use == (pointer equality) to compare types;
always use same_type_p instead.

Detailed below are the various kinds of types, and the macros that can be used to access
them. Although other kinds of types are used elsewhere in G++, the types described here
are the only ones that you will encounter while examining the intermediate representation.

VOID_TYPE

Used to represent the void type.

INTEGER_TYPE

Used to represent the various integral types, including char, short, int, long,
and long long. This code is not used for enumeration types, nor for the bool
type. The TYPE_PRECISION is the number of bits used in the representation,
represented as an unsigned int. (Note that in the general case this is not
the same value as TYPE_SIZE; suppose that there were a 24-bit integer type,
but that alignment requirements for the ABI required 32-bit alignment. Then,
TYPE_SIZE would be an INTEGER_CST for 32, while TYPE_PRECISION would be
24.) The integer type is unsigned if TYPE_UNSIGNED holds; otherwise, it is
signed.

74 GNU Compiler Collection (GCC) Internals

The TYPE_MIN_VALUE is an INTEGER_CST for the smallest integer that may be
represented by this type. Similarly, the TYPE_MAX_VALUE is an INTEGER_CST for
the largest integer that may be represented by this type.

REAL_TYPE

Used to represent the float, double, and long double types. The number of
bits in the
oating-point representation is given by TYPE_PRECISION, as in the
INTEGER_TYPE case.

COMPLEX_TYPE

Used to represent GCC built-in __complex__ data types. The TREE_TYPE is
the type of the real and imaginary parts.

ENUMERAL_TYPE

Used to represent an enumeration type. The TYPE_PRECISION gives (as an
int), the number of bits used to represent the type. If there are no negative
enumeration constants, TYPE_UNSIGNED will hold. The minimum and maximum
enumeration constants may be obtained with TYPE_MIN_VALUE and TYPE_MAX_

VALUE, respectively; each of these macros returns an INTEGER_CST.

The actual enumeration constants themselves may be obtained by looking at
the TYPE_VALUES. This macro will return a TREE_LIST, containing the con-
stants. The TREE_PURPOSE of each node will be an IDENTIFIER_NODE giving
the name of the constant; the TREE_VALUE will be an INTEGER_CST giving the
value assigned to that constant. These constants will appear in the order in
which they were declared. The TREE_TYPE of each of these constants will be
the type of enumeration type itself.

BOOLEAN_TYPE

Used to represent the bool type.

POINTER_TYPE

Used to represent pointer types, and pointer to data member types. The TREE_
TYPE gives the type to which this type points. If the type is a pointer to data
member type, then TYPE_PTRMEM_P will hold. For a pointer to data member
type of the form `T X::*', TYPE_PTRMEM_CLASS_TYPE will be the type X, while
TYPE_PTRMEM_POINTED_TO_TYPE will be the type T.

REFERENCE_TYPE

Used to represent reference types. The TREE_TYPE gives the type to which this
type refers.

FUNCTION_TYPE

Used to represent the type of non-member functions and of static member
functions. The TREE_TYPE gives the return type of the function. The TYPE_

ARG_TYPES are a TREE_LIST of the argument types. The TREE_VALUE of each
node in this list is the type of the corresponding argument; the TREE_PURPOSE is
an expression for the default argument value, if any. If the last node in the list
is void_list_node (a TREE_LIST node whose TREE_VALUE is the void_type_

node), then functions of this type do not take variable arguments. Otherwise,
they do take a variable number of arguments.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 75

Note that in C (but not in C++) a function declared like void f() is an unpro-
totyped function taking a variable number of arguments; the TYPE_ARG_TYPES
of such a function will be NULL.

METHOD_TYPE

Used to represent the type of a non-static member function. Like a FUNCTION_

TYPE, the return type is given by the TREE_TYPE. The type of *this, i.e., the
class of which functions of this type are a member, is given by the TYPE_METHOD_
BASETYPE. The TYPE_ARG_TYPES is the parameter list, as for a FUNCTION_TYPE,
and includes the this argument.

ARRAY_TYPE

Used to represent array types. The TREE_TYPE gives the type of the elements
in the array. If the array-bound is present in the type, the TYPE_DOMAIN is an
INTEGER_TYPE whose TYPE_MIN_VALUE and TYPE_MAX_VALUE will be the lower
and upper bounds of the array, respectively. The TYPE_MIN_VALUE will always
be an INTEGER_CST for zero, while the TYPE_MAX_VALUE will be one less than
the number of elements in the array, i.e., the highest value which may be used
to index an element in the array.

RECORD_TYPE

Used to represent struct and class types, as well as pointers to member
functions and similar constructs in other languages. TYPE_FIELDS contains the
items contained in this type, each of which can be a FIELD_DECL, VAR_DECL,
CONST_DECL, or TYPE_DECL. You may not make any assumptions about the
ordering of the �elds in the type or whether one or more of them overlap. If
TYPE_PTRMEMFUNC_P holds, then this type is a pointer-to-member type. In that
case, the TYPE_PTRMEMFUNC_FN_TYPE is a POINTER_TYPE pointing to a METHOD_
TYPE. The METHOD_TYPE is the type of a function pointed to by the pointer-
to-member function. If TYPE_PTRMEMFUNC_P does not hold, this type is a class
type. For more information, see see Section 9.4.2 [Classes], page 77.

UNION_TYPE

Used to represent union types. Similar to RECORD_TYPE except that all FIELD_
DECL nodes in TYPE_FIELD start at bit position zero.

QUAL_UNION_TYPE

Used to represent part of a variant record in Ada. Similar to UNION_TYPE except
that each FIELD_DECL has a DECL_QUALIFIER �eld, which contains a boolean
expression that indicates whether the �eld is present in the object. The type
will only have one �eld, so each �eld's DECL_QUALIFIER is only evaluated if none
of the expressions in the previous �elds in TYPE_FIELDS are nonzero. Normally
these expressions will reference a �eld in the outer object using a PLACEHOLDER_
EXPR.

UNKNOWN_TYPE

This node is used to represent a type the knowledge of which is insu�cient for
a sound processing.

76 GNU Compiler Collection (GCC) Internals

OFFSET_TYPE

This node is used to represent a pointer-to-data member. For a data member
X::m the TYPE_OFFSET_BASETYPE is X and the TREE_TYPE is the type of m.

TYPENAME_TYPE

Used to represent a construct of the form typename T::A. The TYPE_CONTEXT
is T; the TYPE_NAME is an IDENTIFIER_NODE for A. If the type is speci�ed via a
template-id, then TYPENAME_TYPE_FULLNAME yields a TEMPLATE_ID_EXPR. The
TREE_TYPE is non-NULL if the node is implicitly generated in support for the
implicit typename extension; in which case the TREE_TYPE is a type node for
the base-class.

TYPEOF_TYPE

Used to represent the __typeof__ extension. The TYPE_FIELDS is the expres-
sion the type of which is being represented.

There are variables whose values represent some of the basic types. These include:

void_type_node

A node for void.

integer_type_node

A node for int.

unsigned_type_node.

A node for unsigned int.

char_type_node.

A node for char.

It may sometimes be useful to compare one of these variables with a type in hand, using
same_type_p.

9.4 Scopes

The root of the entire intermediate representation is the variable global_namespace. This is
the namespace speci�ed with :: in C++ source code. All other namespaces, types, variables,
functions, and so forth can be found starting with this namespace.

Besides namespaces, the other high-level scoping construct in C++ is the class. (Through-
out this manual the term class is used to mean the types referred to in the ANSI/ISO C++
Standard as classes; these include types de�ned with the class, struct, and union key-
words.)

9.4.1 Namespaces

A namespace is represented by a NAMESPACE_DECL node.

However, except for the fact that it is distinguished as the root of the representation,
the global namespace is no di�erent from any other namespace. Thus, in what follows, we
describe namespaces generally, rather than the global namespace in particular.

The following macros and functions can be used on a NAMESPACE_DECL:

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 77

DECL_NAME

This macro is used to obtain the IDENTIFIER_NODE corresponding to the unqual-
i�ed name of the name of the namespace (see Section 9.2.2 [Identi�ers], page 70).
The name of the global namespace is `::', even though in C++ the global
namespace is unnamed. However, you should use comparison with global_

namespace, rather than DECL_NAME to determine whether or not a namespace
is the global one. An unnamed namespace will have a DECL_NAME equal to
anonymous_namespace_name. Within a single translation unit, all unnamed
namespaces will have the same name.

DECL_CONTEXT

This macro returns the enclosing namespace. The DECL_CONTEXT for the
global_namespace is NULL_TREE.

DECL_NAMESPACE_ALIAS

If this declaration is for a namespace alias, then DECL_NAMESPACE_ALIAS is the
namespace for which this one is an alias.

Do not attempt to use cp_namespace_decls for a namespace which is an alias.
Instead, follow DECL_NAMESPACE_ALIAS links until you reach an ordinary, non-
alias, namespace, and call cp_namespace_decls there.

DECL_NAMESPACE_STD_P

This predicate holds if the namespace is the special ::std namespace.

cp_namespace_decls

This function will return the declarations contained in the namespace, including
types, overloaded functions, other namespaces, and so forth. If there are no dec-
larations, this function will return NULL_TREE. The declarations are connected
through their TREE_CHAIN �elds.

Although most entries on this list will be declarations, TREE_LIST nodes may
also appear. In this case, the TREE_VALUE will be an OVERLOAD. The value of the
TREE_PURPOSE is unspeci�ed; back ends should ignore this value. As with the
other kinds of declarations returned by cp_namespace_decls, the TREE_CHAIN
will point to the next declaration in this list.

For more information on the kinds of declarations that can occur on this list,
See Section 9.5 [Declarations], page 79. Some declarations will not appear on
this list. In particular, no FIELD_DECL, LABEL_DECL, or PARM_DECL nodes will
appear here.

This function cannot be used with namespaces that have DECL_NAMESPACE_

ALIAS set.

9.4.2 Classes

A class type is represented by either a RECORD_TYPE or a UNION_TYPE. A class declared
with the union tag is represented by a UNION_TYPE, while classes declared with either the
struct or the class tag are represented by RECORD_TYPEs. You can use the CLASSTYPE_

DECLARED_CLASS macro to discern whether or not a particular type is a class as opposed
to a struct. This macro will be true only for classes declared with the class tag.

Almost all non-function members are available on the TYPE_FIELDS list. Given one mem-
ber, the next can be found by following the TREE_CHAIN. You should not depend in any

78 GNU Compiler Collection (GCC) Internals

way on the order in which �elds appear on this list. All nodes on this list will be `DECL'
nodes. A FIELD_DECL is used to represent a non-static data member, a VAR_DECL is used to
represent a static data member, and a TYPE_DECL is used to represent a type. Note that the
CONST_DECL for an enumeration constant will appear on this list, if the enumeration type
was declared in the class. (Of course, the TYPE_DECL for the enumeration type will appear
here as well.) There are no entries for base classes on this list. In particular, there is no
FIELD_DECL for the \base-class portion" of an object.

The TYPE_VFIELD is a compiler-generated �eld used to point to virtual function tables.
It may or may not appear on the TYPE_FIELDS list. However, back ends should handle the
TYPE_VFIELD just like all the entries on the TYPE_FIELDS list.

The function members are available on the TYPE_METHODS list. Again, subsequent mem-
bers are found by following the TREE_CHAIN �eld. If a function is overloaded, each of the
overloaded functions appears; no OVERLOAD nodes appear on the TYPE_METHODS list. Im-
plicitly declared functions (including default constructors, copy constructors, assignment
operators, and destructors) will appear on this list as well.

Every class has an associated binfo, which can be obtained with TYPE_BINFO. Binfos
are used to represent base-classes. The binfo given by TYPE_BINFO is the degenerate case,
whereby every class is considered to be its own base-class. The base binfos for a particular
binfo are held in a vector, whose length is obtained with BINFO_N_BASE_BINFOS. The base
binfos themselves are obtained with BINFO_BASE_BINFO and BINFO_BASE_ITERATE. To add
a new binfo, use BINFO_BASE_APPEND. The vector of base binfos can be obtained with
BINFO_BASE_BINFOS, but normally you do not need to use that. The class type associated
with a binfo is given by BINFO_TYPE. It is not always the case that BINFO_TYPE (TYPE_

BINFO (x)), because of typedefs and quali�ed types. Neither is it the case that TYPE_BINFO
(BINFO_TYPE (y)) is the same binfo as y. The reason is that if y is a binfo representing a
base-class B of a derived class D, then BINFO_TYPE (y) will be B, and TYPE_BINFO (BINFO_

TYPE (y)) will be B as its own base-class, rather than as a base-class of D.

The access to a base type can be found with BINFO_BASE_ACCESS. This will produce
access_public_node, access_private_node or access_protected_node. If bases are
always public, BINFO_BASE_ACCESSES may be NULL.

BINFO_VIRTUAL_P is used to specify whether the binfo is inherited virtually or not. The
other
ags, BINFO_MARKED_P and BINFO_FLAG_1 to BINFO_FLAG_6 can be used for language
speci�c use.

The following macros can be used on a tree node representing a class-type.

LOCAL_CLASS_P

This predicate holds if the class is local class i.e. declared inside a function
body.

TYPE_POLYMORPHIC_P

This predicate holds if the class has at least one virtual function (declared or
inherited).

TYPE_HAS_DEFAULT_CONSTRUCTOR

This predicate holds whenever its argument represents a class-type with default
constructor.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 79

CLASSTYPE_HAS_MUTABLE

TYPE_HAS_MUTABLE_P

These predicates hold for a class-type having a mutable data member.

CLASSTYPE_NON_POD_P

This predicate holds only for class-types that are not PODs.

TYPE_HAS_NEW_OPERATOR

This predicate holds for a class-type that de�nes operator new.

TYPE_HAS_ARRAY_NEW_OPERATOR

This predicate holds for a class-type for which operator new[] is de�ned.

TYPE_OVERLOADS_CALL_EXPR

This predicate holds for class-type for which the function call operator() is
overloaded.

TYPE_OVERLOADS_ARRAY_REF

This predicate holds for a class-type that overloads operator[]

TYPE_OVERLOADS_ARROW

This predicate holds for a class-type for which operator-> is overloaded.

9.5 Declarations

This section covers the various kinds of declarations that appear in the internal represen-
tation, except for declarations of functions (represented by FUNCTION_DECL nodes), which
are described in Section 9.6 [Functions], page 84.

9.5.1 Working with declarations

Some macros can be used with any kind of declaration. These include:

DECL_NAME

This macro returns an IDENTIFIER_NODE giving the name of the entity.

TREE_TYPE

This macro returns the type of the entity declared.

TREE_FILENAME

This macro returns the name of the �le in which the entity was declared, as
a char*. For an entity declared implicitly by the compiler (like __builtin_

memcpy), this will be the string "<internal>".

TREE_LINENO

This macro returns the line number at which the entity was declared, as an
int.

DECL_ARTIFICIAL
This predicate holds if the declaration was implicitly generated by the compiler.
For example, this predicate will hold of an implicitly declared member function,
or of the TYPE_DECL implicitly generated for a class type. Recall that in C++
code like:

struct S {};

is roughly equivalent to C code like:

80 GNU Compiler Collection (GCC) Internals

struct S {};
typedef struct S S;

The implicitly generated typedef declaration is represented by a TYPE_DECL

for which DECL_ARTIFICIAL holds.

DECL_NAMESPACE_SCOPE_P

This predicate holds if the entity was declared at a namespace scope.

DECL_CLASS_SCOPE_P

This predicate holds if the entity was declared at a class scope.

DECL_FUNCTION_SCOPE_P

This predicate holds if the entity was declared inside a function body.

The various kinds of declarations include:

LABEL_DECL

These nodes are used to represent labels in function bodies. For more infor-
mation, see Section 9.6 [Functions], page 84. These nodes only appear in block
scopes.

CONST_DECL

These nodes are used to represent enumeration constants. The value of the
constant is given by DECL_INITIAL which will be an INTEGER_CST with the
same type as the TREE_TYPE of the CONST_DECL, i.e., an ENUMERAL_TYPE.

RESULT_DECL

These nodes represent the value returned by a function. When a value is as-
signed to a RESULT_DECL, that indicates that the value should be returned, via
bitwise copy, by the function. You can use DECL_SIZE and DECL_ALIGN on a
RESULT_DECL, just as with a VAR_DECL.

TYPE_DECL

These nodes represent typedef declarations. The TREE_TYPE is the type de-
clared to have the name given by DECL_NAME. In some cases, there is no asso-
ciated name.

VAR_DECL These nodes represent variables with namespace or block scope, as well as static
data members. The DECL_SIZE and DECL_ALIGN are analogous to TYPE_SIZE

and TYPE_ALIGN. For a declaration, you should always use the DECL_SIZE and
DECL_ALIGN rather than the TYPE_SIZE and TYPE_ALIGN given by the TREE_

TYPE, since special attributes may have been applied to the variable to give it a
particular size and alignment. You may use the predicates DECL_THIS_STATIC
or DECL_THIS_EXTERN to test whether the storage class speci�ers static or
extern were used to declare a variable.

If this variable is initialized (but does not require a constructor), the DECL_

INITIAL will be an expression for the initializer. The initializer should be
evaluated, and a bitwise copy into the variable performed. If the DECL_INITIAL
is the error_mark_node, there is an initializer, but it is given by an explicit
statement later in the code; no bitwise copy is required.

GCC provides an extension that allows either automatic variables, or global
variables, to be placed in particular registers. This extension is being used for

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 81

a particular VAR_DECL if DECL_REGISTER holds for the VAR_DECL, and if DECL_
ASSEMBLER_NAME is not equal to DECL_NAME. In that case, DECL_ASSEMBLER_
NAME is the name of the register into which the variable will be placed.

PARM_DECL

Used to represent a parameter to a function. Treat these nodes similarly to VAR_
DECL nodes. These nodes only appear in the DECL_ARGUMENTS for a FUNCTION_

DECL.

The DECL_ARG_TYPE for a PARM_DECL is the type that will actually be used when
a value is passed to this function. It may be a wider type than the TREE_TYPE
of the parameter; for example, the ordinary type might be short while the
DECL_ARG_TYPE is int.

FIELD_DECL

These nodes represent non-static data members. The DECL_SIZE and DECL_

ALIGN behave as for VAR_DECL nodes. The position of the �eld within the
parent record is speci�ed by a combination of three attributes. DECL_FIELD_

OFFSET is the position, counting in bytes, of the DECL_OFFSET_ALIGN-bit sized
word containing the bit of the �eld closest to the beginning of the structure.
DECL_FIELD_BIT_OFFSET is the bit o�set of the �rst bit of the �eld within this
word; this may be nonzero even for �elds that are not bit-�elds, since DECL_

OFFSET_ALIGN may be greater than the natural alignment of the �eld's type.

If DECL_C_BIT_FIELD holds, this �eld is a bit-�eld. In a bit-�eld, DECL_BIT_
FIELD_TYPE also contains the type that was originally speci�ed for it, while
DECL TYPE may be a modi�ed type with lesser precision, according to the
size of the bit �eld.

NAMESPACE_DECL

See Section 9.4.1 [Namespaces], page 76.

TEMPLATE_DECL

These nodes are used to represent class, function, and variable (static data
member) templates. The DECL_TEMPLATE_SPECIALIZATIONS are a TREE_LIST.
The TREE_VALUE of each node in the list is a TEMPLATE_DECLs or FUNCTION_

DECLs representing specializations (including instantiations) of this template.
Back ends can safely ignore TEMPLATE_DECLs, but should examine FUNCTION_

DECL nodes on the specializations list just as they would ordinary FUNCTION_

DECL nodes.

For a class template, the DECL_TEMPLATE_INSTANTIATIONS list contains the
instantiations. The TREE_VALUE of each node is an instantiation of the class.
The DECL_TEMPLATE_SPECIALIZATIONS contains partial specializations of the
class.

USING_DECL

Back ends can safely ignore these nodes.

9.5.2 Internal structure

DECL nodes are represented internally as a hierarchy of structures.

82 GNU Compiler Collection (GCC) Internals

9.5.2.1 Current structure hierarchy

struct tree_decl_minimal

This is the minimal structure to inherit from in order for common DECL macros
to work. The �elds it contains are a unique ID, source location, context, and
name.

struct tree_decl_common

This structure inherits from struct tree_decl_minimal. It contains �elds
that most DECL nodes need, such as a �eld to store alignment, machine mode,
size, and attributes.

struct tree_field_decl

This structure inherits from struct tree_decl_common. It is used to represent
FIELD_DECL.

struct tree_label_decl

This structure inherits from struct tree_decl_common. It is used to represent
LABEL_DECL.

struct tree_translation_unit_decl

This structure inherits from struct tree_decl_common. It is used to represent
TRANSLATION_UNIT_DECL.

struct tree_decl_with_rtl

This structure inherits from struct tree_decl_common. It contains a �eld to
store the low-level RTL associated with a DECL node.

struct tree_result_decl

This structure inherits from struct tree_decl_with_rtl. It is used to repre-
sent RESULT_DECL.

struct tree_const_decl

This structure inherits from struct tree_decl_with_rtl. It is used to repre-
sent CONST_DECL.

struct tree_parm_decl

This structure inherits from struct tree_decl_with_rtl. It is used to repre-
sent PARM_DECL.

struct tree_decl_with_vis

This structure inherits from struct tree_decl_with_rtl. It contains �elds
necessary to store visibility information, as well as a section name and assembler
name.

struct tree_var_decl

This structure inherits from struct tree_decl_with_vis. It is used to repre-
sent VAR_DECL.

struct tree_function_decl

This structure inherits from struct tree_decl_with_vis. It is used to repre-
sent FUNCTION_DECL.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 83

9.5.2.2 Adding new DECL node types

Adding a new DECL tree consists of the following steps

Add a new tree code for the DECL node
For language speci�c DECL nodes, there is a `.def' �le in each frontend directory
where the tree code should be added. For DECL nodes that are part of the
middle-end, the code should be added to `tree.def'.

Create a new structure type for the DECL node
These structures should inherit from one of the existing structures in the lan-
guage hierarchy by using that structure as the �rst member.

struct tree_foo_decl
{

struct tree_decl_with_vis common;
}

Would create a structure name tree_foo_decl that inherits from struct tree_

decl_with_vis.

For language speci�c DECL nodes, this new structure type should go in the
appropriate `.h' �le. For DECL nodes that are part of the middle-end, the
structure type should go in `tree.h'.

Add a member to the tree structure enumerator for the node
For garbage collection and dynamic checking purposes, each DECL node struc-
ture type is required to have a unique enumerator value speci�ed with it. For
language speci�c DECL nodes, this new enumerator value should go in the ap-
propriate `.def' �le. For DECL nodes that are part of the middle-end, the
enumerator values are speci�ed in `treestruct.def'.

Update union tree_node
In order to make your new structure type usable, it must be added to union
tree_node. For language speci�c DECL nodes, a new entry should be added to
the appropriate `.h' �le of the form

struct tree_foo_decl GTY ((tag ("TS_VAR_DECL"))) foo_decl;

For DECL nodes that are part of the middle-end, the additional member goes
directly into union tree_node in `tree.h'.

Update dynamic checking info
In order to be able to check whether accessing a named portion of union tree_

node is legal, and whether a certain DECL node contains one of the enumerated
DECL node structures in the hierarchy, a simple lookup table is used. This
lookup table needs to be kept up to date with the tree structure hierarchy, or
else checking and containment macros will fail inappropriately.
For language speci�c DECL nodes, their is an init_ts function in an appropri-
ate `.c' �le, which initializes the lookup table. Code setting up the table for
new DECL nodes should be added there. For each DECL tree code and enumera-
tor value representing a member of the inheritance hierarchy, the table should
contain 1 if that tree code inherits (directly or indirectly) from that member.
Thus, a FOO_DECL node derived from struct decl_with_rtl, and enumerator
value TS_FOO_DECL, would be set up as follows

tree_contains_struct[FOO_DECL][TS_FOO_DECL] = 1;
tree_contains_struct[FOO_DECL][TS_DECL_WRTL] = 1;

84 GNU Compiler Collection (GCC) Internals

tree_contains_struct[FOO_DECL][TS_DECL_COMMON] = 1;
tree_contains_struct[FOO_DECL][TS_DECL_MINIMAL] = 1;

For DECL nodes that are part of the middle-end, the setup code goes into
`tree.c'.

Add macros to access any new �elds and
ags
Each added �eld or
ag should have a macro that is used to access it, that
performs appropriate checking to ensure only the right type of DECL nodes
access the �eld.

These macros generally take the following form

#define FOO_DECL_FIELDNAME(NODE) FOO_DECL_CHECK(NODE)->foo_decl.fieldname

However, if the structure is simply a base class for further structures, something
like the following should be used

#define BASE_STRUCT_CHECK(T) CONTAINS_STRUCT_CHECK(T, TS_BASE_STRUCT)
#define BASE_STRUCT_FIELDNAME(NODE) \

(BASE_STRUCT_CHECK(NODE)->base_struct.fieldname

9.6 Functions

A function is represented by a FUNCTION_DECL node. A set of overloaded functions is
sometimes represented by a OVERLOAD node.

An OVERLOAD node is not a declaration, so none of the `DECL_' macros should be used on
an OVERLOAD. An OVERLOAD node is similar to a TREE_LIST. Use OVL_CURRENT to get the
function associated with an OVERLOAD node; use OVL_NEXT to get the next OVERLOAD node
in the list of overloaded functions. The macros OVL_CURRENT and OVL_NEXT are actually
polymorphic; you can use them to work with FUNCTION_DECL nodes as well as with overloads.
In the case of a FUNCTION_DECL, OVL_CURRENT will always return the function itself, and
OVL_NEXT will always be NULL_TREE.

To determine the scope of a function, you can use the DECL_CONTEXT macro. This macro
will return the class (either a RECORD_TYPE or a UNION_TYPE) or namespace (a NAMESPACE_

DECL) of which the function is a member. For a virtual function, this macro returns the
class in which the function was actually de�ned, not the base class in which the virtual
declaration occurred.

If a friend function is de�ned in a class scope, the DECL_FRIEND_CONTEXT macro can be
used to determine the class in which it was de�ned. For example, in

class C { friend void f() {} };

the DECL_CONTEXT for f will be the global_namespace, but the DECL_FRIEND_CONTEXT will
be the RECORD_TYPE for C.

In C, the DECL_CONTEXT for a function maybe another function. This representation
indicates that the GNU nested function extension is in use. For details on the semantics of
nested functions, see the GCC Manual. The nested function can refer to local variables in
its containing function. Such references are not explicitly marked in the tree structure; back
ends must look at the DECL_CONTEXT for the referenced VAR_DECL. If the DECL_CONTEXT

for the referenced VAR_DECL is not the same as the function currently being processed, and
neither DECL_EXTERNAL nor DECL_STATIC hold, then the reference is to a local variable in a
containing function, and the back end must take appropriate action.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 85

9.6.1 Function Basics

The following macros and functions can be used on a FUNCTION_DECL:

DECL_MAIN_P

This predicate holds for a function that is the program entry point ::code.

DECL_NAME

This macro returns the unquali�ed name of the function, as an IDENTIFIER_

NODE. For an instantiation of a function template, the DECL_NAME is the unqual-
i�ed name of the template, not something like f<int>. The value of DECL_NAME
is unde�ned when used on a constructor, destructor, overloaded operator, or
type-conversion operator, or any function that is implicitly generated by the
compiler. See below for macros that can be used to distinguish these cases.

DECL_ASSEMBLER_NAME

This macro returns the mangled name of the function, also an IDENTIFIER_

NODE. This name does not contain leading underscores on systems that pre�x
all identi�ers with underscores. The mangled name is computed in the same
way on all platforms; if special processing is required to deal with the object
�le format used on a particular platform, it is the responsibility of the back end
to perform those modi�cations. (Of course, the back end should not modify
DECL_ASSEMBLER_NAME itself.)

Using DECL_ASSEMBLER_NAME will cause additional memory to be allocated (for
the mangled name of the entity) so it should be used only when emitting assem-
bly code. It should not be used within the optimizers to determine whether or
not two declarations are the same, even though some of the existing optimizers
do use it in that way. These uses will be removed over time.

DECL_EXTERNAL

This predicate holds if the function is unde�ned.

TREE_PUBLIC

This predicate holds if the function has external linkage.

DECL_LOCAL_FUNCTION_P

This predicate holds if the function was declared at block scope, even though
it has a global scope.

DECL_ANTICIPATED

This predicate holds if the function is a built-in function but its prototype is
not yet explicitly declared.

DECL_EXTERN_C_FUNCTION_P

This predicate holds if the function is declared as an `extern "C"' function.

DECL_LINKONCE_P

This macro holds if multiple copies of this function may be emitted in various
translation units. It is the responsibility of the linker to merge the various
copies. Template instantiations are the most common example of functions
for which DECL_LINKONCE_P holds; G++ instantiates needed templates in all
translation units which require them, and then relies on the linker to remove
duplicate instantiations.

86 GNU Compiler Collection (GCC) Internals

FIXME: This macro is not yet implemented.

DECL_FUNCTION_MEMBER_P

This macro holds if the function is a member of a class, rather than a member
of a namespace.

DECL_STATIC_FUNCTION_P

This predicate holds if the function a static member function.

DECL_NONSTATIC_MEMBER_FUNCTION_P

This macro holds for a non-static member function.

DECL_CONST_MEMFUNC_P

This predicate holds for a const-member function.

DECL_VOLATILE_MEMFUNC_P

This predicate holds for a volatile-member function.

DECL_CONSTRUCTOR_P

This macro holds if the function is a constructor.

DECL_NONCONVERTING_P

This predicate holds if the constructor is a non-converting constructor.

DECL_COMPLETE_CONSTRUCTOR_P

This predicate holds for a function which is a constructor for an object of a
complete type.

DECL_BASE_CONSTRUCTOR_P

This predicate holds for a function which is a constructor for a base class sub-
object.

DECL_COPY_CONSTRUCTOR_P

This predicate holds for a function which is a copy-constructor.

DECL_DESTRUCTOR_P

This macro holds if the function is a destructor.

DECL_COMPLETE_DESTRUCTOR_P

This predicate holds if the function is the destructor for an object a complete
type.

DECL_OVERLOADED_OPERATOR_P

This macro holds if the function is an overloaded operator.

DECL_CONV_FN_P

This macro holds if the function is a type-conversion operator.

DECL_GLOBAL_CTOR_P

This predicate holds if the function is a �le-scope initialization function.

DECL_GLOBAL_DTOR_P

This predicate holds if the function is a �le-scope �nalization function.

DECL_THUNK_P

This predicate holds if the function is a thunk.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 87

These functions represent stub code that adjusts the this pointer and then
jumps to another function. When the jumped-to function returns, control is
transferred directly to the caller, without returning to the thunk. The �rst
parameter to the thunk is always the this pointer; the thunk should add THUNK_
DELTA to this value. (The THUNK_DELTA is an int, not an INTEGER_CST.)

Then, if THUNK_VCALL_OFFSET (an INTEGER_CST) is nonzero the adjusted this

pointer must be adjusted again. The complete calculation is given by the fol-
lowing pseudo-code:

this += THUNK_DELTA
if (THUNK_VCALL_OFFSET)
this += (*((ptrdiff_t **) this))[THUNK_VCALL_OFFSET]

Finally, the thunk should jump to the location given by DECL_INITIAL; this
will always be an expression for the address of a function.

DECL_NON_THUNK_FUNCTION_P

This predicate holds if the function is not a thunk function.

GLOBAL_INIT_PRIORITY

If either DECL_GLOBAL_CTOR_P or DECL_GLOBAL_DTOR_P holds, then this gives
the initialization priority for the function. The linker will arrange that all
functions for which DECL_GLOBAL_CTOR_P holds are run in increasing order of
priority before main is called. When the program exits, all functions for which
DECL_GLOBAL_DTOR_P holds are run in the reverse order.

DECL_ARTIFICIAL

This macro holds if the function was implicitly generated by the compiler,
rather than explicitly declared. In addition to implicitly generated class member
functions, this macro holds for the special functions created to implement static
initialization and destruction, to compute run-time type information, and so
forth.

DECL_ARGUMENTS

This macro returns the PARM_DECL for the �rst argument to the function. Sub-
sequent PARM_DECL nodes can be obtained by following the TREE_CHAIN links.

DECL_RESULT

This macro returns the RESULT_DECL for the function.

TREE_TYPE

This macro returns the FUNCTION_TYPE or METHOD_TYPE for the function.

TYPE_RAISES_EXCEPTIONS

This macro returns the list of exceptions that a (member-)function can raise.
The returned list, if non NULL, is comprised of nodes whose TREE_VALUE repre-
sents a type.

TYPE_NOTHROW_P

This predicate holds when the exception-speci�cation of its arguments if of the
form `()'.

DECL_ARRAY_DELETE_OPERATOR_P

This predicate holds if the function an overloaded operator delete[].

88 GNU Compiler Collection (GCC) Internals

9.6.2 Function Bodies

A function that has a de�nition in the current translation unit will have a non-NULL DECL_

INITIAL. However, back ends should not make use of the particular value given by DECL_

INITIAL.

The DECL_SAVED_TREE macro will give the complete body of the function.

9.6.2.1 Statements

There are tree nodes corresponding to all of the source-level statement constructs, used
within the C and C++ frontends. These are enumerated here, together with a list of the
various macros that can be used to obtain information about them. There are a few macros
that can be used with all statements:

STMT_IS_FULL_EXPR_P

In C++, statements normally constitute \full expressions"; temporaries created
during a statement are destroyed when the statement is complete. However,
G++ sometimes represents expressions by statements; these statements will not
have STMT_IS_FULL_EXPR_P set. Temporaries created during such statements
should be destroyed when the innermost enclosing statement with STMT_IS_

FULL_EXPR_P set is exited.

Here is the list of the various statement nodes, and the macros used to access them.
This documentation describes the use of these nodes in non-template functions (including
instantiations of template functions). In template functions, the same nodes are used, but
sometimes in slightly di�erent ways.

Many of the statements have substatements. For example, a while loop will have a body,
which is itself a statement. If the substatement is NULL_TREE, it is considered equivalent to
a statement consisting of a single ;, i.e., an expression statement in which the expression has
been omitted. A substatement may in fact be a list of statements, connected via their TREE_
CHAINs. So, you should always process the statement tree by looping over substatements,
like this:

void process_stmt (stmt)
tree stmt;

{
while (stmt)
{
switch (TREE_CODE (stmt))
{
case IF_STMT:
process_stmt (THEN_CLAUSE (stmt));
/* More processing here. */
break;

...
}

stmt = TREE_CHAIN (stmt);
}

}

In other words, while the then clause of an if statement in C++ can be only one statement
(although that one statement may be a compound statement), the intermediate represen-
tation will sometimes use several statements chained together.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 89

ASM_EXPR

Used to represent an inline assembly statement. For an inline assembly state-
ment like:

asm ("mov x, y");

The ASM_STRING macro will return a STRING_CST node for "mov x, y". If
the original statement made use of the extended-assembly syntax, then ASM_
OUTPUTS, ASM_INPUTS, and ASM_CLOBBERS will be the outputs, inputs, and
clobbers for the statement, represented as STRING_CST nodes. The extended-
assembly syntax looks like:

asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

The �rst string is the ASM_STRING, containing the instruction template. The
next two strings are the output and inputs, respectively; this statement has no
clobbers. As this example indicates, \plain" assembly statements are merely
a special case of extended assembly statements; they have no cv-quali�ers,
outputs, inputs, or clobbers. All of the strings will be NUL-terminated, and will
contain no embedded NUL-characters.

If the assembly statement is declared volatile, or if the statement was not
an extended assembly statement, and is therefore implicitly volatile, then the
predicate ASM_VOLATILE_P will hold of the ASM_EXPR.

BREAK_STMT

Used to represent a break statement. There are no additional �elds.

CASE_LABEL_EXPR

Use to represent a case label, range of case labels, or a default label. If
CASE_LOW is NULL_TREE, then this is a default label. Otherwise, if CASE_HIGH
is NULL_TREE, then this is an ordinary case label. In this case, CASE_LOW is
an expression giving the value of the label. Both CASE_LOW and CASE_HIGH

are INTEGER_CST nodes. These values will have the same type as the condition
expression in the switch statement.

Otherwise, if both CASE_LOW and CASE_HIGH are de�ned, the statement is a
range of case labels. Such statements originate with the extension that allows
users to write things of the form:

case 2 ... 5:

The �rst value will be CASE_LOW, while the second will be CASE_HIGH.

CLEANUP_STMT

Used to represent an action that should take place upon exit from the enclos-
ing scope. Typically, these actions are calls to destructors for local objects,
but back ends cannot rely on this fact. If these nodes are in fact representing
such destructors, CLEANUP_DECL will be the VAR_DECL destroyed. Otherwise,
CLEANUP_DECL will be NULL_TREE. In any case, the CLEANUP_EXPR is the ex-
pression to execute. The cleanups executed on exit from a scope should be run
in the reverse order of the order in which the associated CLEANUP_STMTs were
encountered.

CONTINUE_STMT

Used to represent a continue statement. There are no additional �elds.

90 GNU Compiler Collection (GCC) Internals

CTOR_STMT

Used to mark the beginning (if CTOR_BEGIN_P holds) or end (if CTOR_END_P
holds of the main body of a constructor. See also SUBOBJECT for more informa-
tion on how to use these nodes.

DECL_STMT

Used to represent a local declaration. The DECL_STMT_DECL macro can be
used to obtain the entity declared. This declaration may be a LABEL_DECL,
indicating that the label declared is a local label. (As an extension, GCC
allows the declaration of labels with scope.) In C, this declaration may be a
FUNCTION_DECL, indicating the use of the GCC nested function extension. For
more information, see Section 9.6 [Functions], page 84.

DO_STMT

Used to represent a do loop. The body of the loop is given by DO_BODY while
the termination condition for the loop is given by DO_COND. The condition for
a do-statement is always an expression.

EMPTY_CLASS_EXPR

Used to represent a temporary object of a class with no data whose address is
never taken. (All such objects are interchangeable.) The TREE_TYPE represents
the type of the object.

EXPR_STMT

Used to represent an expression statement. Use EXPR_STMT_EXPR to obtain the
expression.

FOR_STMT

Used to represent a for statement. The FOR_INIT_STMT is the initialization
statement for the loop. The FOR_COND is the termination condition. The FOR_
EXPR is the expression executed right before the FOR_COND on each loop iteration;
often, this expression increments a counter. The body of the loop is given by
FOR_BODY. Note that FOR_INIT_STMT and FOR_BODY return statements, while
FOR_COND and FOR_EXPR return expressions.

GOTO_EXPR

Used to represent a goto statement. The GOTO_DESTINATION will usually be
a LABEL_DECL. However, if the \computed goto" extension has been used, the
GOTO_DESTINATION will be an arbitrary expression indicating the destination.
This expression will always have pointer type.

HANDLER

Used to represent a C++ catch block. The HANDLER_TYPE is the type of ex-
ception that will be caught by this handler; it is equal (by pointer equality) to
NULL if this handler is for all types. HANDLER_PARMS is the DECL_STMT for the
catch parameter, and HANDLER_BODY is the code for the block itself.

IF_STMT

Used to represent an if statement. The IF_COND is the expression.

If the condition is a TREE_LIST, then the TREE_PURPOSE is a statement (usually
a DECL_STMT). Each time the condition is evaluated, the statement should be

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 91

executed. Then, the TREE_VALUE should be used as the conditional expression
itself. This representation is used to handle C++ code like this:

if (int i = 7) ...

where there is a new local variable (or variables) declared within the condition.

The THEN_CLAUSE represents the statement given by the then condition, while
the ELSE_CLAUSE represents the statement given by the else condition.

LABEL_EXPR

Used to represent a label. The LABEL_DECL declared by this statement can be
obtained with the LABEL_EXPR_LABEL macro. The IDENTIFIER_NODE giving the
name of the label can be obtained from the LABEL_DECL with DECL_NAME.

RETURN_STMT
Used to represent a return statement. The RETURN_EXPR is the expression
returned; it will be NULL_TREE if the statement was just

return;

SUBOBJECT

In a constructor, these nodes are used to mark the point at which a subobject
of this is fully constructed. If, after this point, an exception is thrown before a
CTOR_STMT with CTOR_END_P set is encountered, the SUBOBJECT_CLEANUP must
be executed. The cleanups must be executed in the reverse order in which they
appear.

SWITCH_STMT

Used to represent a switch statement. The SWITCH_STMT_COND is the expres-
sion on which the switch is occurring. See the documentation for an IF_STMT

for more information on the representation used for the condition. The SWITCH_
STMT_BODY is the body of the switch statement. The SWITCH_STMT_TYPE is the
original type of switch expression as given in the source, before any compiler
conversions.

TRY_BLOCK

Used to represent a try block. The body of the try block is given by TRY_

STMTS. Each of the catch blocks is a HANDLER node. The �rst handler is given
by TRY_HANDLERS. Subsequent handlers are obtained by following the TREE_

CHAIN link from one handler to the next. The body of the handler is given by
HANDLER_BODY.

If CLEANUP_P holds of the TRY_BLOCK, then the TRY_HANDLERS will not be a
HANDLER node. Instead, it will be an expression that should be executed if
an exception is thrown in the try block. It must rethrow the exception after
executing that code. And, if an exception is thrown while the expression is
executing, terminate must be called.

USING_STMT

Used to represent a using directive. The namespace is given by USING_STMT_

NAMESPACE, which will be a NAMESPACE DECL. This node is needed inside
template functions, to implement using directives during instantiation.

92 GNU Compiler Collection (GCC) Internals

WHILE_STMT

Used to represent a while loop. The WHILE_COND is the termination condition
for the loop. See the documentation for an IF_STMT for more information on
the representation used for the condition.

The WHILE_BODY is the body of the loop.

9.7 Attributes in trees

Attributes, as speci�ed using the __attribute__ keyword, are represented internally as a
TREE_LIST. The TREE_PURPOSE is the name of the attribute, as an IDENTIFIER_NODE. The
TREE_VALUE is a TREE_LIST of the arguments of the attribute, if any, or NULL_TREE if there
are no arguments; the arguments are stored as the TREE_VALUE of successive entries in the
list, and may be identi�ers or expressions. The TREE_CHAIN of the attribute is the next
attribute in a list of attributes applying to the same declaration or type, or NULL_TREE if
there are no further attributes in the list.

Attributes may be attached to declarations and to types; these attributes may be accessed
with the following macros. All attributes are stored in this way, and many also cause other
changes to the declaration or type or to other internal compiler data structures.

[Tree Macro]tree DECL_ATTRIBUTES (tree decl)
This macro returns the attributes on the declaration decl.

[Tree Macro]tree TYPE_ATTRIBUTES (tree type)
This macro returns the attributes on the type type.

9.8 Expressions

The internal representation for expressions is for the most part quite straightforward. How-
ever, there are a few facts that one must bear in mind. In particular, the expression \tree"
is actually a directed acyclic graph. (For example there may be many references to the
integer constant zero throughout the source program; many of these will be represented by
the same expression node.) You should not rely on certain kinds of node being shared, nor
should rely on certain kinds of nodes being unshared.

The following macros can be used with all expression nodes:

TREE_TYPE

Returns the type of the expression. This value may not be precisely the same
type that would be given the expression in the original program.

In what follows, some nodes that one might expect to always have type bool are docu-
mented to have either integral or boolean type. At some point in the future, the C front
end may also make use of this same intermediate representation, and at this point these
nodes will certainly have integral type. The previous sentence is not meant to imply that
the C++ front end does not or will not give these nodes integral type.

Below, we list the various kinds of expression nodes. Except where noted otherwise, the
operands to an expression are accessed using the TREE_OPERAND macro. For example, to
access the �rst operand to a binary plus expression expr, use:

TREE_OPERAND (expr, 0)

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 93

As this example indicates, the operands are zero-indexed.

All the expressions starting with OMP_ represent directives and clauses used by the
OpenMP API http://www.openmp.org/.

The table below begins with constants, moves on to unary expressions, then proceeds to
binary expressions, and concludes with various other kinds of expressions:

INTEGER_CST
These nodes represent integer constants. Note that the type of these constants
is obtained with TREE_TYPE; they are not always of type int. In particular,
char constants are represented with INTEGER_CST nodes. The value of the
integer constant e is given by

((TREE_INT_CST_HIGH (e) << HOST_BITS_PER_WIDE_INT)
+ TREE_INST_CST_LOW (e))

HOST BITS PER WIDE INT is at least thirty-two on all platforms. Both
TREE_INT_CST_HIGH and TREE_INT_CST_LOW return a HOST_WIDE_INT. The
value of an INTEGER_CST is interpreted as a signed or unsigned quantity de-
pending on the type of the constant. In general, the expression given above will
over
ow, so it should not be used to calculate the value of the constant.

The variable integer_zero_node is an integer constant with value zero. Sim-
ilarly, integer_one_node is an integer constant with value one. The size_

zero_node and size_one_node variables are analogous, but have type size_t
rather than int.

The function tree_int_cst_lt is a predicate which holds if its �rst argument
is less than its second. Both constants are assumed to have the same signed-
ness (i.e., either both should be signed or both should be unsigned.) The full
width of the constant is used when doing the comparison; the usual rules about
promotions and conversions are ignored. Similarly, tree_int_cst_equal holds
if the two constants are equal. The tree_int_cst_sgn function returns the
sign of a constant. The value is 1, 0, or -1 according on whether the constant
is greater than, equal to, or less than zero. Again, the signedness of the con-
stant's type is taken into account; an unsigned constant is never less than zero,
no matter what its bit-pattern.

REAL_CST

FIXME: Talk about how to obtain representations of this constant, do compar-
isons, and so forth.

COMPLEX_CST

These nodes are used to represent complex number constants, that is a __

complex__ whose parts are constant nodes. The TREE_REALPART and TREE_

IMAGPART return the real and the imaginary parts respectively.

VECTOR_CST

These nodes are used to represent vector constants, whose parts are constant
nodes. Each individual constant node is either an integer or a double constant
node. The �rst operand is a TREE_LIST of the constant nodes and is accessed
through TREE_VECTOR_CST_ELTS.

http://www.openmp.org/

94 GNU Compiler Collection (GCC) Internals

STRING_CST

These nodes represent string-constants. The TREE_STRING_LENGTH returns the
length of the string, as an int. The TREE_STRING_POINTER is a char* contain-
ing the string itself. The string may not be NUL-terminated, and it may contain
embedded NUL characters. Therefore, the TREE_STRING_LENGTH includes the
trailing NUL if it is present.

For wide string constants, the TREE_STRING_LENGTH is the number of bytes in
the string, and the TREE_STRING_POINTER points to an array of the bytes of
the string, as represented on the target system (that is, as integers in the target
endianness). Wide and non-wide string constants are distinguished only by the
TREE_TYPE of the STRING_CST.

FIXME: The formats of string constants are not well-de�ned when the target
system bytes are not the same width as host system bytes.

PTRMEM_CST
These nodes are used to represent pointer-to-member constants. The PTRMEM_
CST_CLASS is the class type (either a RECORD_TYPE or UNION_TYPE within which
the pointer points), and the PTRMEM_CST_MEMBER is the declaration for the
pointed to object. Note that the DECL_CONTEXT for the PTRMEM_CST_MEMBER
is in general di�erent from the PTRMEM_CST_CLASS. For example, given:

struct B { int i; };
struct D : public B {};
int D::*dp = &D::i;

The PTRMEM_CST_CLASS for &D::i is D, even though the DECL_CONTEXT for the
PTRMEM_CST_MEMBER is B, since B::i is a member of B, not D.

VAR_DECL

These nodes represent variables, including static data members. For more in-
formation, see Section 9.5 [Declarations], page 79.

NEGATE_EXPR

These nodes represent unary negation of the single operand, for both integer
and
oating-point types. The type of negation can be determined by looking
at the type of the expression.

The behavior of this operation on signed arithmetic over
ow is controlled by
the flag_wrapv and flag_trapv variables.

ABS_EXPR These nodes represent the absolute value of the single operand, for both integer
and
oating-point types. This is typically used to implement the abs, labs and
llabs builtins for integer types, and the fabs, fabsf and fabsl builtins for

oating point types. The type of abs operation can be determined by looking
at the type of the expression.

This node is not used for complex types. To represent the modulus or complex
abs of a complex value, use the BUILT_IN_CABS, BUILT_IN_CABSF or BUILT_IN_
CABSL builtins, as used to implement the C99 cabs, cabsf and cabsl built-in
functions.

BIT_NOT_EXPR

These nodes represent bitwise complement, and will always have integral type.
The only operand is the value to be complemented.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 95

TRUTH_NOT_EXPR

These nodes represent logical negation, and will always have integral (or
boolean) type. The operand is the value being negated. The type of the
operand and that of the result are always of BOOLEAN_TYPE or INTEGER_TYPE.

PREDECREMENT_EXPR

PREINCREMENT_EXPR

POSTDECREMENT_EXPR

POSTINCREMENT_EXPR

These nodes represent increment and decrement expressions. The value of the
single operand is computed, and the operand incremented or decremented. In
the case of PREDECREMENT_EXPR and PREINCREMENT_EXPR, the value of the ex-
pression is the value resulting after the increment or decrement; in the case of
POSTDECREMENT_EXPR and POSTINCREMENT_EXPR is the value before the incre-
ment or decrement occurs. The type of the operand, like that of the result, will
be either integral, boolean, or
oating-point.

ADDR_EXPR

These nodes are used to represent the address of an object. (These expres-
sions will always have pointer or reference type.) The operand may be another
expression, or it may be a declaration.

As an extension, GCC allows users to take the address of a label. In this case,
the operand of the ADDR_EXPR will be a LABEL_DECL. The type of such an
expression is void*.

If the object addressed is not an lvalue, a temporary is created, and the address
of the temporary is used.

INDIRECT_REF

These nodes are used to represent the object pointed to by a pointer. The
operand is the pointer being dereferenced; it will always have pointer or refer-
ence type.

FIX_TRUNC_EXPR

These nodes represent conversion of a
oating-point value to an integer. The
single operand will have a
oating-point type, while the complete expression
will have an integral (or boolean) type. The operand is rounded towards zero.

FLOAT_EXPR

These nodes represent conversion of an integral (or boolean) value to a
oating-
point value. The single operand will have integral type, while the complete
expression will have a
oating-point type.

FIXME: How is the operand supposed to be rounded? Is this dependent on
`-mieee'?

COMPLEX_EXPR

These nodes are used to represent complex numbers constructed from two ex-
pressions of the same (integer or real) type. The �rst operand is the real part
and the second operand is the imaginary part.

CONJ_EXPR

These nodes represent the conjugate of their operand.

96 GNU Compiler Collection (GCC) Internals

REALPART_EXPR

IMAGPART_EXPR

These nodes represent respectively the real and the imaginary parts of complex
numbers (their sole argument).

NON_LVALUE_EXPR

These nodes indicate that their one and only operand is not an lvalue. A back
end can treat these identically to the single operand.

NOP_EXPR These nodes are used to represent conversions that do not require any code-
generation. For example, conversion of a char* to an int* does not require any
code be generated; such a conversion is represented by a NOP_EXPR. The single
operand is the expression to be converted. The conversion from a pointer to a
reference is also represented with a NOP_EXPR.

CONVERT_EXPR

These nodes are similar to NOP_EXPRs, but are used in those situations where
code may need to be generated. For example, if an int* is converted to an
int code may need to be generated on some platforms. These nodes are never
used for C++-speci�c conversions, like conversions between pointers to di�erent
classes in an inheritance hierarchy. Any adjustments that need to be made in
such cases are always indicated explicitly. Similarly, a user-de�ned conversion
is never represented by a CONVERT_EXPR; instead, the function calls are made
explicit.

THROW_EXPR

These nodes represent throw expressions. The single operand is an expression
for the code that should be executed to throw the exception. However, there
is one implicit action not represented in that expression; namely the call to
__throw. This function takes no arguments. If setjmp/longjmp exceptions are
used, the function __sjthrow is called instead. The normal GCC back end uses
the function emit_throw to generate this code; you can examine this function
to see what needs to be done.

LSHIFT_EXPR

RSHIFT_EXPR

These nodes represent left and right shifts, respectively. The �rst operand is
the value to shift; it will always be of integral type. The second operand is
an expression for the number of bits by which to shift. Right shift should be
treated as arithmetic, i.e., the high-order bits should be zero-�lled when the
expression has unsigned type and �lled with the sign bit when the expression
has signed type. Note that the result is unde�ned if the second operand is larger
than or equal to the �rst operand's type size.

BIT_IOR_EXPR

BIT_XOR_EXPR

BIT_AND_EXPR

These nodes represent bitwise inclusive or, bitwise exclusive or, and bitwise
and, respectively. Both operands will always have integral type.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 97

TRUTH_ANDIF_EXPR

TRUTH_ORIF_EXPR

These nodes represent logical and and logical or, respectively. These operators
are not strict; i.e., the second operand is evaluated only if the value of the
expression is not determined by evaluation of the �rst operand. The type of
the operands and that of the result are always of BOOLEAN_TYPE or INTEGER_
TYPE.

TRUTH_AND_EXPR

TRUTH_OR_EXPR

TRUTH_XOR_EXPR

These nodes represent logical and, logical or, and logical exclusive or. They are
strict; both arguments are always evaluated. There are no corresponding oper-
ators in C or C++, but the front end will sometimes generate these expressions
anyhow, if it can tell that strictness does not matter. The type of the operands
and that of the result are always of BOOLEAN_TYPE or INTEGER_TYPE.

PLUS_EXPR

MINUS_EXPR

MULT_EXPR

These nodes represent various binary arithmetic operations. Respectively, these
operations are addition, subtraction (of the second operand from the �rst) and
multiplication. Their operands may have either integral or
oating type, but
there will never be case in which one operand is of
oating type and the other
is of integral type.

The behavior of these operations on signed arithmetic over
ow is controlled by
the flag_wrapv and flag_trapv variables.

RDIV_EXPR

This node represents a
oating point division operation.

TRUNC_DIV_EXPR

FLOOR_DIV_EXPR

CEIL_DIV_EXPR

ROUND_DIV_EXPR

These nodes represent integer division operations that return an integer result.
TRUNC_DIV_EXPR rounds towards zero, FLOOR_DIV_EXPR rounds towards nega-
tive in�nity, CEIL_DIV_EXPR rounds towards positive in�nity and ROUND_DIV_

EXPR rounds to the closest integer. Integer division in C and C++ is truncating,
i.e. TRUNC_DIV_EXPR.

The behavior of these operations on signed arithmetic over
ow, when dividing
the minimum signed integer by minus one, is controlled by the flag_wrapv and
flag_trapv variables.

TRUNC_MOD_EXPR

FLOOR_MOD_EXPR

CEIL_MOD_EXPR

ROUND_MOD_EXPR

These nodes represent the integer remainder or modulus operation. The integer
modulus of two operands a and b is de�ned as a - (a/b)*b where the division

98 GNU Compiler Collection (GCC) Internals

calculated using the corresponding division operator. Hence for TRUNC_MOD_

EXPR this de�nition assumes division using truncation towards zero, i.e. TRUNC_
DIV_EXPR. Integer remainder in C and C++ uses truncating division, i.e. TRUNC_
MOD_EXPR.

EXACT_DIV_EXPR

The EXACT_DIV_EXPR code is used to represent integer divisions where the nu-
merator is known to be an exact multiple of the denominator. This allows the
backend to choose between the faster of TRUNC_DIV_EXPR, CEIL_DIV_EXPR and
FLOOR_DIV_EXPR for the current target.

ARRAY_REF

These nodes represent array accesses. The �rst operand is the array; the second
is the index. To calculate the address of the memory accessed, you must scale
the index by the size of the type of the array elements. The type of these
expressions must be the type of a component of the array. The third and
fourth operands are used after gimpli�cation to represent the lower bound and
component size but should not be used directly; call array_ref_low_bound and
array_ref_element_size instead.

ARRAY_RANGE_REF

These nodes represent access to a range (or \slice") of an array. The operands
are the same as that for ARRAY_REF and have the same meanings. The type of
these expressions must be an array whose component type is the same as that
of the �rst operand. The range of that array type determines the amount of
data these expressions access.

TARGET_MEM_REF

These nodes represent memory accesses whose address directly map to an ad-
dressing mode of the target architecture. The �rst argument is TMR_SYMBOL and
must be a VAR_DECL of an object with a �xed address. The second argument is
TMR_BASE and the third one is TMR_INDEX. The fourth argument is TMR_STEP
and must be an INTEGER_CST. The �fth argument is TMR_OFFSET and must
be an INTEGER_CST. Any of the arguments may be NULL if the appropriate
component does not appear in the address. Address of the TARGET_MEM_REF is
determined in the following way.

&TMR_SYMBOL + TMR_BASE + TMR_INDEX * TMR_STEP + TMR_OFFSET

The sixth argument is the reference to the original memory access, which is
preserved for the purposes of the RTL alias analysis. The seventh argument is
a tag representing the results of tree level alias analysis.

LT_EXPR

LE_EXPR

GT_EXPR

GE_EXPR

EQ_EXPR

NE_EXPR These nodes represent the less than, less than or equal to, greater than, greater
than or equal to, equal, and not equal comparison operators. The �rst and
second operand with either be both of integral type or both of
oating type.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 99

The result type of these expressions will always be of integral or boolean type.
These operations return the result type's zero value for false, and the result
type's one value for true.

For
oating point comparisons, if we honor IEEE NaNs and either operand is
NaN, then NE_EXPR always returns true and the remaining operators always
return false. On some targets, comparisons against an IEEE NaN, other than
equality and inequality, may generate a
oating point exception.

ORDERED_EXPR

UNORDERED_EXPR

These nodes represent non-trapping ordered and unordered comparison opera-
tors. These operations take two
oating point operands and determine whether
they are ordered or unordered relative to each other. If either operand is an
IEEE NaN, their comparison is de�ned to be unordered, otherwise the compar-
ison is de�ned to be ordered. The result type of these expressions will always
be of integral or boolean type. These operations return the result type's zero
value for false, and the result type's one value for true.

UNLT_EXPR

UNLE_EXPR

UNGT_EXPR

UNGE_EXPR

UNEQ_EXPR

LTGT_EXPR

These nodes represent the unordered comparison operators. These operations
take two
oating point operands and determine whether the operands are un-
ordered or are less than, less than or equal to, greater than, greater than or
equal to, or equal respectively. For example, UNLT_EXPR returns true if either
operand is an IEEE NaN or the �rst operand is less than the second. With the
possible exception of LTGT_EXPR, all of these operations are guaranteed not to
generate a
oating point exception. The result type of these expressions will
always be of integral or boolean type. These operations return the result type's
zero value for false, and the result type's one value for true.

MODIFY_EXPR

These nodes represent assignment. The left-hand side is the �rst operand; the
right-hand side is the second operand. The left-hand side will be a VAR_DECL,
INDIRECT_REF, COMPONENT_REF, or other lvalue.

These nodes are used to represent not only assignment with `=' but also com-
pound assignments (like `+='), by reduction to `=' assignment. In other words,
the representation for `i += 3' looks just like that for `i = i + 3'.

INIT_EXPR

These nodes are just like MODIFY_EXPR, but are used only when a variable
is initialized, rather than assigned to subsequently. This means that we can
assume that the target of the initialization is not used in computing its own
value; any reference to the lhs in computing the rhs is unde�ned.

100 GNU Compiler Collection (GCC) Internals

COMPONENT_REF

These nodes represent non-static data member accesses. The �rst operand is
the object (rather than a pointer to it); the second operand is the FIELD_DECL
for the data member. The third operand represents the byte o�set of the �eld,
but should not be used directly; call component_ref_field_offset instead.

COMPOUND_EXPR

These nodes represent comma-expressions. The �rst operand is an expression
whose value is computed and thrown away prior to the evaluation of the second
operand. The value of the entire expression is the value of the second operand.

COND_EXPR

These nodes represent ?: expressions. The �rst operand is of boolean or integral
type. If it evaluates to a nonzero value, the second operand should be evaluated,
and returned as the value of the expression. Otherwise, the third operand is
evaluated, and returned as the value of the expression.

The second operand must have the same type as the entire expression, unless
it unconditionally throws an exception or calls a noreturn function, in which
case it should have void type. The same constraints apply to the third operand.
This allows array bounds checks to be represented conveniently as (i >= 0 &&

i < 10) ? i : abort().

As a GNU extension, the C language front-ends allow the second operand of the
?: operator may be omitted in the source. For example, x ? : 3 is equivalent
to x ? x : 3, assuming that x is an expression without side-e�ects. In the
tree representation, however, the second operand is always present, possibly
protected by SAVE_EXPR if the �rst argument does cause side-e�ects.

CALL_EXPR

These nodes are used to represent calls to functions, including non-static mem-
ber functions. The �rst operand is a pointer to the function to call; it is always
an expression whose type is a POINTER_TYPE. The second argument is a TREE_

LIST. The arguments to the call appear left-to-right in the list. The TREE_VALUE
of each list node contains the expression corresponding to that argument. (The
value of TREE_PURPOSE for these nodes is unspeci�ed, and should be ignored.)
For non-static member functions, there will be an operand corresponding to
the this pointer. There will always be expressions corresponding to all of the
arguments, even if the function is declared with default arguments and some
arguments are not explicitly provided at the call sites.

STMT_EXPR
These nodes are used to represent GCC's statement-expression extension. The
statement-expression extension allows code like this:

int f() { return ({ int j; j = 3; j + 7; }); }

In other words, an sequence of statements may occur where a single expression
would normally appear. The STMT_EXPR node represents such an expression.
The STMT_EXPR_STMT gives the statement contained in the expression. The
value of the expression is the value of the last sub-statement in the body. More
precisely, the value is the value computed by the last statement nested inside
BIND_EXPR, TRY_FINALLY_EXPR, or TRY_CATCH_EXPR. For example, in:

({ 3; })

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 101

the value is 3 while in:
({ if (x) { 3; } })

there is no value. If the STMT_EXPR does not yield a value, it's type will be
void.

BIND_EXPR

These nodes represent local blocks. The �rst operand is a list of variables,
connected via their TREE_CHAIN �eld. These will never require cleanups. The
scope of these variables is just the body of the BIND_EXPR. The body of the
BIND_EXPR is the second operand.

LOOP_EXPR

These nodes represent \in�nite" loops. The LOOP_EXPR_BODY represents the
body of the loop. It should be executed forever, unless an EXIT_EXPR is en-
countered.

EXIT_EXPR

These nodes represent conditional exits from the nearest enclosing LOOP_EXPR.
The single operand is the condition; if it is nonzero, then the loop should be
exited. An EXIT_EXPR will only appear within a LOOP_EXPR.

CLEANUP_POINT_EXPR

These nodes represent full-expressions. The single operand is an expression
to evaluate. Any destructor calls engendered by the creation of temporaries
during the evaluation of that expression should be performed immediately after
the expression is evaluated.

CONSTRUCTOR

These nodes represent the brace-enclosed initializers for a structure or array.
The �rst operand is reserved for use by the back end. The second operand
is a TREE_LIST. If the TREE_TYPE of the CONSTRUCTOR is a RECORD_TYPE or
UNION_TYPE, then the TREE_PURPOSE of each node in the TREE_LIST will be a
FIELD_DECL and the TREE_VALUE of each node will be the expression used to
initialize that �eld.

If the TREE_TYPE of the CONSTRUCTOR is an ARRAY_TYPE, then the TREE_PURPOSE
of each element in the TREE_LIST will be an INTEGER_CST or a RANGE_EXPR

of two INTEGER_CSTs. A single INTEGER_CST indicates which element of the
array (indexed from zero) is being assigned to. A RANGE_EXPR indicates an
inclusive range of elements to initialize. In both cases the TREE_VALUE is the
corresponding initializer. It is re-evaluated for each element of a RANGE_EXPR.
If the TREE_PURPOSE is NULL_TREE, then the initializer is for the next available
array element.

In the front end, you should not depend on the �elds appearing in any particular
order. However, in the middle end, �elds must appear in declaration order. You
should not assume that all �elds will be represented. Unrepresented �elds will
be set to zero.

COMPOUND_LITERAL_EXPR

These nodes represent ISO C99 compound literals. The COMPOUND_LITERAL_

EXPR_DECL_STMT is a DECL_STMT containing an anonymous VAR_DECL for the

102 GNU Compiler Collection (GCC) Internals

unnamed object represented by the compound literal; the DECL_INITIAL of that
VAR_DECL is a CONSTRUCTOR representing the brace-enclosed list of initializers in
the compound literal. That anonymous VAR_DECL can also be accessed directly
by the COMPOUND_LITERAL_EXPR_DECL macro.

SAVE_EXPR

A SAVE_EXPR represents an expression (possibly involving side-e�ects) that is
used more than once. The side-e�ects should occur only the �rst time the
expression is evaluated. Subsequent uses should just reuse the computed value.
The �rst operand to the SAVE_EXPR is the expression to evaluate. The side-
e�ects should be executed where the SAVE_EXPR is �rst encountered in a depth-
�rst preorder traversal of the expression tree.

TARGET_EXPR

A TARGET_EXPR represents a temporary object. The �rst operand is a VAR_

DECL for the temporary variable. The second operand is the initializer for the
temporary. The initializer is evaluated and, if non-void, copied (bitwise) into
the temporary. If the initializer is void, that means that it will perform the
initialization itself.

Often, a TARGET_EXPR occurs on the right-hand side of an assignment, or as
the second operand to a comma-expression which is itself the right-hand side
of an assignment, etc. In this case, we say that the TARGET_EXPR is \normal";
otherwise, we say it is \orphaned". For a normal TARGET_EXPR the temporary
variable should be treated as an alias for the left-hand side of the assignment,
rather than as a new temporary variable.

The third operand to the TARGET_EXPR, if present, is a cleanup-expression (i.e.,
destructor call) for the temporary. If this expression is orphaned, then this
expression must be executed when the statement containing this expression is
complete. These cleanups must always be executed in the order opposite to
that in which they were encountered. Note that if a temporary is created on
one branch of a conditional operator (i.e., in the second or third operand to a
COND_EXPR), the cleanup must be run only if that branch is actually executed.

See STMT_IS_FULL_EXPR_P for more information about running these cleanups.

AGGR_INIT_EXPR

An AGGR_INIT_EXPR represents the initialization as the return value of a func-
tion call, or as the result of a constructor. An AGGR_INIT_EXPR will only ap-
pear as a full-expression, or as the second operand of a TARGET_EXPR. The �rst
operand to the AGGR_INIT_EXPR is the address of a function to call, just as in
a CALL_EXPR. The second operand are the arguments to pass that function, as
a TREE_LIST, again in a manner similar to that of a CALL_EXPR.

If AGGR_INIT_VIA_CTOR_P holds of the AGGR_INIT_EXPR, then the initialization
is via a constructor call. The address of the third operand of the AGGR_INIT_

EXPR, which is always a VAR_DECL, is taken, and this value replaces the �rst
argument in the argument list.

In either case, the expression is void.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 103

VA_ARG_EXPR

This node is used to implement support for the C/C++ variable argument-
list mechanism. It represents expressions like va_arg (ap, type). Its TREE_

TYPE yields the tree representation for type and its sole argument yields the
representation for ap.

OMP_PARALLEL

Represents #pragma omp parallel [clause1 ... clauseN]. It has four
operands:

Operand OMP_PARALLEL_BODY is valid while in GENERIC and High GIMPLE
forms. It contains the body of code to be executed by all the threads. During
GIMPLE lowering, this operand becomes NULL and the body is emitted linearly
after OMP_PARALLEL.

Operand OMP_PARALLEL_CLAUSES is the list of clauses associated with the di-
rective.

Operand OMP_PARALLEL_FN is created by pass_lower_omp, it contains the
FUNCTION_DECL for the function that will contain the body of the parallel
region.

Operand OMP_PARALLEL_DATA_ARG is also created by pass_lower_omp. If there
are shared variables to be communicated to the children threads, this operand
will contain the VAR_DECL that contains all the shared values and variables.

OMP_FOR

Represents #pragma omp for [clause1 ... clauseN]. It has 5 operands:

Operand OMP_FOR_BODY contains the loop body.

Operand OMP_FOR_CLAUSES is the list of clauses associated with the directive.

Operand OMP_FOR_INIT is the loop initialization code of the form VAR = N1.

Operand OMP_FOR_COND is the loop conditional expression of the form VAR

{<,>,<=,>=} N2.

Operand OMP_FOR_INCR is the loop index increment of the form VAR {+=,-=}

INCR.

Operand OMP_FOR_PRE_BODY contains side-e�ect code from operands OMP_FOR_
INIT, OMP_FOR_COND and OMP_FOR_INC. These side-e�ects are part of the OMP_
FOR block but must be evaluated before the start of loop body.

The loop index variable VARmust be a signed integer variable, which is implicitly
private to each thread. Bounds N1 and N2 and the increment expression INCR

are required to be loop invariant integer expressions that are evaluated without
any synchronization. The evaluation order, frequency of evaluation and side-
e�ects are unspeci�ed by the standard.

OMP_SECTIONS

Represents #pragma omp sections [clause1 ... clauseN].

Operand OMP_SECTIONS_BODY contains the sections body, which in turn con-
tains a set of OMP_SECTION nodes for each of the concurrent sections delimited
by #pragma omp section.

104 GNU Compiler Collection (GCC) Internals

Operand OMP_SECTIONS_CLAUSES is the list of clauses associated with the di-
rective.

OMP_SECTION

Section delimiter for OMP_SECTIONS.

OMP_SINGLE

Represents #pragma omp single.

Operand OMP_SINGLE_BODY contains the body of code to be executed by a single
thread.

Operand OMP_SINGLE_CLAUSES is the list of clauses associated with the direc-
tive.

OMP_MASTER

Represents #pragma omp master.

Operand OMP_MASTER_BODY contains the body of code to be executed by the
master thread.

OMP_ORDERED

Represents #pragma omp ordered.

Operand OMP_ORDERED_BODY contains the body of code to be executed in the
sequential order dictated by the loop index variable.

OMP_CRITICAL

Represents #pragma omp critical [name].

Operand OMP_CRITICAL_BODY is the critical section.

Operand OMP_CRITICAL_NAME is an optional identi�er to label the critical sec-
tion.

OMP_RETURN

This does not represent any OpenMP directive, it is an arti�cial marker to
indicate the end of the body of an OpenMP. It is used by the
ow graph (tree-
cfg.c) and OpenMP region building code (omp-low.c).

OMP_CONTINUE

Similarly, this instruction does not represent an OpenMP directive, it is used
by OMP_FOR and OMP_SECTIONS to mark the place where the code needs to loop
to the next iteration (in the case of OMP_FOR) or the next section (in the case
of OMP_SECTIONS).

In some cases, OMP_CONTINUE is placed right before OMP_RETURN. But if there
are cleanups that need to occur right after the looping body, it will be emitted
between OMP_CONTINUE and OMP_RETURN.

OMP_ATOMIC

Represents #pragma omp atomic.

Operand 0 is the address at which the atomic operation is to be performed.

Operand 1 is the expression to evaluate. The gimpli�er tries three alternative
code generation strategies. Whenever possible, an atomic update built-in is
used. If that fails, a compare-and-swap loop is attempted. If that also fails, a
regular critical section around the expression is used.

Chapter 9: Trees: The intermediate representation used by the C and C++ front ends 105

OMP_CLAUSE

Represents clauses associated with one of the OMP_ directives. Clauses are rep-
resented by separate sub-codes de�ned in `tree.h'. Clauses codes can be one
of: OMP_CLAUSE_PRIVATE, OMP_CLAUSE_SHARED, OMP_CLAUSE_FIRSTPRIVATE,
OMP_CLAUSE_LASTPRIVATE, OMP_CLAUSE_COPYIN, OMP_CLAUSE_COPYPRIVATE,
OMP_CLAUSE_IF, OMP_CLAUSE_NUM_THREADS, OMP_CLAUSE_SCHEDULE,
OMP_CLAUSE_NOWAIT, OMP_CLAUSE_ORDERED, OMP_CLAUSE_DEFAULT, and
OMP_CLAUSE_REDUCTION. Each code represents the corresponding OpenMP
clause.

Clauses associated with the same directive are chained together via
OMP_CLAUSE_CHAIN. Those clauses that accept a list of variables are restricted
to exactly one, accessed with OMP_CLAUSE_VAR. Therefore, multiple variables
under the same clause C need to be represented as multiple C clauses chained
together. This facilitates adding new clauses during compilation.

106 GNU Compiler Collection (GCC) Internals

Chapter 10: Analysis and Optimization of GIMPLE Trees 107

10 Analysis and Optimization of GIMPLE Trees

GCC uses three main intermediate languages to represent the program during compilation:
GENERIC, GIMPLE and RTL. GENERIC is a language-independent representation gener-
ated by each front end. It is used to serve as an interface between the parser and optimizer.
GENERIC is a common representation that is able to represent programs written in all the
languages supported by GCC.

GIMPLE and RTL are used to optimize the program. GIMPLE is used for target and lan-
guage independent optimizations (e.g., inlining, constant propagation, tail call elimination,
redundancy elimination, etc). Much like GENERIC, GIMPLE is a language independent,
tree based representation. However, it di�ers from GENERIC in that the GIMPLE gram-
mar is more restrictive: expressions contain no more than 3 operands (except function calls),
it has no control
ow structures and expressions with side-e�ects are only allowed on the
right hand side of assignments. See the chapter describing GENERIC and GIMPLE for
more details.

This chapter describes the data structures and functions used in the GIMPLE optimiz-
ers (also known as \tree optimizers" or \middle end"). In particular, it focuses on all
the macros, data structures, functions and programming constructs needed to implement
optimization passes for GIMPLE.

10.1 GENERIC

The purpose of GENERIC is simply to provide a language-independent way of representing
an entire function in trees. To this end, it was necessary to add a few new tree codes to the
back end, but most everything was already there. If you can express it with the codes in
gcc/tree.def, it's GENERIC.

Early on, there was a great deal of debate about how to think about statements in a
tree IL. In GENERIC, a statement is de�ned as any expression whose value, if any, is
ignored. A statement will always have TREE_SIDE_EFFECTS set (or it will be discarded),
but a non-statement expression may also have side e�ects. A CALL_EXPR, for instance.

It would be possible for some local optimizations to work on the GENERIC form of a
function; indeed, the adapted tree inliner works �ne on GENERIC, but the current compiler
performs inlining after lowering to GIMPLE (a restricted form described in the next section).
Indeed, currently the frontends perform this lowering before handing o� to tree_rest_of_

compilation, but this seems inelegant.

If necessary, a front end can use some language-dependent tree codes in its GENERIC
representation, so long as it provides a hook for converting them to GIMPLE and doesn't
expect them to work with any (hypothetical) optimizers that run before the conversion to
GIMPLE. The intermediate representation used while parsing C and C++ looks very little
like GENERIC, but the C and C++ gimpli�er hooks are perfectly happy to take it as input
and spit out GIMPLE.

10.2 GIMPLE

GIMPLE is a simpli�ed subset of GENERIC for use in optimization. The particular subset
chosen (and the name) was heavily in
uenced by the SIMPLE IL used by the McCAT

108 GNU Compiler Collection (GCC) Internals

compiler project at McGill University, though we have made some di�erent choices. For
one thing, SIMPLE doesn't support goto; a production compiler can't a�ord that kind of
restriction.

GIMPLE retains much of the structure of the parse trees: lexical scopes are represented
as containers, rather than markers. However, expressions are broken down into a 3-address
form, using temporary variables to hold intermediate values. Also, control structures are
lowered to gotos.

In GIMPLE no container node is ever used for its value; if a COND_EXPR or BIND_EXPR
has a value, it is stored into a temporary within the controlled blocks, and that temporary
is used in place of the container.

The compiler pass which lowers GENERIC to GIMPLE is referred to as the `gimplifier'.
The gimpli�er works recursively, replacing complex statements with sequences of simple
statements.

10.2.1 Interfaces

The tree representation of a function is stored in DECL_SAVED_TREE. It is lowered to GIM-
PLE by a call to gimplify_function_tree.

If a front end wants to include language-speci�c tree codes in the tree representation
which it provides to the back end, it must provide a de�nition of LANG_HOOKS_GIMPLIFY_
EXPR which knows how to convert the front end trees to GIMPLE. Usually such a hook will
involve much of the same code for expanding front end trees to RTL. This function can
return fully lowered GIMPLE, or it can return GENERIC trees and let the main gimpli�er
lower them the rest of the way; this is often simpler. GIMPLE that is not fully lowered
is known as \high GIMPLE" and consists of the IL before the pass pass_lower_cf. High
GIMPLE still contains lexical scopes and nested expressions, while low GIMPLE exposes
all of the implicit jumps for control expressions like COND_EXPR.

The C and C++ front ends currently convert directly from front end trees to GIMPLE, and
hand that o� to the back end rather than �rst converting to GENERIC. Their gimpli�er
hooks know about all the _STMT nodes and how to convert them to GENERIC forms. There
was some work done on a genericization pass which would run �rst, but the existence of
STMT_EXPRmeant that in order to convert all of the C statements into GENERIC equivalents
would involve walking the entire tree anyway, so it was simpler to lower all the way. This
might change in the future if someone writes an optimization pass which would work better
with higher-level trees, but currently the optimizers all expect GIMPLE.

A front end which wants to use the tree optimizers (and already has some sort of whole-
function tree representation) only needs to provide a de�nition of LANG_HOOKS_GIMPLIFY_
EXPR, call gimplify_function_tree to lower to GIMPLE, and then hand o� to tree_

rest_of_compilation to compile and output the function.

You can tell the compiler to dump a C-like representation of the GIMPLE form with the

ag `-fdump-tree-gimple'.

10.2.2 Temporaries

When gimpli�cation encounters a subexpression which is too complex, it creates a new
temporary variable to hold the value of the subexpression, and adds a new statement to ini-
tialize it before the current statement. These special temporaries are known as `expression

Chapter 10: Analysis and Optimization of GIMPLE Trees 109

temporaries', and are allocated using get_formal_tmp_var. The compiler tries to always
evaluate identical expressions into the same temporary, to simplify elimination of redundant
calculations.

We can only use expression temporaries when we know that it will not be reevaluated
before its value is used, and that it will not be otherwise modi�ed1. Other temporaries can
be allocated using get_initialized_tmp_var or create_tmp_var.
Currently, an expression like a = b + 5 is not reduced any further. We tried converting it

to something like
T1 = b + 5;
a = T1;

but this bloated the representation for minimal bene�t. However, a variable which must
live in memory cannot appear in an expression; its value is explicitly loaded into a temporary
�rst. Similarly, storing the value of an expression to a memory variable goes through a
temporary.

10.2.3 Expressions
In general, expressions in GIMPLE consist of an operation and the appropriate number of
simple operands; these operands must either be a GIMPLE rvalue (is_gimple_val), i.e. a
constant or a register variable. More complex operands are factored out into temporaries,
so that

a = b + c + d

becomes
T1 = b + c;
a = T1 + d;

The same rule holds for arguments to a CALL_EXPR.

The target of an assignment is usually a variable, but can also be an INDIRECT_REF or a
compound lvalue as described below.

10.2.3.1 Compound Expressions

The left-hand side of a C comma expression is simply moved into a separate statement.

10.2.3.2 Compound Lvalues

Currently compound lvalues involving array and structure �eld references are not broken
down; an expression like a.b[2] = 42 is not reduced any further (though complex array
subscripts are). This restriction is a workaround for limitations in later optimizers; if we
were to convert this to

T1 = &a.b;
T1[2] = 42;

alias analysis would not remember that the reference to T1[2] came by way of a.b, so
it would think that the assignment could alias another member of a; this broke struct-

alias-1.c. Future optimizer improvements may make this limitation unnecessary.

10.2.3.3 Conditional Expressions

A C ?: expression is converted into an if statement with each branch assigning to the same
temporary. So,

1 These restrictions are derived from those in Morgan 4.8.

110 GNU Compiler Collection (GCC) Internals

a = b ? c : d;

becomes
if (b)
T1 = c;

else
T1 = d;

a = T1;

Tree level if-conversion pass re-introduces ?: expression, if appropriate. It is used to
vectorize loops with conditions using vector conditional operations.

Note that in GIMPLE, if statements are also represented using COND_EXPR, as described
below.

10.2.3.4 Logical Operators

Except when they appear in the condition operand of a COND_EXPR, logical `and' and `or'
operators are simpli�ed as follows: a = b && c becomes

T1 = (bool)b;
if (T1)
T1 = (bool)c;

a = T1;

Note that T1 in this example cannot be an expression temporary, because it has two
di�erent assignments.

10.2.4 Statements

Most statements will be assignment statements, represented by MODIFY_EXPR. A CALL_

EXPR whose value is ignored can also be a statement. No other C expressions can appear
at statement level; a reference to a volatile object is converted into a MODIFY_EXPR. In
GIMPLE form, type of MODIFY_EXPR is not meaningful. Instead, use type of LHS or RHS.

There are also several varieties of complex statements.

10.2.4.1 Blocks

Block scopes and the variables they declare in GENERIC and GIMPLE are expressed using
the BIND_EXPR code, which in previous versions of GCC was primarily used for the C
statement-expression extension.

Variables in a block are collected into BIND_EXPR_VARS in declaration order. Any runtime
initialization is moved out of DECL_INITIAL and into a statement in the controlled block.
When gimplifying from C or C++, this initialization replaces the DECL_STMT.

Variable-length arrays (VLAs) complicate this process, as their size often refers to vari-
ables initialized earlier in the block. To handle this, we currently split the block at that
point, and move the VLA into a new, inner BIND_EXPR. This strategy may change in the
future.

DECL_SAVED_TREE for a GIMPLE function will always be a BIND_EXPR which contains
declarations for the temporary variables used in the function.

A C++ program will usually contain more BIND_EXPRs than there are syntactic blocks in
the source code, since several C++ constructs have implicit scopes associated with them.
On the other hand, although the C++ front end uses pseudo-scopes to handle cleanups for
objects with destructors, these don't translate into the GIMPLE form; multiple declarations
at the same level use the same BIND_EXPR.

Chapter 10: Analysis and Optimization of GIMPLE Trees 111

10.2.4.2 Statement Sequences

Multiple statements at the same nesting level are collected into a STATEMENT_LIST. State-
ment lists are modi�ed and traversed using the interface in `tree-iterator.h'.

10.2.4.3 Empty Statements

Whenever possible, statements with no e�ect are discarded. But if they are nested within
another construct which cannot be discarded for some reason, they are instead replaced
with an empty statement, generated by build_empty_stmt. Initially, all empty statements
were shared, after the pattern of the Java front end, but this caused a lot of trouble in
practice.

An empty statement is represented as (void)0.

10.2.4.4 Loops

At one time loops were expressed in GIMPLE using LOOP_EXPR, but now they are lowered
to explicit gotos.

10.2.4.5 Selection Statements

A simple selection statement, such as the C if statement, is expressed in GIMPLE using a
void COND_EXPR. If only one branch is used, the other is �lled with an empty statement.

Normally, the condition expression is reduced to a simple comparison. If it is a shortcut
(&& or ||) expression, however, we try to break up the if into multiple ifs so that the
implied shortcut is taken directly, much like the transformation done by do_jump in the
RTL expander.

A SWITCH_EXPR in GIMPLE contains the condition and a TREE_VEC of CASE_LABEL_EXPRs
describing the case values and corresponding LABEL_DECLs to jump to. The body of the
switch is moved after the SWITCH_EXPR.

10.2.4.6 Jumps

Other jumps are expressed by either GOTO_EXPR or RETURN_EXPR.

The operand of a GOTO_EXPR must be either a label or a variable containing the address
to jump to.

The operand of a RETURN_EXPR is either NULL_TREE, RESULT_DECL, or a MODIFY_EXPR

which sets the return value. It would be nice to move the MODIFY_EXPR into a separate
statement, but the special return semantics in expand_return make that di�cult. It may
still happen in the future, perhaps by moving most of that logic into expand_assignment.

10.2.4.7 Cleanups

Destructors for local C++ objects and similar dynamic cleanups are represented in GIM-
PLE by a TRY_FINALLY_EXPR. TRY_FINALLY_EXPR has two operands, both of which are a
sequence of statements to execute. The �rst sequence is executed. When it completes the
second sequence is executed.

The �rst sequence may complete in the following ways:

1. Execute the last statement in the sequence and fall o� the end.

2. Execute a goto statement (GOTO_EXPR) to an ordinary label outside the sequence.

112 GNU Compiler Collection (GCC) Internals

3. Execute a return statement (RETURN_EXPR).

4. Throw an exception. This is currently not explicitly represented in GIMPLE.

The second sequence is not executed if the �rst sequence completes by calling setjmp or
exit or any other function that does not return. The second sequence is also not executed
if the �rst sequence completes via a non-local goto or a computed goto (in general the
compiler does not know whether such a goto statement exits the �rst sequence or not, so
we assume that it doesn't).

After the second sequence is executed, if it completes normally by falling o� the end,
execution continues wherever the �rst sequence would have continued, by falling o� the
end, or doing a goto, etc.

TRY_FINALLY_EXPR complicates the
ow graph, since the cleanup needs to appear on
every edge out of the controlled block; this reduces the freedom to move code across these
edges. Therefore, the EH lowering pass which runs before most of the optimization passes
eliminates these expressions by explicitly adding the cleanup to each edge. Rethrowing the
exception is represented using RESX_EXPR.

10.2.4.8 Exception Handling

Other exception handling constructs are represented using TRY_CATCH_EXPR. TRY_CATCH_

EXPR has two operands. The �rst operand is a sequence of statements to execute. If
executing these statements does not throw an exception, then the second operand is ignored.
Otherwise, if an exception is thrown, then the second operand of the TRY_CATCH_EXPR is
checked. The second operand may have the following forms:

1. A sequence of statements to execute. When an exception occurs, these statements are
executed, and then the exception is rethrown.

2. A sequence of CATCH_EXPR expressions. Each CATCH_EXPR has a list of applicable ex-
ception types and handler code. If the thrown exception matches one of the caught
types, the associated handler code is executed. If the handler code falls o� the bottom,
execution continues after the original TRY_CATCH_EXPR.

3. An EH_FILTER_EXPR expression. This has a list of permitted exception types, and code
to handle a match failure. If the thrown exception does not match one of the allowed
types, the associated match failure code is executed. If the thrown exception does
match, it continues unwinding the stack looking for the next handler.

Currently throwing an exception is not directly represented in GIMPLE, since it is im-
plemented by calling a function. At some point in the future we will want to add some way
to express that the call will throw an exception of a known type.

Just before running the optimizers, the compiler lowers the high-level EH constructs
above into a set of `goto's, magic labels, and EH regions. Continuing to unwind at the end
of a cleanup is represented with a RESX_EXPR.

10.2.5 GIMPLE Example
struct A { A(); ~A(); };

int i;
int g();
void f()

Chapter 10: Analysis and Optimization of GIMPLE Trees 113

{
A a;
int j = (--i, i ? 0 : 1);

for (int x = 42; x > 0; --x)
{
i += g()*4 + 32;

}
}

becomes
void f()
{
int i.0;
int T.1;
int iftmp.2;
int T.3;
int T.4;
int T.5;
int T.6;

{
struct A a;
int j;

__comp_ctor (&a);
try
{
i.0 = i;
T.1 = i.0 - 1;
i = T.1;
i.0 = i;
if (i.0 == 0)
iftmp.2 = 1;

else
iftmp.2 = 0;

j = iftmp.2;
{
int x;

x = 42;
goto test;
loop:;

T.3 = g ();
T.4 = T.3 * 4;
i.0 = i;
T.5 = T.4 + i.0;
T.6 = T.5 + 32;
i = T.6;
x = x - 1;

test:;
if (x > 0)
goto loop;

else
goto break_;

break_:;
}

114 GNU Compiler Collection (GCC) Internals

}
finally
{
__comp_dtor (&a);

}
}

}

10.2.6 Rough GIMPLE Grammar
function : FUNCTION_DECL

DECL_SAVED_TREE -> compound-stmt

compound-stmt: STATEMENT_LIST
members -> stmt

stmt : block
| if-stmt
| switch-stmt
| goto-stmt
| return-stmt
| resx-stmt
| label-stmt
| try-stmt
| modify-stmt
| call-stmt

block : BIND_EXPR
BIND_EXPR_VARS -> chain of DECLs
BIND_EXPR_BLOCK -> BLOCK
BIND_EXPR_BODY -> compound-stmt

if-stmt : COND_EXPR
op0 -> condition
op1 -> compound-stmt
op2 -> compound-stmt

switch-stmt : SWITCH_EXPR
op0 -> val
op1 -> NULL
op2 -> TREE_VEC of CASE_LABEL_EXPRs

The CASE_LABEL_EXPRs are sorted by CASE_LOW,
and default is last.

goto-stmt : GOTO_EXPR
op0 -> LABEL_DECL | val

return-stmt : RETURN_EXPR
op0 -> return-value

return-value : NULL
| RESULT_DECL
| MODIFY_EXPR

op0 -> RESULT_DECL
op1 -> lhs

resx-stmt : RESX_EXPR

label-stmt : LABEL_EXPR

Chapter 10: Analysis and Optimization of GIMPLE Trees 115

op0 -> LABEL_DECL

try-stmt : TRY_CATCH_EXPR
op0 -> compound-stmt
op1 -> handler

| TRY_FINALLY_EXPR
op0 -> compound-stmt
op1 -> compound-stmt

handler : catch-seq
| EH_FILTER_EXPR
| compound-stmt

catch-seq : STATEMENT_LIST
members -> CATCH_EXPR

modify-stmt : MODIFY_EXPR
op0 -> lhs
op1 -> rhs

call-stmt : CALL_EXPR
op0 -> val | OBJ_TYPE_REF
op1 -> call-arg-list

call-arg-list: TREE_LIST
members -> lhs | CONST

addr-expr-arg: ID
| compref

addressable : addr-expr-arg
| indirectref

with-size-arg: addressable
| call-stmt

indirectref : INDIRECT_REF
op0 -> val

lhs : addressable
| bitfieldref
| WITH_SIZE_EXPR

op0 -> with-size-arg
op1 -> val

min-lval : ID
| indirectref

bitfieldref : BIT_FIELD_REF
op0 -> inner-compref
op1 -> CONST
op2 -> var

compref : inner-compref
| TARGET_MEM_REF

op0 -> ID
op1 -> val
op2 -> val

116 GNU Compiler Collection (GCC) Internals

op3 -> CONST
op4 -> CONST

| REALPART_EXPR
op0 -> inner-compref

| IMAGPART_EXPR
op0 -> inner-compref

inner-compref: min-lval
| COMPONENT_REF

op0 -> inner-compref
op1 -> FIELD_DECL
op2 -> val

| ARRAY_REF
op0 -> inner-compref
op1 -> val
op2 -> val
op3 -> val

| ARRAY_RANGE_REF
op0 -> inner-compref
op1 -> val
op2 -> val
op3 -> val

| VIEW_CONVERT_EXPR
op0 -> inner-compref

condition : val
| RELOP

op0 -> val
op1 -> val

val : ID
| CONST

rhs : lhs
| CONST
| call-stmt
| ADDR_EXPR

op0 -> addr-expr-arg
| UNOP

op0 -> val
| BINOP

op0 -> val
op1 -> val

| RELOP
op0 -> val
op1 -> val

| COND_EXPR
op0 -> condition
op1 -> val
op2 -> val

10.3 Annotations

The optimizers need to associate attributes with statements and variables during the opti-
mization process. For instance, we need to know what basic block a statement belongs to
or whether a variable has aliases. All these attributes are stored in data structures called
annotations which are then linked to the �eld ann in struct tree_common.

Chapter 10: Analysis and Optimization of GIMPLE Trees 117

Presently, we de�ne annotations for statements (stmt_ann_t), variables (var_ann_t) and
SSA names (ssa_name_ann_t). Annotations are de�ned and documented in `tree-flow.h'.

10.4 Statement Operands

Almost every GIMPLE statement will contain a reference to a variable or memory location.
Since statements come in di�erent shapes and sizes, their operands are going to be located
at various spots inside the statement's tree. To facilitate access to the statement's operands,
they are organized into lists associated inside each statement's annotation. Each element
in an operand list is a pointer to a VAR_DECL, PARM_DECL or SSA_NAME tree node. This
provides a very convenient way of examining and replacing operands.

Data
ow analysis and optimization is done on all tree nodes representing variables.
Any node for which SSA_VAR_P returns nonzero is considered when scanning statement
operands. However, not all SSA_VAR_P variables are processed in the same way. For the
purposes of optimization, we need to distinguish between references to local scalar variables
and references to globals, statics, structures, arrays, aliased variables, etc. The reason is
simple, the compiler can gather complete data
ow information for a local scalar. On the
other hand, a global variable may be modi�ed by a function call, it may not be possible to
keep track of all the elements of an array or the �elds of a structure, etc.

The operand scanner gathers two kinds of operands: real and virtual. An operand for
which is_gimple_reg returns true is considered real, otherwise it is a virtual operand. We
also distinguish between uses and de�nitions. An operand is used if its value is loaded by
the statement (e.g., the operand at the RHS of an assignment). If the statement assigns a
new value to the operand, the operand is considered a de�nition (e.g., the operand at the
LHS of an assignment).

Virtual and real operands also have very di�erent data
ow properties. Real operands
are unambiguous references to the full object that they represent. For instance, given

{
int a, b;
a = b

}

Since a and b are non-aliased locals, the statement a = b will have one real de�nition and
one real use because variable b is completely modi�ed with the contents of variable a. Real
de�nition are also known as killing de�nitions. Similarly, the use of a reads all its bits.

In contrast, virtual operands are used with variables that can have a partial or ambiguous
reference. This includes structures, arrays, globals, and aliased variables. In these cases, we
have two types of de�nitions. For globals, structures, and arrays, we can determine from
a statement whether a variable of these types has a killing de�nition. If the variable does,
then the statement is marked as having a must de�nition of that variable. However, if a
statement is only de�ning a part of the variable (i.e. a �eld in a structure), or if we know
that a statement might de�ne the variable but we cannot say for sure, then we mark that
statement as having a may de�nition. For instance, given

{
int a, b, *p;

if (...)
p = &a;

else

118 GNU Compiler Collection (GCC) Internals

p = &b;
*p = 5;
return *p;

}

The assignment *p = 5 may be a de�nition of a or b. If we cannot determine statically
where p is pointing to at the time of the store operation, we create virtual de�nitions to
mark that statement as a potential de�nition site for a and b. Memory loads are similarly
marked with virtual use operands. Virtual operands are shown in tree dumps right before
the statement that contains them. To request a tree dump with virtual operands, use the
`-vops' option to `-fdump-tree':

{
int a, b, *p;

if (...)
p = &a;

else
p = &b;

a = V_MAY_DEF <a>
b = V_MAY_DEF
*p = 5;

VUSE <a>
VUSE
return *p;

}

Notice that V_MAY_DEF operands have two copies of the referenced variable. This indicates
that this is not a killing de�nition of that variable. In this case we refer to it as a may
de�nition or aliased store. The presence of the second copy of the variable in the V_MAY_DEF
operand will become important when the function is converted into SSA form. This will be
used to link all the non-killing de�nitions to prevent optimizations from making incorrect
assumptions about them.

Operands are updated as soon as the statement is �nished via a call to update_stmt.
If statement elements are changed via SET_USE or SET_DEF, then no further action is re-
quired (i.e., those macros take care of updating the statement). If changes are made by
manipulating the statement's tree directly, then a call must be made to update_stmt when
complete. Calling one of the bsi_insert routines or bsi_replace performs an implicit call
to update_stmt.

10.4.1 Operand Iterators And Access Routines

Operands are collected by `tree-ssa-operands.c'. They are stored inside each statement's
annotation and can be accessed through either the operand iterators or an access routine.

The following access routines are available for examining operands:

1. SINGLE_SSA_{USE,DEF,TREE}_OPERAND: These accessors will return NULL unless
there is exactly one operand matching the speci�ed
ags. If there is exactly one
operand, the operand is returned as either a tree, def_operand_p, or use_operand_p.

tree t = SINGLE_SSA_TREE_OPERAND (stmt, flags);
use_operand_p u = SINGLE_SSA_USE_OPERAND (stmt, SSA_ALL_VIRTUAL_USES);
def_operand_p d = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_ALL_DEFS);

2. ZERO_SSA_OPERANDS: This macro returns true if there are no operands matching the
speci�ed
ags.

Chapter 10: Analysis and Optimization of GIMPLE Trees 119

if (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
return;

3. NUM_SSA_OPERANDS: This macro Returns the number of operands matching '
ags'. This
actually executes a loop to perform the count, so only use this if it is really needed.

int count = NUM_SSA_OPERANDS (stmt, flags)

If you wish to iterate over some or all operands, use the FOR_EACH_SSA_{USE,DEF,TREE}_
OPERAND iterator. For example, to print all the operands for a statement:

void
print_ops (tree stmt)
{
ssa_op_iter;
tree var;

FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_OPERANDS)
print_generic_expr (stderr, var, TDF_SLIM);

}

How to choose the appropriate iterator:

1. Determine whether you are need to see the operand pointers, or just the trees, and
choose the appropriate macro:

Need Macro:
---- -------
use_operand_p FOR_EACH_SSA_USE_OPERAND
def_operand_p FOR_EACH_SSA_DEF_OPERAND
tree FOR_EACH_SSA_TREE_OPERAND

2. You need to declare a variable of the type you are interested in, and an ssa op iter
structure which serves as the loop controlling variable.

3. Determine which operands you wish to use, and specify the
ags of those you are
interested in. They are documented in `tree-ssa-operands.h':

#define SSA_OP_USE 0x01 /* Real USE operands. */
#define SSA_OP_DEF 0x02 /* Real DEF operands. */
#define SSA_OP_VUSE 0x04 /* VUSE operands. */
#define SSA_OP_VMAYUSE 0x08 /* USE portion of V MAY DEFS. */
#define SSA_OP_VMAYDEF 0x10 /* DEF portion of V MAY DEFS. */
#define SSA_OP_VMUSTDEF 0x20 /* V MUST DEF de�nitions. */

/* These are commonly grouped operand
ags. */
#define SSA_OP_VIRTUAL_USES (SSA_OP_VUSE | SSA_OP_VMAYUSE)
#define SSA_OP_VIRTUAL_DEFS (SSA_OP_VMAYDEF | SSA_OP_VMUSTDEF)
#define SSA_OP_ALL_USES (SSA_OP_VIRTUAL_USES | SSA_OP_USE)
#define SSA_OP_ALL_DEFS (SSA_OP_VIRTUAL_DEFS | SSA_OP_DEF)
#define SSA_OP_ALL_OPERANDS (SSA_OP_ALL_USES | SSA_OP_ALL_DEFS)

So if you want to look at the use pointers for all the USE and VUSE operands, you would
do something like:

use_operand_p use_p;
ssa_op_iter iter;

FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, (SSA_OP_USE | SSA_OP_VUSE))
{
process_use_ptr (use_p);

}

120 GNU Compiler Collection (GCC) Internals

The TREE macro is basically the same as the USE and DEF macros, only with the use or
def dereferenced via USE_FROM_PTR (use_p) and DEF_FROM_PTR (def_p). Since we aren't
using operand pointers, use and defs
ags can be mixed.

tree var;
ssa_op_iter iter;

FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_VUSE | SSA_OP_VMUSTDEF)
{

print_generic_expr (stderr, var, TDF_SLIM);
}

V_MAY_DEFs are broken into two
ags, one for the DEF portion (SSA_OP_VMAYDEF) and
one for the USE portion (SSA_OP_VMAYUSE). If all you want to look at are the V_MAY_DEFs
together, there is a fourth iterator macro for this, which returns both a def operand p and
a use operand p for each V_MAY_DEF in the statement. Note that you don't need any
ags
for this one.

use_operand_p use_p;
def_operand_p def_p;
ssa_op_iter iter;

FOR_EACH_SSA_MAYDEF_OPERAND (def_p, use_p, stmt, iter)
{
my_code;

}

V_MUST_DEFs are broken into two
ags, one for the DEF portion (SSA_OP_VMUSTDEF) and
one for the kill portion (SSA_OP_VMUSTKILL). If all you want to look at are the V_MUST_DEFs
together, there is a fourth iterator macro for this, which returns both a def operand p and
a use operand p for each V_MUST_DEF in the statement. Note that you don't need any
ags
for this one.

use_operand_p kill_p;
def_operand_p def_p;
ssa_op_iter iter;

FOR_EACH_SSA_MUSTDEF_OPERAND (def_p, kill_p, stmt, iter)
{
my_code;

}

There are many examples in the code as well, as well as the documentation in
`tree-ssa-operands.h'.

There are also a couple of variants on the stmt iterators regarding PHI nodes.

FOR_EACH_PHI_ARGWorks exactly like FOR_EACH_SSA_USE_OPERAND, except it works over
PHI arguments instead of statement operands.

/* Look at every virtual PHI use. */
FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_VIRTUAL_USES)
{

my_code;
}

/* Look at every real PHI use. */
FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_USES)
my_code;

/* Look at every every PHI use. */

Chapter 10: Analysis and Optimization of GIMPLE Trees 121

FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_ALL_USES)
my_code;

FOR_EACH_PHI_OR_STMT_{USE,DEF} works exactly like FOR_EACH_SSA_{USE,DEF}_

OPERAND, except it will function on either a statement or a PHI node. These should be used
when it is appropriate but they are not quite as e�cient as the individual FOR_EACH_PHI
and FOR_EACH_SSA routines.

FOR_EACH_PHI_OR_STMT_USE (use_operand_p, stmt, iter, flags)
{

my_code;
}

FOR_EACH_PHI_OR_STMT_DEF (def_operand_p, phi, iter, flags)
{

my_code;
}

10.4.2 Immediate Uses

Immediate use information is now always available. Using the immediate use iterators, you
may examine every use of any SSA_NAME. For instance, to change each use of ssa_var to
ssa_var2 and call fold stmt on each stmt after that is done:

use_operand_p imm_use_p;
imm_use_iterator iterator;
tree ssa_var, stmt;

FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var)
{
FOR_EACH_IMM_USE_ON_STMT (imm_use_p, iterator)
SET_USE (imm_use_p, ssa_var_2);

fold_stmt (stmt);
}

There are 2 iterators which can be used. FOR_EACH_IMM_USE_FAST is used when the
immediate uses are not changed, i.e., you are looking at the uses, but not setting them.

If they do get changed, then care must be taken that things are not changed under the
iterators, so use the FOR_EACH_IMM_USE_STMT and FOR_EACH_IMM_USE_ON_STMT iterators.
They attempt to preserve the sanity of the use list by moving all the uses for a statement
into a controlled position, and then iterating over those uses. Then the optimization can
manipulate the stmt when all the uses have been processed. This is a little slower than the
FAST version since it adds a placeholder element and must sort through the list a bit for
each statement. This placeholder element must be also be removed if the loop is terminated
early. The macro BREAK_FROM_IMM_USE_SAFE is provided to do this :

FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var)
{
if (stmt == last_stmt)
BREAK_FROM_SAFE_IMM_USE (iter);

FOR_EACH_IMM_USE_ON_STMT (imm_use_p, iterator)
SET_USE (imm_use_p, ssa_var_2);

fold_stmt (stmt);
}

122 GNU Compiler Collection (GCC) Internals

There are checks in verify_ssa which verify that the immediate use list is up to date, as
well as checking that an optimization didn't break from the loop without using this macro.
It is safe to simply 'break'; from a FOR_EACH_IMM_USE_FAST traverse.

Some useful functions and macros:

1. has_zero_uses (ssa_var) : Returns true if there are no uses of ssa_var.

2. has_single_use (ssa_var) : Returns true if there is only a single use of ssa_var.

3. single_imm_use (ssa_var, use_operand_p *ptr, tree *stmt) : Returns true if
there is only a single use of ssa_var, and also returns the use pointer and statement
it occurs in in the second and third parameters.

4. num_imm_uses (ssa_var) : Returns the number of immediate uses of ssa_var. It is
better not to use this if possible since it simply utilizes a loop to count the uses.

5. PHI_ARG_INDEX_FROM_USE (use_p) : Given a use within a PHI node, return the index
number for the use. An assert is triggered if the use isn't located in a PHI node.

6. USE_STMT (use_p) : Return the statement a use occurs in.

Note that uses are not put into an immediate use list until their statement is actually
inserted into the instruction stream via a bsi_* routine.

It is also still possible to utilize lazy updating of statements, but this should be used only
when absolutely required. Both alias analysis and the dominator optimizations currently
do this.

When lazy updating is being used, the immediate use information is out of date and
cannot be used reliably. Lazy updating is achieved by simply marking statements modi�ed
via calls to mark_stmt_modified instead of update_stmt. When lazy updating is no longer
required, all the modi�ed statements must have update_stmt called in order to bring them
up to date. This must be done before the optimization is �nished, or verify_ssa will
trigger an abort.
This is done with a simple loop over the instruction stream:

block_stmt_iterator bsi;
basic_block bb;
FOR_EACH_BB (bb)
{
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
update_stmt_if_modified (bsi_stmt (bsi));

}

10.5 Static Single Assignment

Most of the tree optimizers rely on the data
ow information provided by the Static Single
Assignment (SSA) form. We implement the SSA form as described in R. Cytron, J. Ferrante,
B. Rosen, M. Wegman, and K. Zadeck. E�ciently Computing Static Single Assignment
Form and the Control Dependence Graph. ACM Transactions on Programming Languages
and Systems, 13(4):451-490, October 1991.

The SSA form is based on the premise that program variables are assigned in exactly one
location in the program. Multiple assignments to the same variable create new versions of
that variable. Naturally, actual programs are seldom in SSA form initially because variables
tend to be assigned multiple times. The compiler modi�es the program representation so
that every time a variable is assigned in the code, a new version of the variable is created.

Chapter 10: Analysis and Optimization of GIMPLE Trees 123

Di�erent versions of the same variable are distinguished by subscripting the variable name
with its version number. Variables used in the right-hand side of expressions are renamed
so that their version number matches that of the most recent assignment.

We represent variable versions using SSA_NAME nodes. The renaming process in
`tree-ssa.c' wraps every real and virtual operand with an SSA_NAME node which contains
the version number and the statement that created the SSA_NAME. Only de�nitions and
virtual de�nitions may create new SSA_NAME nodes.

Sometimes,
ow of control makes it impossible to determine what is the most recent
version of a variable. In these cases, the compiler inserts an arti�cial de�nition for that
variable called PHI function or PHI node. This new de�nition merges all the incoming
versions of the variable to create a new name for it. For instance,

if (...)
a_1 = 5;

else if (...)
a_2 = 2;

else
a_3 = 13;

a_4 = PHI <a_1, a_2, a_3>
return a_4;

Since it is not possible to determine which of the three branches will be taken at runtime,
we don't know which of a_1, a_2 or a_3 to use at the return statement. So, the SSA
renamer creates a new version a_4 which is assigned the result of \merging" a_1, a_2 and
a_3. Hence, PHI nodes mean \one of these operands. I don't know which".

The following macros can be used to examine PHI nodes

[Macro]PHI_RESULT (phi)
Returns the SSA_NAME created by PHI node phi (i.e., phi's LHS).

[Macro]PHI_NUM_ARGS (phi)
Returns the number of arguments in phi. This number is exactly the number of
incoming edges to the basic block holding phi.

[Macro]PHI_ARG_ELT (phi, i)
Returns a tuple representing the ith argument of phi. Each element of this tuple
contains an SSA_NAME var and the incoming edge through which var
ows.

[Macro]PHI_ARG_EDGE (phi, i)
Returns the incoming edge for the ith argument of phi.

[Macro]PHI_ARG_DEF (phi, i)
Returns the SSA_NAME for the ith argument of phi.

10.5.1 Preserving the SSA form

Some optimization passes make changes to the function that invalidate the SSA property.
This can happen when a pass has added new symbols or changed the program so that vari-
ables that were previously aliased aren't anymore. Whenever something like this happens,
the a�ected symbols must be renamed into SSA form again. Transformations that emit
new code or replicate existing statements will also need to update the SSA form.

124 GNU Compiler Collection (GCC) Internals

Since GCC implements two di�erent SSA forms for register and virtual variables, keeping
the SSA form up to date depends on whether you are updating register or virtual names.
In both cases, the general idea behind incremental SSA updates is similar: when new SSA
names are created, they typically are meant to replace other existing names in the program.

For instance, given the following code:
1 L0:
2 x_1 = PHI (0, x_5)
3 if (x_1 < 10)
4 if (x_1 > 7)
5 y_2 = 0
6 else
7 y_3 = x_1 + x_7
8 endif
9 x_5 = x_1 + 1
10 goto L0;
11 endif

Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
1 L0:
2 x_1 = PHI (0, x_5)
3 if (x_1 < 10)
4 x_10 = ...
5 if (x_1 > 7)
6 y_2 = 0
7 else
8 x_11 = ...
9 y_3 = x_1 + x_7
10 endif
11 x_5 = x_1 + 1
12 goto L0;
13 endif

We want to replace all the uses of x_1 with the new de�nitions of x_10 and x_11. Note
that the only uses that should be replaced are those at lines 5, 9 and 11. Also, the use of x_7
at line 9 should not be replaced (this is why we cannot just mark symbol x for renaming).

Additionally, we may need to insert a PHI node at line 11 because that is a merge point
for x_10 and x_11. So the use of x_1 at line 11 will be replaced with the new PHI node.
The insertion of PHI nodes is optional. They are not strictly necessary to preserve the
SSA form, and depending on what the caller inserted, they may not even be useful for the
optimizers.

Updating the SSA form is a two step process. First, the pass has to identify which
names need to be updated and/or which symbols need to be renamed into SSA form for
the �rst time. When new names are introduced to replace existing names in the program,
the mapping between the old and the new names are registered by calling register_new_

name_mapping (note that if your pass creates new code by duplicating basic blocks, the call
to tree_duplicate_bb will set up the necessary mappings automatically). On the other
hand, if your pass exposes a new symbol that should be put in SSA form for the �rst time,
the new symbol should be registered with mark_sym_for_renaming.

After the replacement mappings have been registered and new symbols marked for re-
naming, a call to update_ssa makes the registered changes. This can be done with an
explicit call or by creating TODO
ags in the tree_opt_pass structure for your pass. There
are several TODO
ags that control the behavior of update_ssa:

Chapter 10: Analysis and Optimization of GIMPLE Trees 125

� TODO_update_ssa. Update the SSA form inserting PHI nodes for newly exposed sym-
bols and virtual names marked for updating. When updating real names, only insert
PHI nodes for a real name O_j in blocks reached by all the new and old de�nitions for
O_j. If the iterated dominance frontier for O_j is not pruned, we may end up inserting
PHI nodes in blocks that have one or more edges with no incoming de�nition for O_j.
This would lead to uninitialized warnings for O_j's symbol.

� TODO_update_ssa_no_phi. Update the SSA form without inserting any new PHI nodes
at all. This is used by passes that have either inserted all the PHI nodes themselves or
passes that need only to patch use-def and def-def chains for virtuals (e.g., DCE).

� TODO_update_ssa_full_phi. Insert PHI nodes everywhere they are needed. No prun-
ing of the IDF is done. This is used by passes that need the PHI nodes for O_j even
if it means that some arguments will come from the default de�nition of O_j's symbol
(e.g., pass_linear_transform).

WARNING: If you need to use this
ag, chances are that your pass may be doing
something wrong. Inserting PHI nodes for an old name where not all edges carry a
new replacement may lead to silent codegen errors or spurious uninitialized warnings.

� TODO_update_ssa_only_virtuals. Passes that update the SSA form on their own
may want to delegate the updating of virtual names to the generic updater. Since
FUD chains are easier to maintain, this simpli�es the work they need to do. NOTE:
If this
ag is used, any OLD->NEW mappings for real names are explicitly destroyed
and only the symbols marked for renaming are processed.

10.5.2 Preserving the virtual SSA form

The virtual SSA form is harder to preserve than the non-virtual SSA form mainly because
the set of virtual operands for a statement may change at what some would consider unex-
pected times. In general, any time you have modi�ed a statement that has virtual operands,
you should verify whether the list of virtual operands has changed, and if so, mark the newly
exposed symbols by calling mark_new_vars_to_rename.

There is one additional caveat to preserving virtual SSA form. When the entire set of
virtual operands may be eliminated due to better disambiguation, a bare SMT will be
added to the list of virtual operands, to signify the non-visible aliases that the are still
being referenced. If the set of bare SMT's may change, TODO_update_smt_usage should be
added to the todo
ags.

With the current pruning code, this can only occur when constants are propagated into
array references that were previously non-constant, or address expressions are propagated
into their uses.

10.5.3 Examining SSA_NAME nodes

The following macros can be used to examine SSA_NAME nodes

[Macro]SSA_NAME_DEF_STMT (var)
Returns the statement s that creates the SSA_NAME var. If s is an empty statement
(i.e., IS_EMPTY_STMT (s) returns true), it means that the �rst reference to this
variable is a USE or a VUSE.

[Macro]SSA_NAME_VERSION (var)
Returns the version number of the SSA_NAME object var.

126 GNU Compiler Collection (GCC) Internals

10.5.4 Walking use-def chains

[Tree SSA function]void walk_use_def_chains (var, fn, data)
Walks use-def chains starting at the SSA_NAME node var. Calls function fn at each
reaching de�nition found. Function FN takes three arguments: var, its de�ning
statement (def stmt) and a generic pointer to whatever state information that fn
may want to maintain (data). Function fn is able to stop the walk by returning true,
otherwise in order to continue the walk, fn should return false.

Note, that if def stmt is a PHI node, the semantics are slightly di�erent. For each
argument arg of the PHI node, this function will:

1. Walk the use-def chains for arg.

2. Call FN (arg, phi, data).

Note how the �rst argument to fn is no longer the original variable var, but the
PHI argument currently being examined. If fn wants to get at var, it should call
PHI_RESULT (phi).

10.5.5 Walking the dominator tree

[Tree SSA function]void walk_dominator_tree (walk_data, bb)
This function walks the dominator tree for the current CFG calling a set of callback
functions de�ned in struct dom walk data in `domwalk.h'. The call back functions
you need to de�ne give you hooks to execute custom code at various points during
traversal:

1. Once to initialize any local data needed while processing bb and its children.
This local data is pushed into an internal stack which is automatically pushed
and popped as the walker traverses the dominator tree.

2. Once before traversing all the statements in the bb.

3. Once for every statement inside bb.

4. Once after traversing all the statements and before recursing into bb's dominator
children.

5. It then recurses into all the dominator children of bb.

6. After recursing into all the dominator children of bb it can, optionally, traverse
every statement in bb again (i.e., repeating steps 2 and 3).

7. Once after walking the statements in bb and bb's dominator children. At this
stage, the block local data stack is popped.

10.6 Alias analysis

Alias analysis proceeds in 4 main phases:

1. Structural alias analysis.

This phase walks the types for structure variables, and determines which of the �elds
can overlap using o�set and size of each �eld. For each �eld, a \subvariable" called a
\Structure �eld tag" (SFT) is created, which represents that �eld as a separate variable.
All accesses that could possibly overlap with a given �eld will have virtual operands
for the SFT of that �eld.

Chapter 10: Analysis and Optimization of GIMPLE Trees 127

struct foo
{
int a;
int b;

}
struct foo temp;
int bar (void)
{
int tmp1, tmp2, tmp3;
SFT.0_2 = V_MUST_DEF <SFT.0_1>
temp.a = 5;
SFT.1_4 = V_MUST_DEF <SFT.1_3>
temp.b = 6;

VUSE <SFT.1_4>
tmp1_5 = temp.b;
VUSE <SFT.0_2>
tmp2_6 = temp.a;

tmp3_7 = tmp1_5 + tmp2_6;
return tmp3_7;

}

If you copy the symbol tag for a variable for some reason, you probably also want to
copy the subvariables for that variable.

2. Points-to and escape analysis.

This phase walks the use-def chains in the SSA web looking for three things:

� Assignments of the form P_i = &VAR

� Assignments of the form P i = malloc()

� Pointers and ADDR EXPR that escape the current function.

The concept of `escaping' is the same one used in the Java world. When a pointer or an
ADDR EXPR escapes, it means that it has been exposed outside of the current func-
tion. So, assignment to global variables, function arguments and returning a pointer
are all escape sites.

This is where we are currently limited. Since not everything is renamed into SSA, we
lose track of escape properties when a pointer is stashed inside a �eld in a structure,
for instance. In those cases, we are assuming that the pointer does escape.

We use escape analysis to determine whether a variable is call-clobbered. Simply put, if
an ADDR EXPR escapes, then the variable is call-clobbered. If a pointer P i escapes,
then all the variables pointed-to by P i (and its memory tag) also escape.

3. Compute
ow-sensitive aliases

We have two classes of memory tags. Memory tags associated with the pointed-to
data type of the pointers in the program. These tags are called \symbol memory tag"
(SMT). The other class are those associated with SSA NAMEs, called \name memory
tag" (NMT). The basic idea is that when adding operands for an INDIRECT REF
*P i, we will �rst check whether P i has a name tag, if it does we use it, because that
will have more precise aliasing information. Otherwise, we use the standard symbol
tag.

128 GNU Compiler Collection (GCC) Internals

In this phase, we go through all the pointers we found in points-to analysis and create
alias sets for the name memory tags associated with each pointer P i. If P i escapes,
we mark call-clobbered the variables it points to and its tag.

4. Compute
ow-insensitive aliases

This pass will compare the alias set of every symbol memory tag and every addressable
variable found in the program. Given a symbol memory tag SMT and an addressable
variable V. If the alias sets of SMT and V con
ict (as computed by may alias p), then
V is marked as an alias tag and added to the alias set of SMT.

For instance, consider the following function:

foo (int i)
{
int *p, *q, a, b;

if (i > 10)
p = &a;

else
q = &b;

*p = 3;
*q = 5;
a = b + 2;
return *p;

}

After aliasing analysis has �nished, the symbol memory tag for pointer p will have two
aliases, namely variables a and b. Every time pointer p is dereferenced, we want to mark
the operation as a potential reference to a and b.

foo (int i)
{
int *p, a, b;

if (i_2 > 10)
p_4 = &a;

else
p_6 = &b;

p_1 = PHI <p_4(1), p_6(2)>;

a_7 = V_MAY_DEF <a_3>;
b_8 = V_MAY_DEF <b_5>;
*p_1 = 3;

a_9 = V_MAY_DEF <a_7>
VUSE <b_8>
a_9 = b_8 + 2;

VUSE <a_9>;
VUSE <b_8>;
return *p_1;

}

In certain cases, the list of may aliases for a pointer may grow too large. This may cause
an explosion in the number of virtual operands inserted in the code. Resulting in increased
memory consumption and compilation time.

Chapter 10: Analysis and Optimization of GIMPLE Trees 129

When the number of virtual operands needed to represent aliased loads and stores grows
too large (con�gurable with `--param max-aliased-vops'), alias sets are grouped to avoid
severe compile-time slow downs and memory consumption. The alias grouping heuristic
proceeds as follows:

1. Sort the list of pointers in decreasing number of contributed virtual operands.

2. Take the �rst pointer from the list and reverse the role of the memory tag and its
aliases. Usually, whenever an aliased variable Vi is found to alias with a memory tag
T, we add Vi to the may-aliases set for T. Meaning that after alias analysis, we will
have:

may-aliases(T) = { V1, V2, V3, ..., Vn }

This means that every statement that references T, will get n virtual operands for each
of the Vi tags. But, when alias grouping is enabled, we make T an alias tag and add
it to the alias set of all the Vi variables:

may-aliases(V1) = { T }
may-aliases(V2) = { T }
...
may-aliases(Vn) = { T }

This has two e�ects: (a) statements referencing T will only get a single virtual operand,
and, (b) all the variables Vi will now appear to alias each other. So, we lose alias
precision to improve compile time. But, in theory, a program with such a high level of
aliasing should not be very optimizable in the �rst place.

3. Since variables may be in the alias set of more than one memory tag, the grouping
done in step (2) needs to be extended to all the memory tags that have a non-empty
intersection with the may-aliases set of tag T. For instance, if we originally had these
may-aliases sets:

may-aliases(T) = { V1, V2, V3 }
may-aliases(R) = { V2, V4 }

In step (2) we would have reverted the aliases for T as:
may-aliases(V1) = { T }
may-aliases(V2) = { T }
may-aliases(V3) = { T }

But note that now V2 is no longer aliased with R. We could add R to may-aliases(V2),
but we are in the process of grouping aliases to reduce virtual operands so what we do
is add V4 to the grouping to obtain:

may-aliases(V1) = { T }
may-aliases(V2) = { T }
may-aliases(V3) = { T }
may-aliases(V4) = { T }

4. If the total number of virtual operands due to aliasing is still above the threshold set
by max-alias-vops, go back to (2).

130 GNU Compiler Collection (GCC) Internals

Chapter 11: Analysis and Representation of Loops 131

11 Analysis and Representation of Loops

GCC provides extensive infrastructure for work with natural loops, i.e., strongly connected
components of CFG with only one entry block. This chapter describes representation of
loops in GCC, both on GIMPLE and in RTL, as well as the interfaces to loop-related
analyses (induction variable analysis and number of iterations analysis).

11.1 Loop representation

This chapter describes the representation of loops in GCC, and functions that can be used to
build, modify and analyze this representation. Most of the interfaces and data structures are
declared in `cfgloop.h'. At the moment, loop structures are analyzed and this information
is updated only by the optimization passes that deal with loops, but some e�orts are being
made to make it available throughout most of the optimization passes.

In general, a natural loop has one entry block (header) and possibly several back edges
(latches) leading to the header from the inside of the loop. Loops with several latches may
appear if several loops share a single header, or if there is a branching in the middle of the
loop. The representation of loops in GCC however allows only loops with a single latch.
During loop analysis, headers of such loops are split and forwarder blocks are created in
order to disambiguate their structures. A heuristic based on pro�le information is used to
determine whether the latches correspond to sub-loops or to control
ow in a single loop.
This means that the analysis sometimes changes the CFG, and if you run it in the middle
of an optimization pass, you must be able to deal with the new blocks.

Body of the loop is the set of blocks that are dominated by its header, and reachable from
its latch against the direction of edges in CFG. The loops are organized in a containment
hierarchy (tree) such that all the loops immediately contained inside loop L are the children
of L in the tree. This tree is represented by the struct loops structure. The root of this
tree is a fake loop that contains all blocks in the function. Each of the loops is represented
in a struct loop structure. Each loop is assigned an index (num �eld of the struct loop

structure), and the pointer to the loop is stored in the corresponding �eld of the parray

�eld of the loops structure. Index of a sub-loop is always greater than the index of its
super-loop. The indices do not have to be continuous, there may be empty (NULL) entries in
the parray created by deleting loops. The index of a loop never changes. The �rst unused
index is stored in the num �eld of the loops structure.

Each basic block contains the reference to the innermost loop it belongs to (loop_father).
For this reason, it is only possible to have one struct loops structure initialized at the same
time for each CFG. It is recommended to use the global variable current_loops to contain
the struct loops structure, especially if the loop structures are updated throughout several
passes. Many of the loop manipulation functions assume that dominance information is up-
to-date.

The loops are analyzed through loop_optimizer_init function. The argument of this
function is a set of
ags represented in an integer bitmask. These
ags specify what other
properties of the loop structures should be calculated/enforced and preserved later:

� LOOPS_HAVE_PREHEADERS: Forwarder blocks are created in such a way that each loop
has only one entry edge, and additionally, the source block of this entry edge has only
one successor. This creates a natural place where the code can be moved out of the
loop, and ensures that the entry edge of the loop leads from its immediate super-loop.

132 GNU Compiler Collection (GCC) Internals

� LOOPS_HAVE_SIMPLE_LATCHES: Forwarder blocks are created to force the latch block
of each loop to have only one successor. This ensures that the latch of the loop does
not belong to any of its sub-loops, and makes manipulation with the loops signi�cantly
easier. Most of the loop manipulation functions assume that the loops are in this shape.
Note that with this
ag, the \normal" loop without any control
ow inside and with
one exit consists of two basic blocks.

� LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS: Basic blocks and edges in the strongly
connected components that are not natural loops (have more than one entry block) are
marked with BB_IRREDUCIBLE_LOOP and EDGE_IRREDUCIBLE_LOOP
ags. The
ag is
not set for blocks and edges that belong to natural loops that are in such an irreducible
region (but it is set for the entry and exit edges of such a loop, if they lead to/from
this region).

� LOOPS_HAVE_MARKED_SINGLE_EXITS: If a loop has exactly one exit edge, this edge is
stored in single_exit �eld of the loop structure. NULL is stored there otherwise.

These properties may also be computed/enforced later, using functions create_

preheaders, force_single_succ_latches, mark_irreducible_loops and
mark_single_exit_loops.

The memory occupied by the loops structures should be freed with loop_optimizer_

finalize function.

The CFG manipulation functions in general do not update loop structures. Specialized
versions that additionally do so are provided for the most common tasks. On GIMPLE,
cleanup_tree_cfg_loop function can be used to cleanup CFG while updating the loops
structures if current_loops is set.

11.2 Loop querying

The functions to query the information about loops are declared in `cfgloop.h'. Some of
the information can be taken directly from the structures. loop_father �eld of each basic
block contains the innermost loop to that the block belongs. The most useful �elds of loop
structure (that are kept up-to-date at all times) are:

� header, latch: Header and latch basic blocks of the loop.

� num_nodes: Number of basic blocks in the loop (including the basic blocks of the
sub-loops).

� depth: The depth of the loop in the loops tree, i.e., the number of super-loops of the
loop.

� outer, inner, next: The super-loop, the �rst sub-loop, and the sibling of the loop in
the loops tree.

� single_exit: The exit edge of the loop, if the loop has exactly one exit and the loops
were analyzed with LOOPS HAVE MARKED SINGLE EXITS.

There are other �elds in the loop structures, many of them used only by some of the passes,
or not updated during CFG changes; in general, they should not be accessed directly.

The most important functions to query loop structures are:

� flow_loops_dump: Dumps the information about loops to a �le.

� verify_loop_structure: Checks consistency of the loop structures.

Chapter 11: Analysis and Representation of Loops 133

� loop_latch_edge: Returns the latch edge of a loop.

� loop_preheader_edge: If loops have preheaders, returns the preheader edge of a loop.

� flow_loop_nested_p: Tests whether loop is a sub-loop of another loop.

� flow_bb_inside_loop_p: Tests whether a basic block belongs to a loop (including its
sub-loops).

� find_common_loop: Finds the common super-loop of two loops.

� superloop_at_depth: Returns the super-loop of a loop with the given depth.

� tree_num_loop_insns, num_loop_insns: Estimates the number of insns in the loop,
on GIMPLE and on RTL.

� loop_exit_edge_p: Tests whether edge is an exit from a loop.

� mark_loop_exit_edges: Marks all exit edges of all loops with EDGE_LOOP_EXIT
ag.

� get_loop_body, get_loop_body_in_dom_order, get_loop_body_in_bfs_order:
Enumerates the basic blocks in the loop in depth-�rst search order in reversed CFG,
ordered by dominance relation, and breath-�rst search order, respectively.

� get_loop_exit_edges: Enumerates the exit edges of a loop.

� just_once_each_iteration_p: Returns true if the basic block is executed exactly
once during each iteration of a loop (that is, it does not belong to a sub-loop, and it
dominates the latch of the loop).

11.3 Loop manipulation

The loops tree can be manipulated using the following functions:

� flow_loop_tree_node_add: Adds a node to the tree.

� flow_loop_tree_node_remove: Removes a node from the tree.

� add_bb_to_loop: Adds a basic block to a loop.

� remove_bb_from_loops: Removes a basic block from loops.

The specialized versions of several low-level CFG functions that also update loop struc-
tures are provided:

� loop_split_edge_with: Splits an edge, and places a speci�ed RTL code on it. On
GIMPLE, the function can still be used, but the code must be NULL.

� bsi_insert_on_edge_immediate_loop: Inserts code on edge, splitting it if necessary.
Only works on GIMPLE.

� remove_path: Removes an edge and all blocks it dominates.

� loop_commit_inserts: Commits insertions scheduled on edges, and sets loops for the
new blocks. This function can only be used on GIMPLE.

� split_loop_exit_edge: Splits exit edge of the loop, ensuring that PHI node argu-
ments remain in the loop (this ensures that loop-closed SSA form is preserved). Only
useful on GIMPLE.

Finally, there are some higher-level loop transformations implemented. While some of
them are written so that they should work on non-innermost loops, they are mostly untested
in that case, and at the moment, they are only reliable for the innermost loops:

134 GNU Compiler Collection (GCC) Internals

� create_iv: Creates a new induction variable. Only works on GIMPLE. standard_
iv_increment_position can be used to �nd a suitable place for the iv increment.

� duplicate_loop_to_header_edge, tree_duplicate_loop_to_header_edge: These
functions (on RTL and on GIMPLE) duplicate the body of the loop prescribed number
of times on one of the edges entering loop header, thus performing either loop unrolling
or loop peeling. can_duplicate_loop_p (can_unroll_loop_p on GIMPLE) must be
true for the duplicated loop.

� loop_version, tree_ssa_loop_version: These function create a copy of a loop, and
a branch before them that selects one of them depending on the prescribed condition.
This is useful for optimizations that need to verify some assumptions in runtime (one
of the copies of the loop is usually left unchanged, while the other one is transformed
in some way).

� tree_unroll_loop: Unrolls the loop, including peeling the extra iterations to make
the number of iterations divisible by unroll factor, updating the exit condition, and
removing the exits that now cannot be taken. Works only on GIMPLE.

11.4 Loop-closed SSA form

Throughout the loop optimizations on tree level, one extra condition is enforced on the
SSA form: No SSA name is used outside of the loop in that it is de�ned. The SSA form
satisfying this condition is called \loop-closed SSA form" { LCSSA. To enforce LCSSA, PHI
nodes must be created at the exits of the loops for the SSA names that are used outside of
them. Only the real operands (not virtual SSA names) are held in LCSSA, in order to save
memory.

There are various bene�ts of LCSSA:

� Many optimizations (value range analysis, �nal value replacement) are interested in
the values that are de�ned in the loop and used outside of it, i.e., exactly those for that
we create new PHI nodes.

� In induction variable analysis, it is not necessary to specify the loop in that the analysis
should be performed { the scalar evolution analysis always returns the results with
respect to the loop in that the SSA name is de�ned.

� It makes updating of SSA form during loop transformations simpler. Without LCSSA,
operations like loop unrolling may force creation of PHI nodes arbitrarily far from
the loop, while in LCSSA, the SSA form can be updated locally. However, since we
only keep real operands in LCSSA, we cannot use this advantage (we could have local
updating of real operands, but it is not much more e�cient than to use generic SSA
form updating for it as well; the amount of changes to SSA is the same).

However, it also means LCSSA must be updated. This is usually straightforward, unless
you create a new value in loop and use it outside, or unless you manipulate loop exit
edges (functions are provided to make these manipulations simple). rewrite_into_loop_
closed_ssa is used to rewrite SSA form to LCSSA, and verify_loop_closed_ssa to check
that the invariant of LCSSA is preserved.

Chapter 11: Analysis and Representation of Loops 135

11.5 Scalar evolutions

Scalar evolutions (SCEV) are used to represent results of induction variable analysis on
GIMPLE. They enable us to represent variables with complicated behavior in a sim-
ple and consistent way (we only use it to express values of polynomial induction vari-
ables, but it is possible to extend it). The interfaces to SCEV analysis are declared in
`tree-scalar-evolution.h'. To use scalar evolutions analysis, scev_initialize must be
used. To stop using SCEV, scev_finalize should be used. SCEV analysis caches results
in order to save time and memory. This cache however is made invalid by most of the
loop transformations, including removal of code. If such a transformation is performed,
scev_reset must be called to clean the caches.

Given an SSA name, its behavior in loops can be analyzed using the analyze_scalar_

evolution function. The returned SCEV however does not have to be fully analyzed
and it may contain references to other SSA names de�ned in the loop. To resolve these
(potentially recursive) references, instantiate_parameters or resolve_mixers functions
must be used. instantiate_parameters is useful when you use the results of SCEV only
for some analysis, and when you work with whole nest of loops at once. It will try replacing
all SSA names by their SCEV in all loops, including the super-loops of the current loop,
thus providing a complete information about the behavior of the variable in the loop nest.
resolve_mixers is useful if you work with only one loop at a time, and if you possibly need
to create code based on the value of the induction variable. It will only resolve the SSA
names de�ned in the current loop, leaving the SSA names de�ned outside unchanged, even
if their evolution in the outer loops is known.

The SCEV is a normal tree expression, except for the fact that it may contain several
special tree nodes. One of them is SCEV_NOT_KNOWN, used for SSA names whose value cannot
be expressed. The other one is POLYNOMIAL_CHREC. Polynomial chrec has three arguments {
base, step and loop (both base and step may contain further polynomial chrecs). Type of the
expression and of base and step must be the same. A variable has evolution POLYNOMIAL_

CHREC(base, step, loop) if it is (in the speci�ed loop) equivalent to x_1 in the following
example

while (...)
{
x_1 = phi (base, x_2);
x_2 = x_1 + step;

}

Note that this includes the language restrictions on the operations. For example, if we
compile C code and x has signed type, then the over
ow in addition would cause unde�ned
behavior, and we may assume that this does not happen. Hence, the value with this SCEV
cannot over
ow (which restricts the number of iterations of such a loop).

In many cases, one wants to restrict the attention just to a�ne induction variables.
In this case, the extra expressive power of SCEV is not useful, and may complicate the
optimizations. In this case, simple_iv function may be used to analyze a value { the result
is a loop-invariant base and step.

11.6 IV analysis on RTL

The induction variable on RTL is simple and only allows analysis of a�ne induction vari-
ables, and only in one loop at once. The interface is declared in `cfgloop.h'. Before

136 GNU Compiler Collection (GCC) Internals

analyzing induction variables in a loop L, iv_analysis_loop_init function must be called
on L. After the analysis (possibly calling iv_analysis_loop_init for several loops) is �n-
ished, iv_analysis_done should be called. The following functions can be used to access
the results of the analysis:

� iv_analyze: Analyzes a single register used in the given insn. If no use of the register
in this insn is found, the following insns are scanned, so that this function can be called
on the insn returned by get condition.

� iv_analyze_result: Analyzes result of the assignment in the given insn.

� iv_analyze_expr: Analyzes a more complicated expression. All its operands are ana-
lyzed by iv_analyze, and hence they must be used in the speci�ed insn or one of the
following insns.

The description of the induction variable is provided in struct rtx_iv. In order to
handle subregs, the representation is a bit complicated; if the value of the extend �eld is
not UNKNOWN, the value of the induction variable in the i-th iteration is

delta + mult * extend_{extend_mode} (subreg_{mode} (base + i * step)),

with the following exception: if first_special is true, then the value in the �rst iteration
(when i is zero) is delta + mult * base. However, if extend is equal to UNKNOWN, then
first_special must be false, delta 0, mult 1 and the value in the i-th iteration is

subreg_{mode} (base + i * step)

The function get_iv_value can be used to perform these calculations.

11.7 Number of iterations analysis

Both on GIMPLE and on RTL, there are functions available to determine the number of
iterations of a loop, with a similar interface. In many cases, it is not possible to determine
number of iterations unconditionally { the determined number is correct only if some as-
sumptions are satis�ed. The analysis tries to verify these conditions using the information
contained in the program; if it fails, the conditions are returned together with the result.
The following information and conditions are provided by the analysis:

� assumptions: If this condition is false, the rest of the information is invalid.

� noloop_assumptions on RTL, may_be_zero on GIMPLE: If this condition is true, the
loop exits in the �rst iteration.

� infinite: If this condition is true, the loop is in�nite. This condition is only available
on RTL. On GIMPLE, conditions for �niteness of the loop are included in assumptions.

� niter_expr on RTL, niter on GIMPLE: The expression that gives number of iter-
ations. The number of iterations is de�ned as the number of executions of the loop
latch.

Both on GIMPLE and on RTL, it necessary for the induction variable analysis framework
to be initialized (SCEV on GIMPLE, loop-iv on RTL). On GIMPLE, the results are stored
to struct tree_niter_desc structure. Number of iterations before the loop is exited
through a given exit can be determined using number_of_iterations_exit function. On
RTL, the results are returned in struct niter_desc structure. The corresponding function
is named check_simple_exit. There are also functions that pass through all the exits of
a loop and try to �nd one with easy to determine number of iterations { find_loop_niter

Chapter 11: Analysis and Representation of Loops 137

on GIMPLE and find_simple_exit on RTL. Finally, there are functions that provide the
same information, but additionally cache it, so that repeated calls to number of iterations
are not so costly { number_of_iterations_in_loop on GIMPLE and get_simple_loop_

desc on RTL.

Note that some of these functions may behave slightly di�erently than others { some of
them return only the expression for the number of iterations, and fail if there are some as-
sumptions. The function number_of_iterations_in_loop works only for single-exit loops,
and it returns the value for number of iterations higher by one with respect to all other
functions (i.e., it returns number of executions of the exit statement, not of the loop latch).

11.8 Data Dependency Analysis

The code for the data dependence analysis can be found in `tree-data-ref.c' and its inter-
face and data structures are described in `tree-data-ref.h'. The function that computes
the data dependences for all the array and pointer references for a given loop is compute_
data_dependences_for_loop. This function is currently used by the linear loop transform
and the vectorization passes. Before calling this function, one has to allocate two vectors:
a �rst vector will contain the set of data references that are contained in the analyzed loop
body, and the second vector will contain the dependence relations between the data refer-
ences. Thus if the vector of data references is of size n, the vector containing the dependence
relations will contain n*n elements. However if the analyzed loop contains side e�ects, such
as calls that potentially can interfere with the data references in the current analyzed loop,
the analysis stops while scanning the loop body for data references, and inserts a single
chrec_dont_know in the dependence relation array.

The data references are discovered in a particular order during the scanning of the loop
body: the loop body is analyzed in execution order, and the data references of each state-
ment are pushed at the end of the data reference array. Two data references syntactically
occur in the program in the same order as in the array of data references. This syntactic
order is important in some classical data dependence tests, and mapping this order to the
elements of this array avoids costly queries to the loop body representation.

Three types of data references are currently handled: ARRAY REF, INDIRECT REF
and COMPONENT REF. The data structure for the data reference is data_reference,
where data_reference_p is a name of a pointer to the data reference structure. The
structure contains the following elements:

� base_object_info: Provides information about the base object of the data reference
and its access functions. These access functions represent the evolution of the data
reference in the loop relative to its base, in keeping with the classical meaning of the
data reference access function for the support of arrays. For example, for a reference
a.b[i][j], the base object is a.b and the access functions, one for each array subscript,
are: {i_init, + i_step}_1, {j_init, +, j_step}_2.

� first_location_in_loop: Provides information about the �rst location accessed by
the data reference in the loop and about the access function used to represent evolution
relative to this location. This data is used to support pointers, and is not used for arrays
(for which we have base objects). Pointer accesses are represented as a one-dimensional
access that starts from the �rst location accessed in the loop. For example:

for1 i

138 GNU Compiler Collection (GCC) Internals

for2 j
*((int *)p + i + j) = a[i][j];

The access function of the pointer access is {0, + 4B}_for2 relative to p + i. The access
functions of the array are {i_init, + i_step}_for1 and {j_init, +, j_step}_for2

relative to a.

Usually, the object the pointer refers to is either unknown, or we can't prove that the
access is con�ned to the boundaries of a certain object.

Two data references can be compared only if at least one of these two representations
has all its �elds �lled for both data references.

The current strategy for data dependence tests is as follows: If both a and b are
represented as arrays, compare a.base_object and b.base_object; if they are equal,
apply dependence tests (use access functions based on base objects). Else if both a and
b are represented as pointers, compare a.first_location and b.first_location; if
they are equal, apply dependence tests (use access functions based on �rst location).
However, if a and b are represented di�erently, only try to prove that the bases are
de�nitely di�erent.

� Aliasing information.

� Alignment information.

The structure describing the relation between two data references is data_dependence_
relation and the shorter name for a pointer to such a structure is ddr_p. This structure
contains:

� a pointer to each data reference,

� a tree node are_dependent that is set to chrec_known if the analysis has proved that
there is no dependence between these two data references, chrec_dont_know if the
analysis was not able to determine any useful result and potentially there could exist
a dependence between these data references, and are_dependent is set to NULL_TREE

if there exist a dependence relation between the data references, and the description
of this dependence relation is given in the subscripts, dir_vects, and dist_vects

arrays,

� a boolean that determines whether the dependence relation can be represented by a
classical distance vector,

� an array subscripts that contains a description of each subscript of the data references.
Given two array accesses a subscript is the tuple composed of the access functions for
a given dimension. For example, given A[f1][f2][f3] and B[g1][g2][g3], there are
three subscripts: (f1, g1), (f2, g2), (f3, g3).

� two arrays dir_vects and dist_vects that contain classical representations of the
data dependences under the form of direction and distance dependence vectors,

� an array of loops loop_nest that contains the loops to which the distance and direction
vectors refer to.

Several functions for pretty printing the information extracted by the data dependence
analysis are available: dump_ddrs prints with a maximum verbosity the details of a data
dependence relations array, dump_dist_dir_vectors prints only the classical distance and
direction vectors for a data dependence relations array, and dump_data_references prints
the details of the data references contained in a data reference array.

Chapter 11: Analysis and Representation of Loops 139

11.9 Linear loop transformations framework

Lambda is a framework that allows transformations of loops using non-singular matrix
based transformations of the iteration space and loop bounds. This allows compositions of
skewing, scaling, interchange, and reversal transformations. These transformations are often
used to improve cache behavior or remove inner loop dependencies to allow parallelization
and vectorization to take place.

To perform these transformations, Lambda requires that the loopnest be converted into
a internal form that can be matrix transformed easily. To do this conversion, the function
gcc_loopnest_to_lambda_loopnest is provided. If the loop cannot be transformed using
lambda, this function will return NULL.

Once a lambda_loopnest is obtained from the conversion function, it can be transformed
by using lambda_loopnest_transform, which takes a transformation matrix to apply. Note
that it is up to the caller to verify that the transformation matrix is legal to apply to the
loop (dependence respecting, etc). Lambda simply applies whatever matrix it is told to
provide. It can be extended to make legal matrices out of any non-singular matrix, but
this is not currently implemented. Legality of a matrix for a given loopnest can be veri�ed
using lambda_transform_legal_p.

Given a transformed loopnest, conversion back into gcc IR is done by lambda_loopnest_

to_gcc_loopnest. This function will modify the loops so that they match the transformed
loopnest.

140 GNU Compiler Collection (GCC) Internals

Chapter 12: RTL Representation 141

12 RTL Representation

Most of the work of the compiler is done on an intermediate representation called register
transfer language. In this language, the instructions to be output are described, pretty
much one by one, in an algebraic form that describes what the instruction does.

RTL is inspired by Lisp lists. It has both an internal form, made up of structures that
point at other structures, and a textual form that is used in the machine description and
in printed debugging dumps. The textual form uses nested parentheses to indicate the
pointers in the internal form.

12.1 RTL Object Types

RTL uses �ve kinds of objects: expressions, integers, wide integers, strings and vectors.
Expressions are the most important ones. An RTL expression (\RTX", for short) is a C
structure, but it is usually referred to with a pointer; a type that is given the typedef name
rtx.

An integer is simply an int; their written form uses decimal digits. A wide integer is an
integral object whose type is HOST_WIDE_INT; their written form uses decimal digits.

A string is a sequence of characters. In core it is represented as a char * in usual C
fashion, and it is written in C syntax as well. However, strings in RTL may never be null.
If you write an empty string in a machine description, it is represented in core as a null
pointer rather than as a pointer to a null character. In certain contexts, these null pointers
instead of strings are valid. Within RTL code, strings are most commonly found inside
symbol_ref expressions, but they appear in other contexts in the RTL expressions that
make up machine descriptions.

In a machine description, strings are normally written with double quotes, as you would
in C. However, strings in machine descriptions may extend over many lines, which is invalid
C, and adjacent string constants are not concatenated as they are in C. Any string constant
may be surrounded with a single set of parentheses. Sometimes this makes the machine
description easier to read.

There is also a special syntax for strings, which can be useful when C code is embedded
in a machine description. Wherever a string can appear, it is also valid to write a C-style
brace block. The entire brace block, including the outermost pair of braces, is considered to
be the string constant. Double quote characters inside the braces are not special. Therefore,
if you write string constants in the C code, you need not escape each quote character with
a backslash.

A vector contains an arbitrary number of pointers to expressions. The number of elements
in the vector is explicitly present in the vector. The written form of a vector consists
of square brackets (`[...]') surrounding the elements, in sequence and with whitespace
separating them. Vectors of length zero are not created; null pointers are used instead.

Expressions are classi�ed by expression codes (also called RTX codes). The expression
code is a name de�ned in `rtl.def', which is also (in uppercase) a C enumeration constant.
The possible expression codes and their meanings are machine-independent. The code of
an RTX can be extracted with the macro GET_CODE (x) and altered with PUT_CODE (x,

newcode).

142 GNU Compiler Collection (GCC) Internals

The expression code determines how many operands the expression contains, and what
kinds of objects they are. In RTL, unlike Lisp, you cannot tell by looking at an operand what
kind of object it is. Instead, you must know from its context|from the expression code of
the containing expression. For example, in an expression of code subreg, the �rst operand
is to be regarded as an expression and the second operand as an integer. In an expression
of code plus, there are two operands, both of which are to be regarded as expressions. In
a symbol_ref expression, there is one operand, which is to be regarded as a string.

Expressions are written as parentheses containing the name of the expression type, its

ags and machine mode if any, and then the operands of the expression (separated by
spaces).

Expression code names in the `md' �le are written in lowercase, but when they appear in C
code they are written in uppercase. In this manual, they are shown as follows: const_int.

In a few contexts a null pointer is valid where an expression is normally wanted. The
written form of this is (nil).

12.2 RTL Classes and Formats

The various expression codes are divided into several classes, which are represented by single
characters. You can determine the class of an RTX code with the macro GET_RTX_CLASS

(code). Currently, `rtl.def' de�nes these classes:

RTX_OBJ An RTX code that represents an actual object, such as a register (REG) or a
memory location (MEM, SYMBOL_REF). LO_SUM) is also included; instead, SUBREG
and STRICT_LOW_PART are not in this class, but in class x.

RTX_CONST_OBJ

An RTX code that represents a constant object. HIGH is also included in this
class.

RTX_COMPARE

An RTX code for a non-symmetric comparison, such as GEU or LT.

RTX_COMM_COMPARE

An RTX code for a symmetric (commutative) comparison, such as EQ or
ORDERED.

RTX_UNARY

An RTX code for a unary arithmetic operation, such as NEG, NOT, or ABS. This
category also includes value extension (sign or zero) and conversions between
integer and
oating point.

RTX_COMM_ARITH

An RTX code for a commutative binary operation, such as PLUS or AND. NE

and EQ are comparisons, so they have class <.

RTX_BIN_ARITH

An RTX code for a non-commutative binary operation, such as MINUS, DIV, or
ASHIFTRT.

Chapter 12: RTL Representation 143

RTX_BITFIELD_OPS

An RTX code for a bit-�eld operation. Currently only ZERO_EXTRACT and
SIGN_EXTRACT. These have three inputs and are lvalues (so they can be used
for insertion as well). See Section 12.11 [Bit-Fields], page 168.

RTX_TERNARY

An RTX code for other three input operations. Currently only IF_THEN_ELSE

and VEC_MERGE.

RTX_INSN An RTX code for an entire instruction: INSN, JUMP_INSN, and CALL_INSN. See
Section 12.18 [Insns], page 177.

RTX_MATCH

An RTX code for something that matches in insns, such as MATCH_DUP. These
only occur in machine descriptions.

RTX_AUTOINC

An RTX code for an auto-increment addressing mode, such as POST_INC.

RTX_EXTRA

All other RTX codes. This category includes the remaining codes used only in
machine descriptions (DEFINE_*, etc.). It also includes all the codes describing
side e�ects (SET, USE, CLOBBER, etc.) and the non-insns that may appear on
an insn chain, such as NOTE, BARRIER, and CODE_LABEL. SUBREG is also part of
this class.

For each expression code, `rtl.def' speci�es the number of contained objects and their
kinds using a sequence of characters called the format of the expression code. For example,
the format of subreg is `ei'.

These are the most commonly used format characters:

e An expression (actually a pointer to an expression).

i An integer.

w A wide integer.

s A string.

E A vector of expressions.

A few other format characters are used occasionally:

u `u' is equivalent to `e' except that it is printed di�erently in debugging dumps.
It is used for pointers to insns.

n `n' is equivalent to `i' except that it is printed di�erently in debugging dumps.
It is used for the line number or code number of a note insn.

S `S' indicates a string which is optional. In the RTL objects in core, `S' is
equivalent to `s', but when the object is read, from an `md' �le, the string value
of this operand may be omitted. An omitted string is taken to be the null
string.

144 GNU Compiler Collection (GCC) Internals

V `V' indicates a vector which is optional. In the RTL objects in core, `V' is
equivalent to `E', but when the object is read from an `md' �le, the vector value
of this operand may be omitted. An omitted vector is e�ectively the same as a
vector of no elements.

B `B' indicates a pointer to basic block structure.

0 `0' means a slot whose contents do not �t any normal category. `0' slots are
not printed at all in dumps, and are often used in special ways by small parts
of the compiler.

There are macros to get the number of operands and the format of an expression code:

GET_RTX_LENGTH (code)

Number of operands of an RTX of code code.

GET_RTX_FORMAT (code)

The format of an RTX of code code, as a C string.

Some classes of RTX codes always have the same format. For example, it is safe to assume
that all comparison operations have format ee.

1 All codes of this class have format e.

<

c

2 All codes of these classes have format ee.

b

3 All codes of these classes have format eee.

i All codes of this class have formats that begin with iuueiee. See Section 12.18
[Insns], page 177. Note that not all RTL objects linked onto an insn chain are
of class i.

o

m

x You can make no assumptions about the format of these codes.

12.3 Access to Operands

Operands of expressions are accessed using the macros XEXP, XINT, XWINT and XSTR. Each
of these macros takes two arguments: an expression-pointer (RTX) and an operand number
(counting from zero). Thus,

XEXP (x, 2)

accesses operand 2 of expression x, as an expression.
XINT (x, 2)

accesses the same operand as an integer. XSTR, used in the same fashion, would access it as
a string.

Any operand can be accessed as an integer, as an expression or as a string. You must
choose the correct method of access for the kind of value actually stored in the operand.
You would do this based on the expression code of the containing expression. That is also
how you would know how many operands there are.

Chapter 12: RTL Representation 145

For example, if x is a subreg expression, you know that it has two operands which can
be correctly accessed as XEXP (x, 0) and XINT (x, 1). If you did XINT (x, 0), you would
get the address of the expression operand but cast as an integer; that might occasionally
be useful, but it would be cleaner to write (int) XEXP (x, 0). XEXP (x, 1) would also
compile without error, and would return the second, integer operand cast as an expression
pointer, which would probably result in a crash when accessed. Nothing stops you from
writing XEXP (x, 28) either, but this will access memory past the end of the expression
with unpredictable results.

Access to operands which are vectors is more complicated. You can use the macro XVEC

to get the vector-pointer itself, or the macros XVECEXP and XVECLEN to access the elements
and length of a vector.

XVEC (exp, idx)

Access the vector-pointer which is operand number idx in exp.

XVECLEN (exp, idx)

Access the length (number of elements) in the vector which is in operand number
idx in exp. This value is an int.

XVECEXP (exp, idx, eltnum)

Access element number eltnum in the vector which is in operand number idx
in exp. This value is an RTX.

It is up to you to make sure that eltnum is not negative and is less than XVECLEN

(exp, idx).

All the macros de�ned in this section expand into lvalues and therefore can be used to
assign the operands, lengths and vector elements as well as to access them.

12.4 Access to Special Operands

Some RTL nodes have special annotations associated with them.

MEM

MEM_ALIAS_SET (x)

If 0, x is not in any alias set, and may alias anything. Otherwise,
x can only alias MEMs in a con
icting alias set. This value is set in
a language-dependent manner in the front-end, and should not be
altered in the back-end. In some front-ends, these numbers may
correspond in some way to types, or other language-level entities,
but they need not, and the back-end makes no such assumptions.
These set numbers are tested with alias_sets_conflict_p.

MEM_EXPR (x)

If this register is known to hold the value of some user-level dec-
laration, this is that tree node. It may also be a COMPONENT_REF,
in which case this is some �eld reference, and TREE_OPERAND (x,

0) contains the declaration, or another COMPONENT_REF, or null if
there is no compile-time object associated with the reference.

MEM_OFFSET (x)

The o�set from the start of MEM_EXPR as a CONST_INT rtx.

146 GNU Compiler Collection (GCC) Internals

MEM_SIZE (x)

The size in bytes of the memory reference as a CONST_INT rtx.
This is mostly relevant for BLKmode references as otherwise the size
is implied by the mode.

MEM_ALIGN (x)

The known alignment in bits of the memory reference.

REG

ORIGINAL_REGNO (x)

This �eld holds the number the register \originally" had; for a
pseudo register turned into a hard reg this will hold the old pseudo
register number.

REG_EXPR (x)

If this register is known to hold the value of some user-level decla-
ration, this is that tree node.

REG_OFFSET (x)

If this register is known to hold the value of some user-level decla-
ration, this is the o�set into that logical storage.

SYMBOL_REF

SYMBOL_REF_DECL (x)

If the symbol_ref x was created for a VAR_DECL or a FUNCTION_

DECL, that tree is recorded here. If this value is null, then x was
created by back end code generation routines, and there is no as-
sociated front end symbol table entry.

SYMBOL_REF_DECL may also point to a tree of class 'c', that is,
some sort of constant. In this case, the symbol_ref is an entry in
the per-�le constant pool; again, there is no associated front end
symbol table entry.

SYMBOL_REF_CONSTANT (x)

If `CONSTANT_POOL_ADDRESS_P (x)' is true, this is the constant
pool entry for x. It is null otherwise.

SYMBOL_REF_DATA (x)

A �eld of opaque type used to store SYMBOL_REF_DECL or SYMBOL_
REF_CONSTANT.

SYMBOL_REF_FLAGS (x)

In a symbol_ref, this is used to communicate various predicates
about the symbol. Some of these are common enough to be com-
puted by common code, some are speci�c to the target. The com-
mon bits are:

SYMBOL_FLAG_FUNCTION

Set if the symbol refers to a function.

SYMBOL_FLAG_LOCAL

Set if the symbol is local to this \module". See TARGET_
BINDS_LOCAL_P.

Chapter 12: RTL Representation 147

SYMBOL_FLAG_EXTERNAL

Set if this symbol is not de�ned in this translation
unit. Note that this is not the inverse of SYMBOL_FLAG_
LOCAL.

SYMBOL_FLAG_SMALL

Set if the symbol is located in the small data section.
See TARGET_IN_SMALL_DATA_P.

SYMBOL_REF_TLS_MODEL (x)

This is a multi-bit �eld accessor that returns the tls_
model to be used for a thread-local storage symbol. It
returns zero for non-thread-local symbols.

SYMBOL_FLAG_HAS_BLOCK_INFO

Set if the symbol has SYMBOL_REF_BLOCK and SYMBOL_

REF_BLOCK_OFFSET �elds.

SYMBOL_FLAG_ANCHOR

Set if the symbol is used as a section anchor. \Sec-
tion anchors" are symbols that have a known position
within an object_block and that can be used to ac-
cess nearby members of that block. They are used to
implement `-fsection-anchors'.

If this
ag is set, then SYMBOL_FLAG_HAS_BLOCK_INFO

will be too.

Bits beginning with SYMBOL_FLAG_MACH_DEP are available for the
target's use.

SYMBOL_REF_BLOCK (x)

If `SYMBOL_REF_HAS_BLOCK_INFO_P (x)', this is the `object_block' structure
to which the symbol belongs, or NULL if it has not been assigned a block.

SYMBOL_REF_BLOCK_OFFSET (x)

If `SYMBOL_REF_HAS_BLOCK_INFO_P (x)', this is the o�set of x from the �rst
object in `SYMBOL_REF_BLOCK (x)'. The value is negative if x has not yet been
assigned to a block, or it has not been given an o�set within that block.

12.5 Flags in an RTL Expression

RTL expressions contain several
ags (one-bit bit-�elds) that are used in certain types of
expression. Most often they are accessed with the following macros, which expand into
lvalues.

CONSTANT_POOL_ADDRESS_P (x)

Nonzero in a symbol_ref if it refers to part of the current function's constant
pool. For most targets these addresses are in a .rodata section entirely separate
from the function, but for some targets the addresses are close to the beginning
of the function. In either case GCC assumes these addresses can be addressed
directly, perhaps with the help of base registers. Stored in the unchanging �eld
and printed as `/u'.

148 GNU Compiler Collection (GCC) Internals

CONST_OR_PURE_CALL_P (x)

In a call_insn, note, or an expr_list for notes, indicates that the insn rep-
resents a call to a const or pure function. Stored in the unchanging �eld and
printed as `/u'.

INSN_ANNULLED_BRANCH_P (x)

In a jump_insn, call_insn, or insn indicates that the branch is an annulling
one. See the discussion under sequence below. Stored in the unchanging �eld
and printed as `/u'.

INSN_DELETED_P (x)

In an insn, call_insn, jump_insn, code_label, barrier, or note, nonzero if
the insn has been deleted. Stored in the volatil �eld and printed as `/v'.

INSN_FROM_TARGET_P (x)

In an insn or jump_insn or call_insn in a delay slot of a branch, indicates that
the insn is from the target of the branch. If the branch insn has INSN_ANNULLED_
BRANCH_P set, this insn will only be executed if the branch is taken. For annulled
branches with INSN_FROM_TARGET_P clear, the insn will be executed only if the
branch is not taken. When INSN_ANNULLED_BRANCH_P is not set, this insn will
always be executed. Stored in the in_struct �eld and printed as `/s'.

LABEL_PRESERVE_P (x)

In a code_label or note, indicates that the label is referenced by code or data
not visible to the RTL of a given function. Labels referenced by a non-local
goto will have this bit set. Stored in the in_struct �eld and printed as `/s'.

LABEL_REF_NONLOCAL_P (x)

In label_ref and reg_label expressions, nonzero if this is a reference to a
non-local label. Stored in the volatil �eld and printed as `/v'.

MEM_IN_STRUCT_P (x)

In mem expressions, nonzero for reference to an entire structure, union or array,
or to a component of one. Zero for references to a scalar variable or through
a pointer to a scalar. If both this
ag and MEM_SCALAR_P are clear, then we
don't know whether this mem is in a structure or not. Both
ags should never
be simultaneously set. Stored in the in_struct �eld and printed as `/s'.

MEM_KEEP_ALIAS_SET_P (x)

In mem expressions, 1 if we should keep the alias set for this mem unchanged
when we access a component. Set to 1, for example, when we are already in
a non-addressable component of an aggregate. Stored in the jump �eld and
printed as `/j'.

MEM_SCALAR_P (x)

In mem expressions, nonzero for reference to a scalar known not to be a member
of a structure, union, or array. Zero for such references and for indirections
through pointers, even pointers pointing to scalar types. If both this
ag and
MEM_IN_STRUCT_P are clear, then we don't know whether this mem is in a struc-
ture or not. Both
ags should never be simultaneously set. Stored in the
frame_related �eld and printed as `/f'.

Chapter 12: RTL Representation 149

MEM_VOLATILE_P (x)

In mem, asm_operands, and asm_input expressions, nonzero for volatile memory
references. Stored in the volatil �eld and printed as `/v'.

MEM_NOTRAP_P (x)

In mem, nonzero for memory references that will not trap. Stored in the call

�eld and printed as `/c'.

REG_FUNCTION_VALUE_P (x)

Nonzero in a reg if it is the place in which this function's value is going to be
returned. (This happens only in a hard register.) Stored in the integrated

�eld and printed as `/i'.

REG_POINTER (x)

Nonzero in a reg if the register holds a pointer. Stored in the frame_related
�eld and printed as `/f'.

REG_USERVAR_P (x)

In a reg, nonzero if it corresponds to a variable present in the user's source
code. Zero for temporaries generated internally by the compiler. Stored in the
volatil �eld and printed as `/v'.

The same hard register may be used also for collecting the values of functions
called by this one, but REG_FUNCTION_VALUE_P is zero in this kind of use.

RTX_FRAME_RELATED_P (x)

Nonzero in an insn, call_insn, jump_insn, barrier, or set which is part of a
function prologue and sets the stack pointer, sets the frame pointer, or saves a
register. This
ag should also be set on an instruction that sets up a temporary
register to use in place of the frame pointer. Stored in the frame_related �eld
and printed as `/f'.

In particular, on RISC targets where there are limits on the sizes of immediate
constants, it is sometimes impossible to reach the register save area directly from
the stack pointer. In that case, a temporary register is used that is near enough
to the register save area, and the Canonical Frame Address, i.e., DWARF2's
logical frame pointer, register must (temporarily) be changed to be this tem-
porary register. So, the instruction that sets this temporary register must be
marked as RTX_FRAME_RELATED_P.

If the marked instruction is overly complex (de�ned in terms of what
dwarf2out_frame_debug_expr can handle), you will also have to create a
REG_FRAME_RELATED_EXPR note and attach it to the instruction. This note
should contain a simple expression of the computation performed by this
instruction, i.e., one that dwarf2out_frame_debug_expr can handle.

This
ag is required for exception handling support on targets with RTL pro-
logues.

code_label, insn_list, const, or note if it resulted from an in-line function
call. Stored in the integrated �eld and printed as `/i'.

MEM_READONLY_P (x)

Nonzero in a mem, if the memory is statically allocated and read-only.

150 GNU Compiler Collection (GCC) Internals

Read-only in this context means never modi�ed during the lifetime of the pro-
gram, not necessarily in ROM or in write-disabled pages. A common example
of the later is a shared library's global o�set table. This table is initialized by
the runtime loader, so the memory is technically writable, but after control is
transfered from the runtime loader to the application, this memory will never
be subsequently modi�ed.

Stored in the unchanging �eld and printed as `/u'.

SCHED_GROUP_P (x)

During instruction scheduling, in an insn, call_insn or jump_insn, indicates
that the previous insn must be scheduled together with this insn. This is
used to ensure that certain groups of instructions will not be split up by the
instruction scheduling pass, for example, use insns before a call_insn may not
be separated from the call_insn. Stored in the in_struct �eld and printed
as `/s'.

SET_IS_RETURN_P (x)

For a set, nonzero if it is for a return. Stored in the jump �eld and printed as
`/j'.

SIBLING_CALL_P (x)

For a call_insn, nonzero if the insn is a sibling call. Stored in the jump �eld
and printed as `/j'.

STRING_POOL_ADDRESS_P (x)

For a symbol_ref expression, nonzero if it addresses this function's string con-
stant pool. Stored in the frame_related �eld and printed as `/f'.

SUBREG_PROMOTED_UNSIGNED_P (x)

Returns a value greater then zero for a subreg that has SUBREG_PROMOTED_

VAR_P nonzero if the object being referenced is kept zero-extended, zero if it
is kept sign-extended, and less then zero if it is extended some other way via
the ptr_extend instruction. Stored in the unchanging �eld and volatil �eld,
printed as `/u' and `/v'. This macro may only be used to get the value it
may not be used to change the value. Use SUBREG_PROMOTED_UNSIGNED_SET to
change the value.

SUBREG_PROMOTED_UNSIGNED_SET (x)

Set the unchanging and volatil �elds in a subreg to re
ect zero, sign, or
other extension. If volatil is zero, then unchanging as nonzero means zero
extension and as zero means sign extension. If volatil is nonzero then some
other type of extension was done via the ptr_extend instruction.

SUBREG_PROMOTED_VAR_P (x)

Nonzero in a subreg if it was made when accessing an object that was promoted
to a wider mode in accord with the PROMOTED_MODE machine description macro
(see Section 15.5 [Storage Layout], page 304). In this case, the mode of the
subreg is the declared mode of the object and the mode of SUBREG_REG is the
mode of the register that holds the object. Promoted variables are always either
sign- or zero-extended to the wider mode on every assignment. Stored in the
in_struct �eld and printed as `/s'.

Chapter 12: RTL Representation 151

SYMBOL_REF_USED (x)

In a symbol_ref, indicates that x has been used. This is normally only used
to ensure that x is only declared external once. Stored in the used �eld.

SYMBOL_REF_WEAK (x)

In a symbol_ref, indicates that x has been declared weak. Stored in the
integrated �eld and printed as `/i'.

SYMBOL_REF_FLAG (x)

In a symbol_ref, this is used as a
ag for machine-speci�c purposes. Stored in
the volatil �eld and printed as `/v'.

Most uses of SYMBOL_REF_FLAG are historic and may be subsumed by SYMBOL_

REF_FLAGS. Certainly use of SYMBOL_REF_FLAGS is mandatory if the target
requires more than one bit of storage.

These are the �elds to which the above macros refer:

call In a mem, 1 means that the memory reference will not trap.

In an RTL dump, this
ag is represented as `/c'.

frame_related

In an insn or set expression, 1 means that it is part of a function prologue
and sets the stack pointer, sets the frame pointer, saves a register, or sets up a
temporary register to use in place of the frame pointer.

In reg expressions, 1 means that the register holds a pointer.

In symbol_ref expressions, 1 means that the reference addresses this function's
string constant pool.

In mem expressions, 1 means that the reference is to a scalar.

In an RTL dump, this
ag is represented as `/f'.

in_struct

In mem expressions, it is 1 if the memory datum referred to is all or part of a
structure or array; 0 if it is (or might be) a scalar variable. A reference through
a C pointer has 0 because the pointer might point to a scalar variable. This
information allows the compiler to determine something about possible cases of
aliasing.

In reg expressions, it is 1 if the register has its entire life contained within the
test expression of some loop.

In subreg expressions, 1 means that the subreg is accessing an object that has
had its mode promoted from a wider mode.

In label_ref expressions, 1 means that the referenced label is outside the
innermost loop containing the insn in which the label_ref was found.

In code_label expressions, it is 1 if the label may never be deleted. This is
used for labels which are the target of non-local gotos. Such a label that would
have been deleted is replaced with a note of type NOTE_INSN_DELETED_LABEL.

In an insn during dead-code elimination, 1 means that the insn is dead code.

In an insn or jump_insn during reorg for an insn in the delay slot of a branch,
1 means that this insn is from the target of the branch.

152 GNU Compiler Collection (GCC) Internals

In an insn during instruction scheduling, 1 means that this insn must be sched-
uled as part of a group together with the previous insn.

In an RTL dump, this
ag is represented as `/s'.

integrated

In an insn, insn_list, or const, 1 means the RTL was produced by procedure
integration.

In reg expressions, 1 means the register contains the value to be returned by
the current function. On machines that pass parameters in registers, the same
register number may be used for parameters as well, but this
ag is not set on
such uses.

In symbol_ref expressions, 1 means the referenced symbol is weak.

In an RTL dump, this
ag is represented as `/i'.

jump In a mem expression, 1 means we should keep the alias set for this mem un-
changed when we access a component.

In a set, 1 means it is for a return.

In a call_insn, 1 means it is a sibling call.

In an RTL dump, this
ag is represented as `/j'.

unchanging

In reg and mem expressions, 1 means that the value of the expression never
changes.

In subreg expressions, it is 1 if the subreg references an unsigned object whose
mode has been promoted to a wider mode.

In an insn or jump_insn in the delay slot of a branch instruction, 1 means an
annulling branch should be used.

In a symbol_ref expression, 1 means that this symbol addresses something in
the per-function constant pool.

In a call_insn, note, or an expr_list of notes, 1 means that this instruction
is a call to a const or pure function.

In an RTL dump, this
ag is represented as `/u'.

used This
ag is used directly (without an access macro) at the end of RTL generation
for a function, to count the number of times an expression appears in insns.
Expressions that appear more than once are copied, according to the rules for
shared structure (see Section 12.20 [Sharing], page 186).

For a reg, it is used directly (without an access macro) by the leaf register
renumbering code to ensure that each register is only renumbered once.

In a symbol_ref, it indicates that an external declaration for the symbol has
already been written.

volatil In a mem, asm_operands, or asm_input expression, it is 1 if the memory refer-
ence is volatile. Volatile memory references may not be deleted, reordered or
combined.

In a symbol_ref expression, it is used for machine-speci�c purposes.

Chapter 12: RTL Representation 153

In a reg expression, it is 1 if the value is a user-level variable. 0 indicates an
internal compiler temporary.

In an insn, 1 means the insn has been deleted.

In label_ref and reg_label expressions, 1 means a reference to a non-local
label.

In an RTL dump, this
ag is represented as `/v'.

12.6 Machine Modes

A machine mode describes a size of data object and the representation used for it. In the C
code, machine modes are represented by an enumeration type, enum machine_mode, de�ned
in `machmode.def'. Each RTL expression has room for a machine mode and so do certain
kinds of tree expressions (declarations and types, to be precise).

In debugging dumps and machine descriptions, the machine mode of an RTL expression
is written after the expression code with a colon to separate them. The letters `mode' which
appear at the end of each machine mode name are omitted. For example, (reg:SI 38) is
a reg expression with machine mode SImode. If the mode is VOIDmode, it is not written at
all.

Here is a table of machine modes. The term \byte" below refers to an object of BITS_
PER_UNIT bits (see Section 15.5 [Storage Layout], page 304).

BImode \Bit" mode represents a single bit, for predicate registers.

QImode \Quarter-Integer" mode represents a single byte treated as an integer.

HImode \Half-Integer" mode represents a two-byte integer.

PSImode \Partial Single Integer" mode represents an integer which occupies four bytes
but which doesn't really use all four. On some machines, this is the right mode
to use for pointers.

SImode \Single Integer" mode represents a four-byte integer.

PDImode \Partial Double Integer" mode represents an integer which occupies eight bytes
but which doesn't really use all eight. On some machines, this is the right mode
to use for certain pointers.

DImode \Double Integer" mode represents an eight-byte integer.

TImode \Tetra Integer" (?) mode represents a sixteen-byte integer.

OImode \Octa Integer" (?) mode represents a thirty-two-byte integer.

QFmode \Quarter-Floating" mode represents a quarter-precision (single byte)
oating
point number.

HFmode \Half-Floating" mode represents a half-precision (two byte)
oating point num-
ber.

TQFmode \Three-Quarter-Floating" (?) mode represents a three-quarter-precision (three
byte)
oating point number.

154 GNU Compiler Collection (GCC) Internals

SFmode \Single Floating" mode represents a four byte
oating point number. In the
common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a
single-precision IEEE
oating point number; it can also be used for double-
precision (on processors with 16-bit bytes) and single-precision VAX and IBM
types.

DFmode \Double Floating" mode represents an eight byte
oating point number. In the
common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a
double-precision IEEE
oating point number.

XFmode \Extended Floating" mode represents an IEEE extended
oating point number.
This mode only has 80 meaningful bits (ten bytes). Some processors require
such numbers to be padded to twelve bytes, others to sixteen; this mode is used
for either.

SDmode \Single Decimal Floating" mode represents a four byte decimal
oating point
number (as distinct from conventional binary
oating point).

DDmode \Double Decimal Floating" mode represents an eight byte decimal
oating point
number.

TDmode \Tetra Decimal Floating" mode represents a sixteen byte decimal
oating point
number all 128 of whose bits are meaningful.

TFmode \Tetra Floating" mode represents a sixteen byte
oating point number all 128
of whose bits are meaningful. One common use is the IEEE quad-precision
format.

CCmode \Condition Code" mode represents the value of a condition code, which is a
machine-speci�c set of bits used to represent the result of a comparison oper-
ation. Other machine-speci�c modes may also be used for the condition code.
These modes are not used on machines that use cc0 (see see Section 15.16
[Condition Code], page 369).

BLKmode \Block" mode represents values that are aggregates to which none of the other
modes apply. In RTL, only memory references can have this mode, and only if
they appear in string-move or vector instructions. On machines which have no
such instructions, BLKmode will not appear in RTL.

VOIDmode Void mode means the absence of a mode or an unspeci�ed mode. For example,
RTL expressions of code const_int have mode VOIDmode because they can be
taken to have whatever mode the context requires. In debugging dumps of
RTL, VOIDmode is expressed by the absence of any mode.

QCmode, HCmode, SCmode, DCmode, XCmode, TCmode

These modes stand for a complex number represented as a pair of
oating
point values. The
oating point values are in QFmode, HFmode, SFmode, DFmode,
XFmode, and TFmode, respectively.

CQImode, CHImode, CSImode, CDImode, CTImode, COImode

These modes stand for a complex number represented as a pair of integer values.
The integer values are in QImode, HImode, SImode, DImode, TImode, and OImode,
respectively.

Chapter 12: RTL Representation 155

The machine description de�nes Pmode as a C macro which expands into the machine
mode used for addresses. Normally this is the mode whose size is BITS_PER_WORD, SImode
on 32-bit machines.

The only modes which a machine description must support are QImode, and the modes
corresponding to BITS_PER_WORD, FLOAT_TYPE_SIZE and DOUBLE_TYPE_SIZE. The compiler
will attempt to use DImode for 8-byte structures and unions, but this can be prevented by
overriding the de�nition of MAX_FIXED_MODE_SIZE. Alternatively, you can have the compiler
use TImode for 16-byte structures and unions. Likewise, you can arrange for the C type
short int to avoid using HImode.

Very few explicit references to machine modes remain in the compiler and these few
references will soon be removed. Instead, the machine modes are divided into mode classes.
These are represented by the enumeration type enum mode_class de�ned in `machmode.h'.
The possible mode classes are:

MODE_INT Integer modes. By default these are BImode, QImode, HImode, SImode, DImode,
TImode, and OImode.

MODE_PARTIAL_INT

The \partial integer" modes, PQImode, PHImode, PSImode and PDImode.

MODE_FLOAT

Floating point modes. By default these are QFmode, HFmode, TQFmode, SFmode,
DFmode, XFmode and TFmode.

MODE_DECIMAL_FLOAT

Decimal
oating point modes. By default these are SDmode, DDmode and TDmode.

MODE_COMPLEX_INT

Complex integer modes. (These are not currently implemented).

MODE_COMPLEX_FLOAT

Complex
oating point modes. By default these are QCmode, HCmode, SCmode,
DCmode, XCmode, and TCmode.

MODE_FUNCTION

Algol or Pascal function variables including a static chain. (These are not
currently implemented).

MODE_CC Modes representing condition code values. These are CCmode plus any CC_MODE

modes listed in the `machine-modes.def'. See Section 14.12 [Jump Patterns],
page 259, also see Section 15.16 [Condition Code], page 369.

MODE_RANDOM

This is a catchall mode class for modes which don't �t into the above classes.
Currently VOIDmode and BLKmode are in MODE_RANDOM.

Here are some C macros that relate to machine modes:

GET_MODE (x)

Returns the machine mode of the RTX x.

PUT_MODE (x, newmode)

Alters the machine mode of the RTX x to be newmode.

156 GNU Compiler Collection (GCC) Internals

NUM_MACHINE_MODES

Stands for the number of machine modes available on the target machine. This
is one greater than the largest numeric value of any machine mode.

GET_MODE_NAME (m)

Returns the name of mode m as a string.

GET_MODE_CLASS (m)

Returns the mode class of mode m.

GET_MODE_WIDER_MODE (m)

Returns the next wider natural mode. For example, the expression GET_MODE_

WIDER_MODE (QImode) returns HImode.

GET_MODE_SIZE (m)

Returns the size in bytes of a datum of mode m.

GET_MODE_BITSIZE (m)

Returns the size in bits of a datum of mode m.

GET_MODE_MASK (m)

Returns a bitmask containing 1 for all bits in a word that �t within mode m.
This macro can only be used for modes whose bitsize is less than or equal to
HOST_BITS_PER_INT.

GET_MODE_ALIGNMENT (m)

Return the required alignment, in bits, for an object of mode m.

GET_MODE_UNIT_SIZE (m)

Returns the size in bytes of the subunits of a datum of mode m. This is the
same as GET_MODE_SIZE except in the case of complex modes. For them, the
unit size is the size of the real or imaginary part.

GET_MODE_NUNITS (m)

Returns the number of units contained in a mode, i.e., GET_MODE_SIZE divided
by GET_MODE_UNIT_SIZE.

GET_CLASS_NARROWEST_MODE (c)

Returns the narrowest mode in mode class c.

The global variables byte_mode and word_mode contain modes whose classes are MODE_

INT and whose bitsizes are either BITS_PER_UNIT or BITS_PER_WORD, respectively. On 32-bit
machines, these are QImode and SImode, respectively.

12.7 Constant Expression Types

The simplest RTL expressions are those that represent constant values.

(const_int i)

This type of expression represents the integer value i. i is customarily accessed
with the macro INTVAL as in INTVAL (exp), which is equivalent to XWINT (exp,

0).

Constants generated for modes with fewer bits than HOST_WIDE_INT must be
sign extended to full width (e.g., with gen_int_mode).

Chapter 12: RTL Representation 157

There is only one expression object for the integer value zero; it is the value
of the variable const0_rtx. Likewise, the only expression for integer value one
is found in const1_rtx, the only expression for integer value two is found in
const2_rtx, and the only expression for integer value negative one is found
in constm1_rtx. Any attempt to create an expression of code const_int

and value zero, one, two or negative one will return const0_rtx, const1_rtx,
const2_rtx or constm1_rtx as appropriate.

Similarly, there is only one object for the integer whose value is STORE_FLAG_
VALUE. It is found in const_true_rtx. If STORE_FLAG_VALUE is one, const_
true_rtx and const1_rtx will point to the same object. If STORE_FLAG_VALUE
is �1, const_true_rtx and constm1_rtx will point to the same object.

(const_double:m addr i0 i1 ...)

Represents either a
oating-point constant of modem or an integer constant too
large to �t into HOST_BITS_PER_WIDE_INT bits but small enough to �t within
twice that number of bits (GCC does not provide a mechanism to represent
even larger constants). In the latter case, m will be VOIDmode.

(const_vector:m [x0 x1 ...])

Represents a vector constant. The square brackets stand for the vector contain-
ing the constant elements. x0, x1 and so on are the const_int or const_double
elements.

The number of units in a const_vector is obtained with the macro CONST_

VECTOR_NUNITS as in CONST_VECTOR_NUNITS (v).

Individual elements in a vector constant are accessed with the macro CONST_

VECTOR_ELT as in CONST_VECTOR_ELT (v, n) where v is the vector constant
and n is the element desired.

addr is used to contain the mem expression that corresponds to the location in
memory that at which the constant can be found. If it has not been allocated
a memory location, but is on the chain of all const_double expressions in this
compilation (maintained using an undisplayed �eld), addr contains const0_

rtx. If it is not on the chain, addr contains cc0_rtx. addr is customarily
accessed with the macro CONST_DOUBLE_MEM and the chain �eld via CONST_

DOUBLE_CHAIN.

If m is VOIDmode, the bits of the value are stored in i0 and i1. i0 is customarily
accessed with the macro CONST_DOUBLE_LOW and i1 with CONST_DOUBLE_HIGH.

If the constant is
oating point (regardless of its precision), then the number
of integers used to store the value depends on the size of REAL_VALUE_TYPE
(see Section 15.23 [Floating Point], page 416). The integers represent a
oat-
ing point number, but not precisely in the target machine's or host machine's

oating point format. To convert them to the precise bit pattern used by the
target machine, use the macro REAL_VALUE_TO_TARGET_DOUBLE and friends (see
Section 15.21.2 [Data Output], page 388).

The macro CONST0_RTX (mode) refers to an expression with value 0 in mode
mode. If mode mode is of mode class MODE_INT, it returns const0_rtx. If
mode mode is of mode class MODE_FLOAT, it returns a CONST_DOUBLE expression
in modemode. Otherwise, it returns a CONST_VECTOR expression in modemode.

158 GNU Compiler Collection (GCC) Internals

Similarly, the macro CONST1_RTX (mode) refers to an expression with value 1 in
mode mode and similarly for CONST2_RTX. The CONST1_RTX and CONST2_RTX

macros are unde�ned for vector modes.

(const_string str)

Represents a constant string with value str. Currently this is used only for insn
attributes (see Section 14.19 [Insn Attributes], page 274) since constant strings
in C are placed in memory.

(symbol_ref:mode symbol)

Represents the value of an assembler label for data. symbol is a string that
describes the name of the assembler label. If it starts with a `*', the label is
the rest of symbol not including the `*'. Otherwise, the label is symbol, usually
pre�xed with `_'.

The symbol_ref contains a mode, which is usually Pmode. Usually that is the
only mode for which a symbol is directly valid.

(label_ref:mode label)

Represents the value of an assembler label for code. It contains one operand,
an expression, which must be a code_label or a note of type NOTE_INSN_

DELETED_LABEL that appears in the instruction sequence to identify the place
where the label should go.

The reason for using a distinct expression type for code label references is so
that jump optimization can distinguish them.

The label_ref contains a mode, which is usually Pmode. Usually that is the
only mode for which a label is directly valid.

(const:m exp)

Represents a constant that is the result of an assembly-time arithmetic com-
putation. The operand, exp, is an expression that contains only constants
(const_int, symbol_ref and label_ref expressions) combined with plus and
minus. However, not all combinations are valid, since the assembler cannot do
arbitrary arithmetic on relocatable symbols.

m should be Pmode.

(high:m exp)

Represents the high-order bits of exp, usually a symbol_ref. The number of
bits is machine-dependent and is normally the number of bits speci�ed in an
instruction that initializes the high order bits of a register. It is used with lo_

sum to represent the typical two-instruction sequence used in RISC machines
to reference a global memory location.

m should be Pmode.

12.8 Registers and Memory

Here are the RTL expression types for describing access to machine registers and to main
memory.

Chapter 12: RTL Representation 159

(reg:m n)

For small values of the integer n (those that are less than FIRST_PSEUDO_

REGISTER), this stands for a reference to machine register number n: a hard
register. For larger values of n, it stands for a temporary value or pseudo
register. The compiler's strategy is to generate code assuming an unlimited
number of such pseudo registers, and later convert them into hard registers or
into memory references.

m is the machine mode of the reference. It is necessary because machines can
generally refer to each register in more than one mode. For example, a register
may contain a full word but there may be instructions to refer to it as a half
word or as a single byte, as well as instructions to refer to it as a
oating point
number of various precisions.

Even for a register that the machine can access in only one mode, the mode
must always be speci�ed.

The symbol FIRST_PSEUDO_REGISTER is de�ned by the machine description,
since the number of hard registers on the machine is an invariant characteristic
of the machine. Note, however, that not all of the machine registers must be
general registers. All the machine registers that can be used for storage of data
are given hard register numbers, even those that can be used only in certain
instructions or can hold only certain types of data.

A hard register may be accessed in various modes throughout one function,
but each pseudo register is given a natural mode and is accessed only in that
mode. When it is necessary to describe an access to a pseudo register using a
nonnatural mode, a subreg expression is used.

A reg expression with a machine mode that speci�es more than one word
of data may actually stand for several consecutive registers. If in addition the
register number speci�es a hardware register, then it actually represents several
consecutive hardware registers starting with the speci�ed one.

Each pseudo register number used in a function's RTL code is represented by
a unique reg expression.

Some pseudo register numbers, those within the range of FIRST_VIRTUAL_

REGISTER to LAST_VIRTUAL_REGISTER only appear during the RTL generation
phase and are eliminated before the optimization phases. These represent lo-
cations in the stack frame that cannot be determined until RTL generation for
the function has been completed. The following virtual register numbers are
de�ned:

VIRTUAL_INCOMING_ARGS_REGNUM

This points to the �rst word of the incoming arguments passed
on the stack. Normally these arguments are placed there by the
caller, but the callee may have pushed some arguments that were
previously passed in registers.

When RTL generation is complete, this virtual register is replaced
by the sum of the register given by ARG_POINTER_REGNUM and the
value of FIRST_PARM_OFFSET.

160 GNU Compiler Collection (GCC) Internals

VIRTUAL_STACK_VARS_REGNUM

If FRAME_GROWS_DOWNWARD is de�ned to a nonzero value, this points
to immediately above the �rst variable on the stack. Otherwise, it
points to the �rst variable on the stack.

VIRTUAL_STACK_VARS_REGNUM is replaced with the sum of the reg-
ister given by FRAME_POINTER_REGNUM and the value STARTING_

FRAME_OFFSET.

VIRTUAL_STACK_DYNAMIC_REGNUM

This points to the location of dynamically allocated memory on the
stack immediately after the stack pointer has been adjusted by the
amount of memory desired.

This virtual register is replaced by the sum of the register given by
STACK_POINTER_REGNUM and the value STACK_DYNAMIC_OFFSET.

VIRTUAL_OUTGOING_ARGS_REGNUM

This points to the location in the stack at which outgoing arguments
should be written when the stack is pre-pushed (arguments pushed
using push insns should always use STACK_POINTER_REGNUM).

This virtual register is replaced by the sum of the register given by
STACK_POINTER_REGNUM and the value STACK_POINTER_OFFSET.

(subreg:m reg bytenum)

subreg expressions are used to refer to a register in a machine mode other than
its natural one, or to refer to one register of a multi-part reg that actually refers
to several registers.

Each pseudo-register has a natural mode. If it is necessary to operate on it
in a di�erent mode|for example, to perform a fullword move instruction on
a pseudo-register that contains a single byte|the pseudo-register must be en-
closed in a subreg. In such a case, bytenum is zero.

Usually m is at least as narrow as the mode of reg, in which case it is restricting
consideration to only the bits of reg that are in m.

Sometimes m is wider than the mode of reg. These subreg expressions are
often called paradoxical. They are used in cases where we want to refer to an
object in a wider mode but do not care what value the additional bits have. The
reload pass ensures that paradoxical references are only made to hard registers.

The other use of subreg is to extract the individual registers of a multi-register
value. Machine modes such as DImode and TImode can indicate values longer
than a word, values which usually require two or more consecutive registers.
To access one of the registers, use a subreg with mode SImode and a bytenum
o�set that says which register.

Storing in a non-paradoxical subreg has unde�ned results for bits belonging to
the same word as the subreg. This laxity makes it easier to generate e�cient
code for such instructions. To represent an instruction that preserves all the
bits outside of those in the subreg, use strict_low_part around the subreg.

Chapter 12: RTL Representation 161

The compilation parameter WORDS_BIG_ENDIAN, if set to 1, says that byte num-
ber zero is part of the most signi�cant word; otherwise, it is part of the least
signi�cant word.

The compilation parameter BYTES_BIG_ENDIAN, if set to 1, says that byte num-
ber zero is the most signi�cant byte within a word; otherwise, it is the least
signi�cant byte within a word.

On a few targets, FLOAT_WORDS_BIG_ENDIAN disagrees with WORDS_BIG_ENDIAN.
However, most parts of the compiler treat
oating point values as if they had
the same endianness as integer values. This works because they handle them
solely as a collection of integer values, with no particular numerical value. Only
real.c and the runtime libraries care about FLOAT_WORDS_BIG_ENDIAN.

Between the combiner pass and the reload pass, it is possible to have a paradox-
ical subreg which contains a mem instead of a reg as its �rst operand. After the
reload pass, it is also possible to have a non-paradoxical subreg which contains
a mem; this usually occurs when the mem is a stack slot which replaced a pseudo
register.

Note that it is not valid to access a DFmode value in SFmode using a subreg.
On some machines the most signi�cant part of a DFmode value does not have
the same format as a single-precision
oating value.

It is also not valid to access a single word of a multi-word value in a hard register
when less registers can hold the value than would be expected from its size. For
example, some 32-bit machines have
oating-point registers that can hold an
entire DFmode value. If register 10 were such a register (subreg:SI (reg:DF

10) 4) would be invalid because there is no way to convert that reference to a
single machine register. The reload pass prevents subreg expressions such as
these from being formed.

The �rst operand of a subreg expression is customarily accessed with the
SUBREG_REG macro and the second operand is customarily accessed with the
SUBREG_BYTE macro.

(scratch:m)

This represents a scratch register that will be required for the execution of a
single instruction and not used subsequently. It is converted into a reg by either
the local register allocator or the reload pass.

scratch is usually present inside a clobber operation (see Section 12.15 [Side
E�ects], page 170).

(cc0) This refers to the machine's condition code register. It has no operands and
may not have a machine mode. There are two ways to use it:

� To stand for a complete set of condition code
ags. This is best on most
machines, where each comparison sets the entire series of
ags.

With this technique, (cc0) may be validly used in only two contexts: as
the destination of an assignment (in test and compare instructions) and in
comparison operators comparing against zero (const_int with value zero;
that is to say, const0_rtx).

162 GNU Compiler Collection (GCC) Internals

� To stand for a single
ag that is the result of a single condition. This is
useful on machines that have only a single
ag bit, and in which comparison
instructions must specify the condition to test.

With this technique, (cc0)may be validly used in only two contexts: as the
destination of an assignment (in test and compare instructions) where the
source is a comparison operator, and as the �rst operand of if_then_else
(in a conditional branch).

There is only one expression object of code cc0; it is the value of the variable
cc0_rtx. Any attempt to create an expression of code cc0 will return cc0_rtx.

Instructions can set the condition code implicitly. On many machines, nearly
all instructions set the condition code based on the value that they compute or
store. It is not necessary to record these actions explicitly in the RTL because
the machine description includes a prescription for recognizing the instructions
that do so (by means of the macro NOTICE_UPDATE_CC). See Section 15.16
[Condition Code], page 369. Only instructions whose sole purpose is to set
the condition code, and instructions that use the condition code, need mention
(cc0).

On some machines, the condition code register is given a register number and
a reg is used instead of (cc0). This is usually the preferable approach if only
a small subset of instructions modify the condition code. Other machines store
condition codes in general registers; in such cases a pseudo register should be
used.

Some machines, such as the SPARC and RS/6000, have two sets of arithmetic
instructions, one that sets and one that does not set the condition code. This
is best handled by normally generating the instruction that does not set the
condition code, and making a pattern that both performs the arithmetic and
sets the condition code register (which would not be (cc0) in this case). For
examples, search for `addcc' and `andcc' in `sparc.md'.

(pc) This represents the machine's program counter. It has no operands and may
not have a machine mode. (pc) may be validly used only in certain speci�c
contexts in jump instructions.

There is only one expression object of code pc; it is the value of the variable
pc_rtx. Any attempt to create an expression of code pc will return pc_rtx.

All instructions that do not jump alter the program counter implicitly by in-
crementing it, but there is no need to mention this in the RTL.

(mem:m addr alias)

This RTX represents a reference to main memory at an address represented by
the expression addr. m speci�es how large a unit of memory is accessed. alias
speci�es an alias set for the reference. In general two items are in di�erent alias
sets if they cannot reference the same memory address.

The construct (mem:BLK (scratch)) is considered to alias all other memories.
Thus it may be used as a memory barrier in epilogue stack deallocation patterns.

Chapter 12: RTL Representation 163

(addressof:m reg)

This RTX represents a request for the address of register reg. Its mode is always
Pmode. If there are any addressof expressions left in the function after CSE,
reg is forced into the stack and the addressof expression is replaced with a
plus expression for the address of its stack slot.

12.9 RTL Expressions for Arithmetic

Unless otherwise speci�ed, all the operands of arithmetic expressions must be valid for
mode m. An operand is valid for mode m if it has mode m, or if it is a const_int or
const_double and m is a mode of class MODE_INT.

For commutative binary operations, constants should be placed in the second operand.

(plus:m x y)

(ss_plus:m x y)

(us_plus:m x y)

These three expressions all represent the sum of the values represented by x and
y carried out in machine mode m. They di�er in their behavior on over
ow of
integer modes. plus wraps round modulo the width of m; ss_plus saturates
at the maximum signed value representable in m; us_plus saturates at the
maximum unsigned value.

(lo_sum:m x y)

This expression represents the sum of x and the low-order bits of y. It is used
with high (see Section 12.7 [Constants], page 156) to represent the typical
two-instruction sequence used in RISC machines to reference a global memory
location.

The number of low order bits is machine-dependent but is normally the number
of bits in a Pmode item minus the number of bits set by high.

m should be Pmode.

(minus:m x y)

(ss_minus:m x y)

(us_minus:m x y)

These three expressions represent the result of subtracting y from x, carried
out in mode M. Behavior on over
ow is the same as for the three variants of
plus (see above).

(compare:m x y)

Represents the result of subtracting y from x for purposes of comparison. The
result is computed without over
ow, as if with in�nite precision.

Of course, machines can't really subtract with in�nite precision. However, they
can pretend to do so when only the sign of the result will be used, which is
the case when the result is stored in the condition code. And that is the only
way this kind of expression may validly be used: as a value to be stored in the
condition codes, either (cc0) or a register. See Section 12.10 [Comparisons],
page 166.

The mode m is not related to the modes of x and y, but instead is the mode
of the condition code value. If (cc0) is used, it is VOIDmode. Otherwise it

164 GNU Compiler Collection (GCC) Internals

is some mode in class MODE_CC, often CCmode. See Section 15.16 [Condition
Code], page 369. If m is VOIDmode or CCmode, the operation returns su�cient
information (in an unspeci�ed format) so that any comparison operator can
be applied to the result of the COMPARE operation. For other modes in class
MODE_CC, the operation only returns a subset of this information.

Normally, x and y must have the same mode. Otherwise, compare is valid only
if the mode of x is in class MODE_INT and y is a const_int or const_double
with mode VOIDmode. The mode of x determines what mode the comparison is
to be done in; thus it must not be VOIDmode.

If one of the operands is a constant, it should be placed in the second operand
and the comparison code adjusted as appropriate.

A compare specifying two VOIDmode constants is not valid since there is no way
to know in what mode the comparison is to be performed; the comparison must
either be folded during the compilation or the �rst operand must be loaded into
a register while its mode is still known.

(neg:m x)

(ss_neg:m x)

These two expressions represent the negation (subtraction from zero) of the
value represented by x, carried out in mode m. They di�er in the behavior
on over
ow of integer modes. In the case of neg, the negation of the operand
may be a number not representable in mode m, in which case it is truncated to
m. ss_neg ensures that an out-of-bounds result saturates to the maximum or
minimum representable value.

(mult:m x y)

Represents the signed product of the values represented by x and y carried out
in machine mode m.

Some machines support a multiplication that generates a product wider than
the operands. Write the pattern for this as

(mult:m (sign_extend:m x) (sign_extend:m y))

where m is wider than the modes of x and y, which need not be the same.

For unsigned widening multiplication, use the same idiom, but with zero_

extend instead of sign_extend.

(div:m x y)

Represents the quotient in signed division of x by y, carried out in machine mode
m. If m is a
oating point mode, it represents the exact quotient; otherwise,
the integerized quotient.

Some machines have division instructions in which the operands and quo-
tient widths are not all the same; you should represent such instructions using
truncate and sign_extend as in,

(truncate:m1 (div:m2 x (sign_extend:m2 y)))

(udiv:m x y)

Like div but represents unsigned division.

Chapter 12: RTL Representation 165

(mod:m x y)

(umod:m x y)

Like div and udiv but represent the remainder instead of the quotient.

(smin:m x y)

(smax:m x y)

Represents the smaller (for smin) or larger (for smax) of x and y, interpreted
as signed values in mode m. When used with
oating point, if both operands
are zeros, or if either operand is NaN, then it is unspeci�ed which of the two
operands is returned as the result.

(umin:m x y)

(umax:m x y)

Like smin and smax, but the values are interpreted as unsigned integers.

(not:m x)

Represents the bitwise complement of the value represented by x, carried out
in mode m, which must be a �xed-point machine mode.

(and:m x y)

Represents the bitwise logical-and of the values represented by x and y, carried
out in machine mode m, which must be a �xed-point machine mode.

(ior:m x y)

Represents the bitwise inclusive-or of the values represented by x and y, carried
out in machine mode m, which must be a �xed-point mode.

(xor:m x y)

Represents the bitwise exclusive-or of the values represented by x and y, carried
out in machine mode m, which must be a �xed-point mode.

(ashift:m x c)

(ss_ashift:m x c)

These two expressions represent the result of arithmetically shifting x left by c
places. They di�er in their behavior on over
ow of integer modes. An ashift

operation is a plain shift with no special behavior in case of a change in the sign
bit; ss_ashift saturates to the minimum or maximum representable value if
any of the bits shifted out di�ers from the �nal sign bit.

x have mode m, a �xed-point machine mode. c be a �xed-point mode or be a
constant with mode VOIDmode; which mode is determined by the mode called
for in the machine description entry for the left-shift instruction. For example,
on the VAX, the mode of c is QImode regardless of m.

(lshiftrt:m x c)

(ashiftrt:m x c)

Like ashift but for right shift. Unlike the case for left shift, these two opera-
tions are distinct.

(rotate:m x c)

(rotatert:m x c)

Similar but represent left and right rotate. If c is a constant, use rotate.

166 GNU Compiler Collection (GCC) Internals

(abs:m x)

Represents the absolute value of x, computed in mode m.

(sqrt:m x)

Represents the square root of x, computed in mode m. Most often m will be a

oating point mode.

(ffs:m x)

Represents one plus the index of the least signi�cant 1-bit in x, represented as
an integer of mode m. (The value is zero if x is zero.) The mode of x need
not be m; depending on the target machine, various mode combinations may
be valid.

(clz:m x)

Represents the number of leading 0-bits in x, represented as an integer of mode
m, starting at the most signi�cant bit position. If x is zero, the value is de-
termined by CLZ_DEFINED_VALUE_AT_ZERO. Note that this is one of the few
expressions that is not invariant under widening. The mode of x will usually
be an integer mode.

(ctz:m x)

Represents the number of trailing 0-bits in x, represented as an integer of mode
m, starting at the least signi�cant bit position. If x is zero, the value is de-
termined by CTZ_DEFINED_VALUE_AT_ZERO. Except for this case, ctz(x) is
equivalent to ffs(x) - 1. The mode of x will usually be an integer mode.

(popcount:m x)

Represents the number of 1-bits in x, represented as an integer of mode m. The
mode of x will usually be an integer mode.

(parity:m x)

Represents the number of 1-bits modulo 2 in x, represented as an integer of
mode m. The mode of x will usually be an integer mode.

12.10 Comparison Operations

Comparison operators test a relation on two operands and are considered to represent a
machine-dependent nonzero value described by, but not necessarily equal to, STORE_FLAG_
VALUE (see Section 15.29 [Misc], page 423) if the relation holds, or zero if it does not, for
comparison operators whose results have a `MODE INT' mode, FLOAT_STORE_FLAG_VALUE
(see Section 15.29 [Misc], page 423) if the relation holds, or zero if it does not, for comparison
operators that return
oating-point values, and a vector of either VECTOR_STORE_FLAG_

VALUE (see Section 15.29 [Misc], page 423) if the relation holds, or of zeros if it does not, for
comparison operators that return vector results. The mode of the comparison operation is
independent of the mode of the data being compared. If the comparison operation is being
tested (e.g., the �rst operand of an if_then_else), the mode must be VOIDmode.

There are two ways that comparison operations may be used. The comparison operators
may be used to compare the condition codes (cc0) against zero, as in (eq (cc0) (const_

int 0)). Such a construct actually refers to the result of the preceding instruction in which
the condition codes were set. The instruction setting the condition code must be adjacent
to the instruction using the condition code; only note insns may separate them.

Chapter 12: RTL Representation 167

Alternatively, a comparison operation may directly compare two data objects. The mode
of the comparison is determined by the operands; they must both be valid for a common
machine mode. A comparison with both operands constant would be invalid as the machine
mode could not be deduced from it, but such a comparison should never exist in RTL due
to constant folding.

In the example above, if (cc0) were last set to (compare x y), the comparison operation
is identical to (eq x y). Usually only one style of comparisons is supported on a particular
machine, but the combine pass will try to merge the operations to produce the eq shown
in case it exists in the context of the particular insn involved.

Inequality comparisons come in two
avors, signed and unsigned. Thus, there are distinct
expression codes gt and gtu for signed and unsigned greater-than. These can produce di�er-
ent results for the same pair of integer values: for example, 1 is signed greater-than �1 but
not unsigned greater-than, because �1 when regarded as unsigned is actually 0xffffffff

which is greater than 1.

The signed comparisons are also used for
oating point values. Floating point comparisons
are distinguished by the machine modes of the operands.

(eq:m x y)

STORE_FLAG_VALUE if the values represented by x and y are equal, otherwise 0.

(ne:m x y)

STORE_FLAG_VALUE if the values represented by x and y are not equal, otherwise
0.

(gt:m x y)

STORE_FLAG_VALUE if the x is greater than y. If they are �xed-point, the com-
parison is done in a signed sense.

(gtu:m x y)

Like gt but does unsigned comparison, on �xed-point numbers only.

(lt:m x y)

(ltu:m x y)

Like gt and gtu but test for \less than".

(ge:m x y)

(geu:m x y)

Like gt and gtu but test for \greater than or equal".

(le:m x y)

(leu:m x y)

Like gt and gtu but test for \less than or equal".

(if_then_else cond then else)

This is not a comparison operation but is listed here because it is always used in
conjunction with a comparison operation. To be precise, cond is a comparison
expression. This expression represents a choice, according to cond, between the
value represented by then and the one represented by else.

On most machines, if_then_else expressions are valid only to express condi-
tional jumps.

168 GNU Compiler Collection (GCC) Internals

(cond [test1 value1 test2 value2 ...] default)

Similar to if_then_else, but more general. Each of test1, test2, . . . is per-
formed in turn. The result of this expression is the value corresponding to the
�rst nonzero test, or default if none of the tests are nonzero expressions.

This is currently not valid for instruction patterns and is supported only for
insn attributes. See Section 14.19 [Insn Attributes], page 274.

12.11 Bit-Fields

Special expression codes exist to represent bit-�eld instructions.

(sign_extract:m loc size pos)

This represents a reference to a sign-extended bit-�eld contained or starting in
loc (a memory or register reference). The bit-�eld is size bits wide and starts
at bit pos. The compilation option BITS_BIG_ENDIAN says which end of the
memory unit pos counts from.

If loc is in memory, its mode must be a single-byte integer mode. If loc is in a
register, the mode to use is speci�ed by the operand of the insv or extv pattern
(see Section 14.9 [Standard Names], page 236) and is usually a full-word integer
mode, which is the default if none is speci�ed.

The mode of pos is machine-speci�c and is also speci�ed in the insv or extv
pattern.

The mode m is the same as the mode that would be used for loc if it were a
register.

A sign_extract can not appear as an lvalue, or part thereof, in RTL.

(zero_extract:m loc size pos)

Like sign_extract but refers to an unsigned or zero-extended bit-�eld. The
same sequence of bits are extracted, but they are �lled to an entire word with
zeros instead of by sign-extension.

Unlike sign_extract, this type of expressions can be lvalues in RTL; they may
appear on the left side of an assignment, indicating insertion of a value into the
speci�ed bit-�eld.

12.12 Vector Operations

All normal RTL expressions can be used with vector modes; they are interpreted as operat-
ing on each part of the vector independently. Additionally, there are a few new expressions
to describe speci�c vector operations.

(vec_merge:m vec1 vec2 items)

This describes a merge operation between two vectors. The result is a vector of
mode m; its elements are selected from either vec1 or vec2. Which elements are
selected is described by items, which is a bit mask represented by a const_int;
a zero bit indicates the corresponding element in the result vector is taken from
vec2 while a set bit indicates it is taken from vec1.

(vec_select:m vec1 selection)

This describes an operation that selects parts of a vector. vec1 is the source
vector, selection is a parallel that contains a const_int for each of the sub-

Chapter 12: RTL Representation 169

parts of the result vector, giving the number of the source subpart that should
be stored into it.

(vec_concat:m vec1 vec2)

Describes a vector concat operation. The result is a concatenation of the vectors
vec1 and vec2; its length is the sum of the lengths of the two inputs.

(vec_duplicate:m vec)

This operation converts a small vector into a larger one by duplicating the input
values. The output vector mode must have the same submodes as the input
vector mode, and the number of output parts must be an integer multiple of
the number of input parts.

12.13 Conversions

All conversions between machine modes must be represented by explicit conversion oper-
ations. For example, an expression which is the sum of a byte and a full word cannot be
written as (plus:SI (reg:QI 34) (reg:SI 80)) because the plus operation requires two
operands of the same machine mode. Therefore, the byte-sized operand is enclosed in a
conversion operation, as in

(plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80))

The conversion operation is not a mere placeholder, because there may be more than one
way of converting from a given starting mode to the desired �nal mode. The conversion
operation code says how to do it.

For all conversion operations, x must not be VOIDmode because the mode in which to do
the conversion would not be known. The conversion must either be done at compile-time
or x must be placed into a register.

(sign_extend:m x)

Represents the result of sign-extending the value x to machine mode m. m
must be a �xed-point mode and x a �xed-point value of a mode narrower than
m.

(zero_extend:m x)

Represents the result of zero-extending the value x to machine mode m. m
must be a �xed-point mode and x a �xed-point value of a mode narrower than
m.

(float_extend:m x)

Represents the result of extending the value x to machine mode m. m must be
a
oating point mode and x a
oating point value of a mode narrower than m.

(truncate:m x)

Represents the result of truncating the value x to machine mode m. m must
be a �xed-point mode and x a �xed-point value of a mode wider than m.

(ss_truncate:m x)

Represents the result of truncating the value x to machine mode m, using
signed saturation in the case of over
ow. Both m and the mode of x must be
�xed-point modes.

170 GNU Compiler Collection (GCC) Internals

(us_truncate:m x)

Represents the result of truncating the value x to machine mode m, using
unsigned saturation in the case of over
ow. Both m and the mode of x must
be �xed-point modes.

(float_truncate:m x)

Represents the result of truncating the value x to machine mode m. m must
be a
oating point mode and x a
oating point value of a mode wider than m.

(float:m x)

Represents the result of converting �xed point value x, regarded as signed, to

oating point mode m.

(unsigned_float:m x)

Represents the result of converting �xed point value x, regarded as unsigned,
to
oating point mode m.

(fix:m x)

When m is a �xed point mode, represents the result of converting
oating point
value x to modem, regarded as signed. How rounding is done is not speci�ed, so
this operation may be used validly in compiling C code only for integer-valued
operands.

(unsigned_fix:m x)

Represents the result of converting
oating point value x to �xed point mode
m, regarded as unsigned. How rounding is done is not speci�ed.

(fix:m x)

When m is a
oating point mode, represents the result of converting
oating
point value x (valid for mode m) to an integer, still represented in
oating point
mode m, by rounding towards zero.

12.14 Declarations

Declaration expression codes do not represent arithmetic operations but rather state asser-
tions about their operands.

(strict_low_part (subreg:m (reg:n r) 0))

This expression code is used in only one context: as the destination operand
of a set expression. In addition, the operand of this expression must be a
non-paradoxical subreg expression.

The presence of strict_low_part says that the part of the register which is
meaningful in mode n, but is not part of modem, is not to be altered. Normally,
an assignment to such a subreg is allowed to have unde�ned e�ects on the rest
of the register when m is less than a word.

12.15 Side E�ect Expressions

The expression codes described so far represent values, not actions. But machine instruc-
tions never produce values; they are meaningful only for their side e�ects on the state of
the machine. Special expression codes are used to represent side e�ects.

Chapter 12: RTL Representation 171

The body of an instruction is always one of these side e�ect codes; the codes described
above, which represent values, appear only as the operands of these.

(set lval x)

Represents the action of storing the value of x into the place represented by
lval. lval must be an expression representing a place that can be stored in: reg
(or subreg, strict_low_part or zero_extract), mem, pc, parallel, or cc0.

If lval is a reg, subreg or mem, it has a machine mode; then x must be valid
for that mode.

If lval is a reg whose machine mode is less than the full width of the register,
then it means that the part of the register speci�ed by the machine mode is
given the speci�ed value and the rest of the register receives an unde�ned value.
Likewise, if lval is a subreg whose machine mode is narrower than the mode of
the register, the rest of the register can be changed in an unde�ned way.

If lval is a strict_low_part of a subreg, then the part of the register speci�ed
by the machine mode of the subreg is given the value x and the rest of the
register is not changed.

If lval is a zero_extract, then the referenced part of the bit-�eld (a memory or
register reference) speci�ed by the zero_extract is given the value x and the
rest of the bit-�eld is not changed. Note that sign_extract can not appear in
lval.

If lval is (cc0), it has no machine mode, and x may be either a compare

expression or a value that may have any mode. The latter case represents
a \test" instruction. The expression (set (cc0) (reg:m n)) is equivalent to
(set (cc0) (compare (reg:m n) (const_int 0))). Use the former expres-
sion to save space during the compilation.

If lval is a parallel, it is used to represent the case of a function returning a
structure in multiple registers. Each element of the parallel is an expr_list

whose �rst operand is a reg and whose second operand is a const_int repre-
senting the o�set (in bytes) into the structure at which the data in that register
corresponds. The �rst element may be null to indicate that the structure is also
passed partly in memory.

If lval is (pc), we have a jump instruction, and the possibilities for x are very
limited. It may be a label_ref expression (unconditional jump). It may be an
if_then_else (conditional jump), in which case either the second or the third
operand must be (pc) (for the case which does not jump) and the other of the
two must be a label_ref (for the case which does jump). x may also be a mem

or (plus:SI (pc) y), where y may be a reg or a mem; these unusual patterns
are used to represent jumps through branch tables.

If lval is neither (cc0) nor (pc), the mode of lval must not be VOIDmode and
the mode of x must be valid for the mode of lval.

lval is customarily accessed with the SET_DEST macro and x with the SET_SRC
macro.

(return) As the sole expression in a pattern, represents a return from the current func-
tion, on machines where this can be done with one instruction, such as VAXen.

172 GNU Compiler Collection (GCC) Internals

On machines where a multi-instruction \epilogue" must be executed in order
to return from the function, returning is done by jumping to a label which
precedes the epilogue, and the return expression code is never used.

Inside an if_then_else expression, represents the value to be placed in pc to
return to the caller.

Note that an insn pattern of (return) is logically equivalent to (set (pc)

(return)), but the latter form is never used.

(call function nargs)

Represents a function call. function is a mem expression whose address is the
address of the function to be called. nargs is an expression which can be used
for two purposes: on some machines it represents the number of bytes of stack
argument; on others, it represents the number of argument registers.

Each machine has a standard machine mode which function must have. The
machine description de�nes macro FUNCTION_MODE to expand into the requisite
mode name. The purpose of this mode is to specify what kind of addressing
is allowed, on machines where the allowed kinds of addressing depend on the
machine mode being addressed.

(clobber x)

Represents the storing or possible storing of an unpredictable, undescribed value
into x, which must be a reg, scratch, parallel or mem expression.

One place this is used is in string instructions that store standard values into
particular hard registers. It may not be worth the trouble to describe the values
that are stored, but it is essential to inform the compiler that the registers will
be altered, lest it attempt to keep data in them across the string instruction.

If x is (mem:BLK (const_int 0)) or (mem:BLK (scratch)), it means that all
memory locations must be presumed clobbered. If x is a parallel, it has the
same meaning as a parallel in a set expression.

Note that the machine description classi�es certain hard registers as \call-
clobbered". All function call instructions are assumed by default to clobber
these registers, so there is no need to use clobber expressions to indicate this
fact. Also, each function call is assumed to have the potential to alter any
memory location, unless the function is declared const.

If the last group of expressions in a parallel are each a clobber expression
whose arguments are reg or match_scratch (see Section 14.4 [RTL Template],
page 201) expressions, the combiner phase can add the appropriate clobber

expressions to an insn it has constructed when doing so will cause a pattern to
be matched.

This feature can be used, for example, on a machine that whose multiply and
add instructions don't use an MQ register but which has an add-accumulate
instruction that does clobber the MQ register. Similarly, a combined instruction
might require a temporary register while the constituent instructions might not.

When a clobber expression for a register appears inside a parallel with other
side e�ects, the register allocator guarantees that the register is unoccupied
both before and after that insn. However, the reload phase may allocate a

Chapter 12: RTL Representation 173

register used for one of the inputs unless the `&' constraint is speci�ed for the
selected alternative (see Section 14.8.4 [Modi�ers], page 217). You can clobber
either a speci�c hard register, a pseudo register, or a scratch expression; in
the latter two cases, GCC will allocate a hard register that is available there
for use as a temporary.

For instructions that require a temporary register, you should use scratch

instead of a pseudo-register because this will allow the combiner phase to add
the clobber when required. You do this by coding (clobber (match_scratch
. . .)). If you do clobber a pseudo register, use one which appears nowhere
else|generate a new one each time. Otherwise, you may confuse CSE.

There is one other known use for clobbering a pseudo register in a parallel:
when one of the input operands of the insn is also clobbered by the insn. In
this case, using the same pseudo register in the clobber and elsewhere in the
insn produces the expected results.

(use x) Represents the use of the value of x. It indicates that the value in x at this
point in the program is needed, even though it may not be apparent why this
is so. Therefore, the compiler will not attempt to delete previous instructions
whose only e�ect is to store a value in x. x must be a reg expression.

In some situations, it may be tempting to add a use of a register in a parallel
to describe a situation where the value of a special register will modify the
behavior of the instruction. An hypothetical example might be a pattern for
an addition that can either wrap around or use saturating addition depending
on the value of a special control register:

(parallel [(set (reg:SI 2) (unspec:SI [(reg:SI 3)
(reg:SI 4)] 0))

(use (reg:SI 1))])

This will not work, several of the optimizers only look at expressions locally; it
is very likely that if you have multiple insns with identical inputs to the unspec,
they will be optimized away even if register 1 changes in between.

This means that use can only be used to describe that the register is live. You
should think twice before adding use statements, more often you will want to
use unspec instead. The use RTX is most commonly useful to describe that
a �xed register is implicitly used in an insn. It is also safe to use in patterns
where the compiler knows for other reasons that the result of the whole pattern
is variable, such as `movmemm ' or `call' patterns.

During the reload phase, an insn that has a use as pattern can carry a reg equal
note. These use insns will be deleted before the reload phase exits.

During the delayed branch scheduling phase, x may be an insn. This indicates
that x previously was located at this place in the code and its data dependencies
need to be taken into account. These use insns will be deleted before the delayed
branch scheduling phase exits.

(parallel [x0 x1 ...])

Represents several side e�ects performed in parallel. The square brackets stand
for a vector; the operand of parallel is a vector of expressions. x0, x1 and so

174 GNU Compiler Collection (GCC) Internals

on are individual side e�ect expressions|expressions of code set, call, return,
clobber or use.

\In parallel" means that �rst all the values used in the individual side-e�ects are
computed, and second all the actual side-e�ects are performed. For example,

(parallel [(set (reg:SI 1) (mem:SI (reg:SI 1)))
(set (mem:SI (reg:SI 1)) (reg:SI 1))])

says unambiguously that the values of hard register 1 and the memory location
addressed by it are interchanged. In both places where (reg:SI 1) appears as
a memory address it refers to the value in register 1 before the execution of the
insn.

It follows that it is incorrect to use parallel and expect the result of one set
to be available for the next one. For example, people sometimes attempt to
represent a jump-if-zero instruction this way:

(parallel [(set (cc0) (reg:SI 34))
(set (pc) (if_then_else

(eq (cc0) (const_int 0))
(label_ref ...)
(pc)))])

But this is incorrect, because it says that the jump condition depends on the
condition code value before this instruction, not on the new value that is set by
this instruction.

Peephole optimization, which takes place together with �nal assembly code
output, can produce insns whose patterns consist of a parallel whose elements
are the operands needed to output the resulting assembler code|often reg, mem
or constant expressions. This would not be well-formed RTL at any other stage
in compilation, but it is ok then because no further optimization remains to be
done. However, the de�nition of the macro NOTICE_UPDATE_CC, if any, must
deal with such insns if you de�ne any peephole optimizations.

(cond_exec [cond expr])

Represents a conditionally executed expression. The expr is executed only if
the cond is nonzero. The cond expression must not have side-e�ects, but the
expr may very well have side-e�ects.

(sequence [insns ...])

Represents a sequence of insns. Each of the insns that appears in the vector is
suitable for appearing in the chain of insns, so it must be an insn, jump_insn,
call_insn, code_label, barrier or note.

A sequence RTX is never placed in an actual insn during RTL generation. It
represents the sequence of insns that result from a define_expand before those
insns are passed to emit_insn to insert them in the chain of insns. When
actually inserted, the individual sub-insns are separated out and the sequence
is forgotten.

After delay-slot scheduling is completed, an insn and all the insns that reside
in its delay slots are grouped together into a sequence. The insn requiring the
delay slot is the �rst insn in the vector; subsequent insns are to be placed in
the delay slot.

Chapter 12: RTL Representation 175

INSN_ANNULLED_BRANCH_P is set on an insn in a delay slot to indicate that a
branch insn should be used that will conditionally annul the e�ect of the insns
in the delay slots. In such a case, INSN_FROM_TARGET_P indicates that the insn
is from the target of the branch and should be executed only if the branch is
taken; otherwise the insn should be executed only if the branch is not taken.
See Section 14.19.7 [Delay Slots], page 281.

These expression codes appear in place of a side e�ect, as the body of an insn, though
strictly speaking they do not always describe side e�ects as such:

(asm_input s)

Represents literal assembler code as described by the string s.

(unspec [operands ...] index)

(unspec_volatile [operands ...] index)

Represents a machine-speci�c operation on operands. index selects between
multiple machine-speci�c operations. unspec_volatile is used for volatile op-
erations and operations that may trap; unspec is used for other operations.

These codes may appear inside a pattern of an insn, inside a parallel, or
inside an expression.

(addr_vec:m [lr0 lr1 ...])

Represents a table of jump addresses. The vector elements lr0, etc., are label_
ref expressions. The mode m speci�es how much space is given to each address;
normally m would be Pmode.

(addr_diff_vec:m base [lr0 lr1 ...] min max flags)

Represents a table of jump addresses expressed as o�sets from base. The vector
elements lr0, etc., are label_ref expressions and so is base. The mode m
speci�es how much space is given to each address-di�erence. min and max are
set up by branch shortening and hold a label with a minimum and a maximum
address, respectively.
ags indicates the relative position of base, min and max
to the containing insn and of min and max to base. See rtl.def for details.

(prefetch:m addr rw locality)

Represents prefetch of memory at address addr. Operand rw is 1 if the
prefetch is for data to be written, 0 otherwise; targets that do not support
write prefetches should treat this as a normal prefetch. Operand locality
speci�es the amount of temporal locality; 0 if there is none or 1, 2, or 3 for
increasing levels of temporal locality; targets that do not support locality hints
should ignore this.

This insn is used to minimize cache-miss latency by moving data into a cache
before it is accessed. It should use only non-faulting data prefetch instructions.

12.16 Embedded Side-E�ects on Addresses

Six special side-e�ect expression codes appear as memory addresses.

(pre_dec:m x)

Represents the side e�ect of decrementing x by a standard amount and repre-
sents also the value that x has after being decremented. x must be a reg or

176 GNU Compiler Collection (GCC) Internals

mem, but most machines allow only a reg. m must be the machine mode for
pointers on the machine in use. The amount x is decremented by is the length
in bytes of the machine mode of the containing memory reference of which this
expression serves as the address. Here is an example of its use:

(mem:DF (pre_dec:SI (reg:SI 39)))

This says to decrement pseudo register 39 by the length of a DFmode value and
use the result to address a DFmode value.

(pre_inc:m x)

Similar, but speci�es incrementing x instead of decrementing it.

(post_dec:m x)

Represents the same side e�ect as pre_dec but a di�erent value. The value
represented here is the value x has before being decremented.

(post_inc:m x)

Similar, but speci�es incrementing x instead of decrementing it.

(post_modify:m x y)

Represents the side e�ect of setting x to y and represents x before x is modi�ed.
x must be a reg or mem, but most machines allow only a reg. m must be the
machine mode for pointers on the machine in use.

The expression y must be one of three forms:

(plus:m x z), (minus:m x z), or (plus:m x i),

where z is an index register and i is a constant.

Here is an example of its use:
(mem:SF (post_modify:SI (reg:SI 42) (plus (reg:SI 42)

(reg:SI 48))))

This says to modify pseudo register 42 by adding the contents of pseudo register
48 to it, after the use of what ever 42 points to.

(pre_modify:m x expr)

Similar except side e�ects happen before the use.

These embedded side e�ect expressions must be used with care. Instruction patterns may
not use them. Until the `flow' pass of the compiler, they may occur only to represent pushes
onto the stack. The `flow' pass �nds cases where registers are incremented or decremented
in one instruction and used as an address shortly before or after; these cases are then
transformed to use pre- or post-increment or -decrement.

If a register used as the operand of these expressions is used in another address in an
insn, the original value of the register is used. Uses of the register outside of an address are
not permitted within the same insn as a use in an embedded side e�ect expression because
such insns behave di�erently on di�erent machines and hence must be treated as ambiguous
and disallowed.

An instruction that can be represented with an embedded side e�ect could also be rep-
resented using parallel containing an additional set to describe how the address register
is altered. This is not done because machines that allow these operations at all typically
allow them wherever a memory address is called for. Describing them as additional parallel
stores would require doubling the number of entries in the machine description.

Chapter 12: RTL Representation 177

12.17 Assembler Instructions as Expressions

The RTX code asm_operands represents a value produced by a user-speci�ed assembler
instruction. It is used to represent an asm statement with arguments. An asm statement
with a single output operand, like this:

asm ("foo %1,%2,%0" : "=a" (outputvar) : "g" (x + y), "di" (*z));

is represented using a single asm_operands RTX which represents the value that is stored
in outputvar:

(set rtx-for-outputvar

(asm_operands "foo %1,%2,%0" "a" 0
[rtx-for-addition-result rtx-for-*z]
[(asm_input:m1 "g")
(asm_input:m2 "di")]))

Here the operands of the asm_operands RTX are the assembler template string, the output-
operand's constraint, the index-number of the output operand among the output operands
speci�ed, a vector of input operand RTX's, and a vector of input-operand modes and
constraints. The mode m1 is the mode of the sum x+y; m2 is that of *z.

When an asm statement has multiple output values, its insn has several such set RTX's
inside of a parallel. Each set contains a asm_operands; all of these share the same
assembler template and vectors, but each contains the constraint for the respective output
operand. They are also distinguished by the output-operand index number, which is 0, 1,
. . . for successive output operands.

12.18 Insns

The RTL representation of the code for a function is a doubly-linked chain of objects called
insns. Insns are expressions with special codes that are used for no other purpose. Some
insns are actual instructions; others represent dispatch tables for switch statements; others
represent labels to jump to or various sorts of declarative information.

In addition to its own speci�c data, each insn must have a unique id-number that dis-
tinguishes it from all other insns in the current function (after delayed branch scheduling,
copies of an insn with the same id-number may be present in multiple places in a function,
but these copies will always be identical and will only appear inside a sequence), and chain
pointers to the preceding and following insns. These three �elds occupy the same position
in every insn, independent of the expression code of the insn. They could be accessed with
XEXP and XINT, but instead three special macros are always used:

INSN_UID (i)

Accesses the unique id of insn i.

PREV_INSN (i)

Accesses the chain pointer to the insn preceding i. If i is the �rst insn, this is
a null pointer.

NEXT_INSN (i)

Accesses the chain pointer to the insn following i. If i is the last insn, this is a
null pointer.

The �rst insn in the chain is obtained by calling get_insns; the last insn is the result
of calling get_last_insn. Within the chain delimited by these insns, the NEXT_INSN and
PREV_INSN pointers must always correspond: if insn is not the �rst insn,

178 GNU Compiler Collection (GCC) Internals

NEXT_INSN (PREV_INSN (insn)) == insn

is always true and if insn is not the last insn,
PREV_INSN (NEXT_INSN (insn)) == insn

is always true.

After delay slot scheduling, some of the insns in the chain might be sequence expressions,
which contain a vector of insns. The value of NEXT_INSN in all but the last of these insns
is the next insn in the vector; the value of NEXT_INSN of the last insn in the vector is the
same as the value of NEXT_INSN for the sequence in which it is contained. Similar rules
apply for PREV_INSN.

This means that the above invariants are not necessarily true for insns inside sequence

expressions. Speci�cally, if insn is the �rst insn in a sequence, NEXT_INSN (PREV_INSN

(insn)) is the insn containing the sequence expression, as is the value of PREV_INSN
(NEXT_INSN (insn)) if insn is the last insn in the sequence expression. You can use these
expressions to �nd the containing sequence expression.

Every insn has one of the following six expression codes:

insn The expression code insn is used for instructions that do not jump and do not
do function calls. sequence expressions are always contained in insns with code
insn even if one of those insns should jump or do function calls.

Insns with code insn have four additional �elds beyond the three mandatory
ones listed above. These four are described in a table below.

jump_insn

The expression code jump_insn is used for instructions that may jump (or,
more generally, may contain label_ref expressions). If there is an instruction
to return from the current function, it is recorded as a jump_insn.

jump_insn insns have the same extra �elds as insn insns, accessed in the same
way and in addition contain a �eld JUMP_LABEL which is de�ned once jump
optimization has completed.

For simple conditional and unconditional jumps, this �eld contains the code_

label to which this insn will (possibly conditionally) branch. In a more complex
jump, JUMP_LABEL records one of the labels that the insn refers to; the only
way to �nd the others is to scan the entire body of the insn. In an addr_vec,
JUMP_LABEL is NULL_RTX.

Return insns count as jumps, but since they do not refer to any labels, their
JUMP_LABEL is NULL_RTX.

call_insn

The expression code call_insn is used for instructions that may do function
calls. It is important to distinguish these instructions because they imply that
certain registers and memory locations may be altered unpredictably.

call_insn insns have the same extra �elds as insn insns, accessed in the same
way and in addition contain a �eld CALL_INSN_FUNCTION_USAGE, which contains
a list (chain of expr_list expressions) containing use and clobber expressions
that denote hard registers and MEMs used or clobbered by the called function.

A MEM generally points to a stack slots in which arguments passed to the
libcall by reference (see Section 15.10.7 [Register Arguments], page 345) are

Chapter 12: RTL Representation 179

stored. If the argument is caller-copied (see Section 15.10.7 [Register Argu-
ments], page 345), the stack slot will be mentioned in CLOBBER and USE entries;
if it's callee-copied, only a USE will appear, and the MEM may point to addresses
that are not stack slots.

CLOBBERed registers in this list augment registers speci�ed in CALL_USED_

REGISTERS (see Section 15.7.1 [Register Basics], page 317).

code_label

A code_label insn represents a label that a jump insn can jump to. It con-
tains two special �elds of data in addition to the three standard ones. CODE_

LABEL_NUMBER is used to hold the label number, a number that identi�es this
label uniquely among all the labels in the compilation (not just in the current
function). Ultimately, the label is represented in the assembler output as an
assembler label, usually of the form `Ln ' where n is the label number.

When a code_label appears in an RTL expression, it normally appears within
a label_ref which represents the address of the label, as a number.

Besides as a code_label, a label can also be represented as a note of type
NOTE_INSN_DELETED_LABEL.

The �eld LABEL_NUSES is only de�ned once the jump optimization phase is
completed. It contains the number of times this label is referenced in the
current function.

The �eld LABEL_KIND di�erentiates four di�erent types of labels: LABEL_

NORMAL, LABEL_STATIC_ENTRY, LABEL_GLOBAL_ENTRY, and LABEL_WEAK_ENTRY.
The only labels that do not have type LABEL_NORMAL are alternate entry points
to the current function. These may be static (visible only in the containing
translation unit), global (exposed to all translation units), or weak (global,
but can be overridden by another symbol with the same name).

Much of the compiler treats all four kinds of label identically. Some of it needs
to know whether or not a label is an alternate entry point; for this purpose,
the macro LABEL_ALT_ENTRY_P is provided. It is equivalent to testing whether
`LABEL_KIND (label) == LABEL_NORMAL'. The only place that cares about the
distinction between static, global, and weak alternate entry points, besides the
front-end code that creates them, is the function output_alternate_entry_

point, in `final.c'.

To set the kind of a label, use the SET_LABEL_KIND macro.

barrier Barriers are placed in the instruction stream when control cannot
ow past
them. They are placed after unconditional jump instructions to indicate that
the jumps are unconditional and after calls to volatile functions, which do
not return (e.g., exit). They contain no information beyond the three standard
�elds.

note note insns are used to represent additional debugging and declarative informa-
tion. They contain two nonstandard �elds, an integer which is accessed with
the macro NOTE_LINE_NUMBER and a string accessed with NOTE_SOURCE_FILE.

180 GNU Compiler Collection (GCC) Internals

If NOTE_LINE_NUMBER is positive, the note represents the position of a source
line and NOTE_SOURCE_FILE is the source �le name that the line came from.
These notes control generation of line number data in the assembler output.

Otherwise, NOTE_LINE_NUMBER is not really a line number but a code with one
of the following values (and NOTE_SOURCE_FILE must contain a null pointer):

NOTE_INSN_DELETED

Such a note is completely ignorable. Some passes of the compiler
delete insns by altering them into notes of this kind.

NOTE_INSN_DELETED_LABEL

This marks what used to be a code_label, but was not used for
other purposes than taking its address and was transformed to mark
that no code jumps to it.

NOTE_INSN_BLOCK_BEG

NOTE_INSN_BLOCK_END

These types of notes indicate the position of the beginning and end
of a level of scoping of variable names. They control the output of
debugging information.

NOTE_INSN_EH_REGION_BEG

NOTE_INSN_EH_REGION_END

These types of notes indicate the position of the beginning and end
of a level of scoping for exception handling. NOTE_BLOCK_NUMBER

identi�es which CODE_LABEL or note of type NOTE_INSN_DELETED_
LABEL is associated with the given region.

NOTE_INSN_LOOP_BEG

NOTE_INSN_LOOP_END

These types of notes indicate the position of the beginning and end
of a while or for loop. They enable the loop optimizer to �nd
loops quickly.

NOTE_INSN_LOOP_CONT

Appears at the place in a loop that continue statements jump to.

NOTE_INSN_LOOP_VTOP

This note indicates the place in a loop where the exit test begins
for those loops in which the exit test has been duplicated. This
position becomes another virtual start of the loop when considering
loop invariants.

NOTE_INSN_FUNCTION_BEG

Appears at the start of the function body, after the function pro-
logue.

NOTE_INSN_FUNCTION_END

Appears near the end of the function body, just before the label that
return statements jump to (on machine where a single instruction
does not su�ce for returning). This note may be deleted by jump
optimization.

Chapter 12: RTL Representation 181

These codes are printed symbolically when they appear in debugging dumps.

The machine mode of an insn is normally VOIDmode, but some phases use the mode for
various purposes.

The common subexpression elimination pass sets the mode of an insn to QImode when it
is the �rst insn in a block that has already been processed.

The second Haifa scheduling pass, for targets that can multiple issue, sets the mode of
an insn to TImode when it is believed that the instruction begins an issue group. That is,
when the instruction cannot issue simultaneously with the previous. This may be relied on
by later passes, in particular machine-dependent reorg.

Here is a table of the extra �elds of insn, jump_insn and call_insn insns:

PATTERN (i)

An expression for the side e�ect performed by this insn. This must be one of the
following codes: set, call, use, clobber, return, asm_input, asm_output,
addr_vec, addr_diff_vec, trap_if, unspec, unspec_volatile, parallel,
cond_exec, or sequence. If it is a parallel, each element of the parallel

must be one these codes, except that parallel expressions cannot be nested
and addr_vec and addr_diff_vec are not permitted inside a parallel expres-
sion.

INSN_CODE (i)

An integer that says which pattern in the machine description matches this
insn, or �1 if the matching has not yet been attempted.

Such matching is never attempted and this �eld remains �1 on an insn whose
pattern consists of a single use, clobber, asm_input, addr_vec or addr_diff_
vec expression.

Matching is also never attempted on insns that result from an asm state-
ment. These contain at least one asm_operands expression. The function
asm_noperands returns a non-negative value for such insns.

In the debugging output, this �eld is printed as a number followed by a symbolic
representation that locates the pattern in the `md' �le as some small positive or
negative o�set from a named pattern.

LOG_LINKS (i)

A list (chain of insn_list expressions) giving information about dependencies
between instructions within a basic block. Neither a jump nor a label may come
between the related insns.

REG_NOTES (i)

A list (chain of expr_list and insn_list expressions) giving miscellaneous
information about the insn. It is often information pertaining to the registers
used in this insn.

The LOG_LINKS �eld of an insn is a chain of insn_list expressions. Each of these has two
operands: the �rst is an insn, and the second is another insn_list expression (the next one
in the chain). The last insn_list in the chain has a null pointer as second operand. The
signi�cant thing about the chain is which insns appear in it (as �rst operands of insn_list
expressions). Their order is not signi�cant.

182 GNU Compiler Collection (GCC) Internals

This list is originally set up by the
ow analysis pass; it is a null pointer until then. Flow
only adds links for those data dependencies which can be used for instruction combination.
For each insn, the
ow analysis pass adds a link to insns which store into registers values
that are used for the �rst time in this insn. The instruction scheduling pass adds extra
links so that every dependence will be represented. Links represent data dependencies,
antidependencies and output dependencies; the machine mode of the link distinguishes
these three types: antidependencies have mode REG_DEP_ANTI, output dependencies have
mode REG_DEP_OUTPUT, and data dependencies have mode VOIDmode.

The REG_NOTES �eld of an insn is a chain similar to the LOG_LINKS �eld but it includes
expr_list expressions in addition to insn_list expressions. There are several kinds of
register notes, which are distinguished by the machine mode, which in a register note is
really understood as being an enum reg_note. The �rst operand op of the note is data
whose meaning depends on the kind of note.

The macro REG_NOTE_KIND (x) returns the kind of register note. Its counterpart, the
macro PUT_REG_NOTE_KIND (x, newkind) sets the register note type of x to be newkind.

Register notes are of three classes: They may say something about an input to an insn,
they may say something about an output of an insn, or they may create a linkage between
two insns. There are also a set of values that are only used in LOG_LINKS.

These register notes annotate inputs to an insn:

REG_DEAD The value in op dies in this insn; that is to say, altering the value immediately
after this insn would not a�ect the future behavior of the program.

It does not follow that the register op has no useful value after this insn since
op is not necessarily modi�ed by this insn. Rather, no subsequent instruction
uses the contents of op.

REG_UNUSED

The register op being set by this insn will not be used in a subsequent insn.
This di�ers from a REG_DEAD note, which indicates that the value in an input
will not be used subsequently. These two notes are independent; both may be
present for the same register.

REG_INC The register op is incremented (or decremented; at this level there is no dis-
tinction) by an embedded side e�ect inside this insn. This means it appears in
a post_inc, pre_inc, post_dec or pre_dec expression.

REG_NONNEG

The register op is known to have a nonnegative value when this insn is reached.
This is used so that decrement and branch until zero instructions, such as the
m68k dbra, can be matched.

The REG_NONNEG note is added to insns only if the machine description has a
`decrement_and_branch_until_zero' pattern.

REG_NO_CONFLICT

This insn does not cause a con
ict between op and the item being set by this
insn even though it might appear that it does. In other words, if the destination
register and op could otherwise be assigned the same register, this insn does
not prevent that assignment.

Chapter 12: RTL Representation 183

Insns with this note are usually part of a block that begins with a clobber insn
specifying a multi-word pseudo register (which will be the output of the block),
a group of insns that each set one word of the value and have the REG_NO_

CONFLICT note attached, and a �nal insn that copies the output to itself with
an attached REG_EQUAL note giving the expression being computed. This block
is encapsulated with REG_LIBCALL and REG_RETVAL notes on the �rst and last
insns, respectively.

REG_LABEL

This insn uses op, a code_label or a note of type NOTE_INSN_DELETED_LABEL,
but is not a jump_insn, or it is a jump_insn that required the label to be held
in a register. The presence of this note allows jump optimization to be aware
that op is, in fact, being used, and
ow optimization to build an accurate
ow
graph.

REG_CROSSING_JUMP

This insn is an branching instruction (either an unconditional jump or an indi-
rect jump) which crosses between hot and cold sections, which could potentially
be very far apart in the executable. The presence of this note indicates to other
optimizations that this this branching instruction should not be \collapsed" into
a simpler branching construct. It is used when the optimization to partition
basic blocks into hot and cold sections is turned on.

REG_SETJMP

Appears attached to each CALL_INSN to setjmp or a related function.

The following notes describe attributes of outputs of an insn:

REG_EQUIV

REG_EQUAL

This note is only valid on an insn that sets only one register and indicates that
that register will be equal to op at run time; the scope of this equivalence di�ers
between the two types of notes. The value which the insn explicitly copies into
the register may look di�erent from op, but they will be equal at run time. If
the output of the single set is a strict_low_part expression, the note refers
to the register that is contained in SUBREG_REG of the subreg expression.

For REG_EQUIV, the register is equivalent to op throughout the entire function,
and could validly be replaced in all its occurrences by op. (\Validly" here refers
to the data
ow of the program; simple replacement may make some insns
invalid.) For example, when a constant is loaded into a register that is never
assigned any other value, this kind of note is used.

When a parameter is copied into a pseudo-register at entry to a function, a note
of this kind records that the register is equivalent to the stack slot where the
parameter was passed. Although in this case the register may be set by other
insns, it is still valid to replace the register by the stack slot throughout the
function.

A REG_EQUIV note is also used on an instruction which copies a register param-
eter into a pseudo-register at entry to a function, if there is a stack slot where

184 GNU Compiler Collection (GCC) Internals

that parameter could be stored. Although other insns may set the pseudo-
register, it is valid for the compiler to replace the pseudo-register by stack slot
throughout the function, provided the compiler ensures that the stack slot is
properly initialized by making the replacement in the initial copy instruction as
well. This is used on machines for which the calling convention allocates stack
space for register parameters. See REG_PARM_STACK_SPACE in Section 15.10.6
[Stack Arguments], page 343.

In the case of REG_EQUAL, the register that is set by this insn will be equal
to op at run time at the end of this insn but not necessarily elsewhere in the
function. In this case, op is typically an arithmetic expression. For example,
when a sequence of insns such as a library call is used to perform an arithmetic
operation, this kind of note is attached to the insn that produces or copies the
�nal value.

These two notes are used in di�erent ways by the compiler passes. REG_EQUAL
is used by passes prior to register allocation (such as common subexpression
elimination and loop optimization) to tell them how to think of that value.
REG_EQUIV notes are used by register allocation to indicate that there is an
available substitute expression (either a constant or a mem expression for the
location of a parameter on the stack) that may be used in place of a register if
insu�cient registers are available.

Except for stack homes for parameters, which are indicated by a REG_EQUIV note
and are not useful to the early optimization passes and pseudo registers that
are equivalent to a memory location throughout their entire life, which is not
detected until later in the compilation, all equivalences are initially indicated
by an attached REG_EQUAL note. In the early stages of register allocation, a
REG_EQUAL note is changed into a REG_EQUIV note if op is a constant and the
insn represents the only set of its destination register.

Thus, compiler passes prior to register allocation need only check for REG_

EQUAL notes and passes subsequent to register allocation need only check for
REG_EQUIV notes.

These notes describe linkages between insns. They occur in pairs: one insn has one of a
pair of notes that points to a second insn, which has the inverse note pointing back to the
�rst insn.

REG_RETVAL

This insn copies the value of a multi-insn sequence (for example, a library call),
and op is the �rst insn of the sequence (for a library call, the �rst insn that was
generated to set up the arguments for the library call).

Loop optimization uses this note to treat such a sequence as a single opera-
tion for code motion purposes and
ow analysis uses this note to delete such
sequences whose results are dead.

A REG_EQUAL note will also usually be attached to this insn to provide the
expression being computed by the sequence.

These notes will be deleted after reload, since they are no longer accurate or
useful.

Chapter 12: RTL Representation 185

REG_LIBCALL

This is the inverse of REG_RETVAL: it is placed on the �rst insn of a multi-insn
sequence, and it points to the last one.

These notes are deleted after reload, since they are no longer useful or accurate.

REG_CC_SETTER

REG_CC_USER

On machines that use cc0, the insns which set and use cc0 set and use cc0 are
adjacent. However, when branch delay slot �lling is done, this may no longer
be true. In this case a REG_CC_USER note will be placed on the insn setting cc0

to point to the insn using cc0 and a REG_CC_SETTER note will be placed on the
insn using cc0 to point to the insn setting cc0.

These values are only used in the LOG_LINKS �eld, and indicate the type of dependency
that each link represents. Links which indicate a data dependence (a read after write
dependence) do not use any code, they simply have mode VOIDmode, and are printed without
any descriptive text.

REG_DEP_ANTI

This indicates an anti dependence (a write after read dependence).

REG_DEP_OUTPUT

This indicates an output dependence (a write after write dependence).

These notes describe information gathered from gcov pro�le data. They are stored in the
REG_NOTES �eld of an insn as an expr_list.

REG_BR_PROB

This is used to specify the ratio of branches to non-branches of a branch insn
according to the pro�le data. The value is stored as a value between 0 and
REG BR PROB BASE; larger values indicate a higher probability that the
branch will be taken.

REG_BR_PRED

These notes are found in JUMP insns after delayed branch scheduling has taken
place. They indicate both the direction and the likelihood of the JUMP. The
format is a bitmask of ATTR FLAG * values.

REG_FRAME_RELATED_EXPR

This is used on an RTX FRAME RELATED P insn wherein the attached ex-
pression is used in place of the actual insn pattern. This is done in cases where
the pattern is either complex or misleading.

For convenience, the machine mode in an insn_list or expr_list is printed using these
symbolic codes in debugging dumps.

The only di�erence between the expression codes insn_list and expr_list is that the
�rst operand of an insn_list is assumed to be an insn and is printed in debugging dumps
as the insn's unique id; the �rst operand of an expr_list is printed in the ordinary way as
an expression.

186 GNU Compiler Collection (GCC) Internals

12.19 RTL Representation of Function-Call Insns

Insns that call subroutines have the RTL expression code call_insn. These insns must
satisfy special rules, and their bodies must use a special RTL expression code, call.

A call expression has two operands, as follows:

(call (mem:fm addr) nbytes)

Here nbytes is an operand that represents the number of bytes of argument data being
passed to the subroutine, fm is a machine mode (which must equal as the de�nition of the
FUNCTION_MODE macro in the machine description) and addr represents the address of the
subroutine.

For a subroutine that returns no value, the call expression as shown above is the entire
body of the insn, except that the insn might also contain use or clobber expressions.

For a subroutine that returns a value whose mode is not BLKmode, the value is returned
in a hard register. If this register's number is r, then the body of the call insn looks like
this:

(set (reg:m r)
(call (mem:fm addr) nbytes))

This RTL expression makes it clear (to the optimizer passes) that the appropriate register
receives a useful value in this insn.

When a subroutine returns a BLKmode value, it is handled by passing to the subroutine
the address of a place to store the value. So the call insn itself does not \return" any value,
and it has the same RTL form as a call that returns nothing.

On some machines, the call instruction itself clobbers some register, for example to contain
the return address. call_insn insns on these machines should have a body which is a
parallel that contains both the call expression and clobber expressions that indicate
which registers are destroyed. Similarly, if the call instruction requires some register other
than the stack pointer that is not explicitly mentioned in its RTL, a use subexpression
should mention that register.

Functions that are called are assumed to modify all registers listed in the con�guration
macro CALL_USED_REGISTERS (see Section 15.7.1 [Register Basics], page 317) and, with the
exception of const functions and library calls, to modify all of memory.

Insns containing just use expressions directly precede the call_insn insn to indicate
which registers contain inputs to the function. Similarly, if registers other than those
in CALL_USED_REGISTERS are clobbered by the called function, insns containing a single
clobber follow immediately after the call to indicate which registers.

12.20 Structure Sharing Assumptions

The compiler assumes that certain kinds of RTL expressions are unique; there do not exist
two distinct objects representing the same value. In other cases, it makes an opposite
assumption: that no RTL expression object of a certain kind appears in more than one
place in the containing structure.

These assumptions refer to a single function; except for the RTL objects that describe
global variables and external functions, and a few standard objects such as small integer
constants, no RTL objects are common to two functions.

Chapter 12: RTL Representation 187

� Each pseudo-register has only a single reg object to represent it, and therefore only a
single machine mode.

� For any symbolic label, there is only one symbol_ref object referring to it.

� All const_int expressions with equal values are shared.

� There is only one pc expression.

� There is only one cc0 expression.

� There is only one const_double expression with value 0 for each
oating point mode.
Likewise for values 1 and 2.

� There is only one const_vector expression with value 0 for each vector mode, be it
an integer or a double constant vector.

� No label_ref or scratch appears in more than one place in the RTL structure; in
other words, it is safe to do a tree-walk of all the insns in the function and assume that
each time a label_ref or scratch is seen it is distinct from all others that are seen.

� Only one mem object is normally created for each static variable or stack slot, so these
objects are frequently shared in all the places they appear. However, separate but equal
objects for these variables are occasionally made.

� When a single asm statement has multiple output operands, a distinct asm_operands
expression is made for each output operand. However, these all share the vector which
contains the sequence of input operands. This sharing is used later on to test whether
two asm_operands expressions come from the same statement, so all optimizations
must carefully preserve the sharing if they copy the vector at all.

� No RTL object appears in more than one place in the RTL structure except as described
above. Many passes of the compiler rely on this by assuming that they can modify
RTL objects in place without unwanted side-e�ects on other insns.

� During initial RTL generation, shared structure is freely introduced. After all the RTL
for a function has been generated, all shared structure is copied by unshare_all_rtl

in `emit-rtl.c', after which the above rules are guaranteed to be followed.

� During the combiner pass, shared structure within an insn can exist temporarily. How-
ever, the shared structure is copied before the combiner is �nished with the insn. This
is done by calling copy_rtx_if_shared, which is a subroutine of unshare_all_rtl.

12.21 Reading RTL

To read an RTL object from a �le, call read_rtx. It takes one argument, a stdio stream,
and returns a single RTL object. This routine is de�ned in `read-rtl.c'. It is not available
in the compiler itself, only the various programs that generate the compiler back end from
the machine description.

People frequently have the idea of using RTL stored as text in a �le as an interface
between a language front end and the bulk of GCC. This idea is not feasible.

GCC was designed to use RTL internally only. Correct RTL for a given program is
very dependent on the particular target machine. And the RTL does not contain all the
information about the program.

The proper way to interface GCC to a new language front end is with the \tree" data
structure, described in the �les `tree.h' and `tree.def'. The documentation for this struc-
ture (see Chapter 9 [Trees], page 69) is incomplete.

188 GNU Compiler Collection (GCC) Internals

Chapter 13: Control Flow Graph 189

13 Control Flow Graph

A control
ow graph (CFG) is a data structure built on top of the intermediate code
representation (the RTL or tree instruction stream) abstracting the control
ow behavior
of a function that is being compiled. The CFG is a directed graph where the vertices
represent basic blocks and edges represent possible transfer of control
ow from one basic
block to another. The data structures used to represent the control
ow graph are de�ned
in `basic-block.h'.

13.1 Basic Blocks

A basic block is a straight-line sequence of code with only one entry point and only one
exit. In GCC, basic blocks are represented using the basic_block data type.

Two pointer members of the basic_block structure are the pointers next_bb and prev_

bb. These are used to keep doubly linked chain of basic blocks in the same order as the
underlying instruction stream. The chain of basic blocks is updated transparently by the
provided API for manipulating the CFG. The macro FOR_EACH_BB can be used to visit
all the basic blocks in lexicographical order. Dominator traversals are also possible using
walk_dominator_tree. Given two basic blocks A and B, block A dominates block B if A
is always executed before B.

The BASIC_BLOCK array contains all basic blocks in an unspeci�ed order. Each basic_

block structure has a �eld that holds a unique integer identi�er index that is the index of
the block in the BASIC_BLOCK array. The total number of basic blocks in the function is
n_basic_blocks. Both the basic block indices and the total number of basic blocks may
vary during the compilation process, as passes reorder, create, duplicate, and destroy basic
blocks. The index for any block should never be greater than last_basic_block.

Special basic blocks represent possible entry and exit points of a function. These blocks
are called ENTRY_BLOCK_PTR and EXIT_BLOCK_PTR. These blocks do not contain any code,
and are not elements of the BASIC_BLOCK array. Therefore they have been assigned unique,
negative index numbers.

Each basic_block also contains pointers to the �rst instruction (the head) and the last
instruction (the tail) or end of the instruction stream contained in a basic block. In fact,
since the basic_block data type is used to represent blocks in both major intermediate
representations of GCC (tree and RTL), there are pointers to the head and end of a basic
block for both representations.

For RTL, these pointers are rtx head, end. In the RTL function representation, the head
pointer always points either to a NOTE_INSN_BASIC_BLOCK or to a CODE_LABEL, if present.
In the RTL representation of a function, the instruction stream contains not only the \real"
instructions, but also notes. Any function that moves or duplicates the basic blocks needs to
take care of updating of these notes. Many of these notes expect that the instruction stream
consists of linear regions, making such updates di�cult. The NOTE_INSN_BASIC_BLOCK note
is the only kind of note that may appear in the instruction stream contained in a basic block.
The instruction stream of a basic block always follows a NOTE_INSN_BASIC_BLOCK, but zero
or more CODE_LABEL nodes can precede the block note. A basic block ends by control
ow
instruction or last instruction before following CODE_LABEL or NOTE_INSN_BASIC_BLOCK. A
CODE_LABEL cannot appear in the instruction stream of a basic block.

190 GNU Compiler Collection (GCC) Internals

In addition to notes, the jump table vectors are also represented as \pseudo-instructions"
inside the insn stream. These vectors never appear in the basic block and should always be
placed just after the table jump instructions referencing them. After removing the table-
jump it is often di�cult to eliminate the code computing the address and referencing the
vector, so cleaning up these vectors is postponed until after liveness analysis. Thus the
jump table vectors may appear in the insn stream unreferenced and without any purpose.
Before any edge is made fall-thru, the existence of such construct in the way needs to be
checked by calling can_fallthru function.

For the tree representation, the head and end of the basic block are being pointed to by
the stmt_list �eld, but this special tree should never be referenced directly. Instead, at
the tree level abstract containers and iterators are used to access statements and expressions
in basic blocks. These iterators are called block statement iterators (BSIs). Grep for ^bsi
in the various `tree-*' �les. The following snippet will pretty-print all the statements of
the program in the GIMPLE representation.

FOR_EACH_BB (bb)
{

block_stmt_iterator si;

for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{

tree stmt = bsi_stmt (si);
print_generic_stmt (stderr, stmt, 0);

}
}

13.2 Edges

Edges represent possible control
ow transfers from the end of some basic block A to the
head of another basic block B. We say that A is a predecessor of B, and B is a successor
of A. Edges are represented in GCC with the edge data type. Each edge acts as a link
between two basic blocks: the src member of an edge points to the predecessor basic block
of the dest basic block. The members preds and succs of the basic_block data type
point to type-safe vectors of edges to the predecessors and successors of the block.

When walking the edges in an edge vector, edge iterators should be used. Edge iterators
are constructed using the edge_iterator data structure and several methods are available
to operate on them:

ei_start This function initializes an edge_iterator that points to the �rst edge in a
vector of edges.

ei_last This function initializes an edge_iterator that points to the last edge in a
vector of edges.

ei_end_p This predicate is true if an edge_iterator represents the last edge in an edge
vector.

ei_one_before_end_p

This predicate is true if an edge_iterator represents the second last edge in
an edge vector.

ei_next This function takes a pointer to an edge_iterator and makes it point to the
next edge in the sequence.

Chapter 13: Control Flow Graph 191

ei_prev This function takes a pointer to an edge_iterator and makes it point to the
previous edge in the sequence.

ei_edge This function returns the edge currently pointed to by an edge_iterator.

ei_safe_safe

This function returns the edge currently pointed to by an edge_iterator,
but returns NULL if the iterator is pointing at the end of the sequence. This
function has been provided for existing code makes the assumption that a NULL
edge indicates the end of the sequence.

The convenience macro FOR_EACH_EDGE can be used to visit all of the edges in a sequence
of predecessor or successor edges. It must not be used when an element might be removed
during the traversal, otherwise elements will be missed. Here is an example of how to use
the macro:

edge e;
edge_iterator ei;

FOR_EACH_EDGE (e, ei, bb->succs)
{

if (e->flags & EDGE_FALLTHRU)
break;

}

There are various reasons why control
ow may transfer from one block to another. One
possibility is that some instruction, for example a CODE_LABEL, in a linearized instruction
stream just always starts a new basic block. In this case a fall-thru edge links the basic
block to the �rst following basic block. But there are several other reasons why edges may
be created. The flags �eld of the edge data type is used to store information about the
type of edge we are dealing with. Each edge is of one of the following types:

jump No type
ags are set for edges corresponding to jump instructions. These edges
are used for unconditional or conditional jumps and in RTL also for table jumps.
They are the easiest to manipulate as they may be freely redirected when the

ow graph is not in SSA form.

fall-thru Fall-thru edges are present in case where the basic block may continue exe-
cution to the following one without branching. These edges have the EDGE_

FALLTHRU
ag set. Unlike other types of edges, these edges must come into
the basic block immediately following in the instruction stream. The function
force_nonfallthru is available to insert an unconditional jump in the case
that redirection is needed. Note that this may require creation of a new basic
block.

exception handling
Exception handling edges represent possible control transfers from a trapping
instruction to an exception handler. The de�nition of \trapping" varies. In C++,
only function calls can throw, but for Java, exceptions like division by zero or
segmentation fault are de�ned and thus each instruction possibly throwing this
kind of exception needs to be handled as control
ow instruction. Exception
edges have the EDGE_ABNORMAL and EDGE_EH
ags set.

192 GNU Compiler Collection (GCC) Internals

When updating the instruction stream it is easy to change possibly trapping
instruction to non-trapping, by simply removing the exception edge. The op-
posite conversion is di�cult, but should not happen anyway. The edges can be
eliminated via purge_dead_edges call.

In the RTL representation, the destination of an exception edge is speci�ed
by REG_EH_REGION note attached to the insn. In case of a trapping call the
EDGE_ABNORMAL_CALL
ag is set too. In the tree representation, this extra
ag
is not set.

In the RTL representation, the predicate may_trap_p may be used to check
whether instruction still may trap or not. For the tree representation, the
tree_could_trap_p predicate is available, but this predicate only checks for
possible memory traps, as in dereferencing an invalid pointer location.

sibling calls
Sibling calls or tail calls terminate the function in a non-standard way and thus
an edge to the exit must be present. EDGE_SIBCALL and EDGE_ABNORMAL are
set in such case. These edges only exist in the RTL representation.

computed jumps
Computed jumps contain edges to all labels in the function referenced from
the code. All those edges have EDGE_ABNORMAL
ag set. The edges used to
represent computed jumps often cause compile time performance problems,
since functions consisting of many taken labels and many computed jumps may
have very dense
ow graphs, so these edges need to be handled with special
care. During the earlier stages of the compilation process, GCC tries to avoid
such dense
ow graphs by factoring computed jumps. For example, given the
following series of jumps,

goto *x;
[...]

goto *x;
[...]

goto *x;
[...]

factoring the computed jumps results in the following code sequence which has
a much simpler
ow graph:

goto y;
[...]

goto y;
[...]

goto y;
[...]

y:
goto *x;

However, the classic problem with this transformation is that it has a runtime
cost in there resulting code: An extra jump. Therefore, the computed jumps
are un-factored in the later passes of the compiler. Be aware of that when

Chapter 13: Control Flow Graph 193

you work on passes in that area. There have been numerous examples already
where the compile time for code with unfactored computed jumps caused some
serious headaches.

nonlocal goto handlers
GCC allows nested functions to return into caller using a goto to a label passed
to as an argument to the callee. The labels passed to nested functions contain
special code to cleanup after function call. Such sections of code are referred to
as \nonlocal goto receivers". If a function contains such nonlocal goto receivers,
an edge from the call to the label is created with the EDGE_ABNORMAL and EDGE_

ABNORMAL_CALL
ags set.

function entry points
By de�nition, execution of function starts at basic block 0, so there is always
an edge from the ENTRY_BLOCK_PTR to basic block 0. There is no tree repre-
sentation for alternate entry points at this moment. In RTL, alternate entry
points are speci�ed by CODE_LABEL with LABEL_ALTERNATE_NAME de�ned. This
feature is currently used for multiple entry point prologues and is limited to
post-reload passes only. This can be used by back-ends to emit alternate pro-
logues for functions called from di�erent contexts. In future full support for
multiple entry functions de�ned by Fortran 90 needs to be implemented.

function exits
In the pre-reload representation a function terminates after the last instruction
in the insn chain and no explicit return instructions are used. This corresponds
to the fall-thru edge into exit block. After reload, optimal RTL epilogues are
used that use explicit (conditional) return instructions that are represented by
edges with no
ags set.

13.3 Pro�le information

In many cases a compiler must make a choice whether to trade speed in one part of code
for speed in another, or to trade code size for code speed. In such cases it is useful to know
information about how often some given block will be executed. That is the purpose for
maintaining pro�le within the
ow graph. GCC can handle pro�le information obtained
through pro�le feedback, but it can also estimate branch probabilities based on statics and
heuristics.

The feedback based pro�le is produced by compiling the program with instrumentation,
executing it on a train run and reading the numbers of executions of basic blocks and edges
back to the compiler while re-compiling the program to produce the �nal executable. This
method provides very accurate information about where a program spends most of its time
on the train run. Whether it matches the average run of course depends on the choice
of train data set, but several studies have shown that the behavior of a program usually
changes just marginally over di�erent data sets.

When pro�le feedback is not available, the compiler may be asked to attempt to predict
the behavior of each branch in the program using a set of heuristics (see `predict.def'
for details) and compute estimated frequencies of each basic block by propagating the
probabilities over the graph.

194 GNU Compiler Collection (GCC) Internals

Each basic_block contains two integer �elds to represent pro�le information: frequency
and count. The frequency is an estimation how often is basic block executed within a
function. It is represented as an integer scaled in the range from 0 to BB_FREQ_BASE. The
most frequently executed basic block in function is initially set to BB_FREQ_BASE and the
rest of frequencies are scaled accordingly. During optimization, the frequency of the most
frequent basic block can both decrease (for instance by loop unrolling) or grow (for instance
by cross-jumping optimization), so scaling sometimes has to be performed multiple times.

The count contains hard-counted numbers of execution measured during training runs
and is nonzero only when pro�le feedback is available. This value is represented as the
host's widest integer (typically a 64 bit integer) of the special type gcov_type.

Most optimization passes can use only the frequency information of a basic block, but a
few passes may want to know hard execution counts. The frequencies should always match
the counts after scaling, however during updating of the pro�le information numerical error
may accumulate into quite large errors.

Each edge also contains a branch probability �eld: an integer in the range from 0 to
REG_BR_PROB_BASE. It represents probability of passing control from the end of the src

basic block to the dest basic block, i.e. the probability that control will
ow along this
edge. The EDGE_FREQUENCY macro is available to compute how frequently a given edge is
taken. There is a count �eld for each edge as well, representing same information as for a
basic block.

The basic block frequencies are not represented in the instruction stream, but in the RTL
representation the edge frequencies are represented for conditional jumps (via the REG_BR_
PROB macro) since they are used when instructions are output to the assembly �le and the

ow graph is no longer maintained.

The probability that control
ow arrives via a given edge to its destination basic block
is called reverse probability and is not directly represented, but it may be easily computed
from frequencies of basic blocks.

Updating pro�le information is a delicate task that can unfortunately not be easily in-
tegrated with the CFG manipulation API. Many of the functions and hooks to modify
the CFG, such as redirect_edge_and_branch, do not have enough information to easily
update the pro�le, so updating it is in the majority of cases left up to the caller. It is
di�cult to uncover bugs in the pro�le updating code, because they manifest themselves
only by producing worse code, and checking pro�le consistency is not possible because of
numeric error accumulation. Hence special attention needs to be given to this issue in each
pass that modi�es the CFG.

It is important to point out that REG_BR_PROB_BASE and BB_FREQ_BASE are both set low
enough to be possible to compute second power of any frequency or probability in the
ow
graph, it is not possible to even square the count �eld, as modern CPUs are fast enough to
execute 2^32 operations quickly.

13.4 Maintaining the CFG

An important task of each compiler pass is to keep both the control
ow graph and all pro�le
information up-to-date. Reconstruction of the control
ow graph after each pass is not an
option, since it may be very expensive and lost pro�le information cannot be reconstructed
at all.

Chapter 13: Control Flow Graph 195

GCC has two major intermediate representations, and both use the basic_block and
edge data types to represent control
ow. Both representations share as much of the CFG
maintenance code as possible. For each representation, a set of hooks is de�ned so that
each representation can provide its own implementation of CFG manipulation routines when
necessary. These hooks are de�ned in `cfghooks.h'. There are hooks for almost all common
CFG manipulations, including block splitting and merging, edge redirection and creating
and deleting basic blocks. These hooks should provide everything you need to maintain and
manipulate the CFG in both the RTL and tree representation.

At the moment, the basic block boundaries are maintained transparently when modifying
instructions, so there rarely is a need to move them manually (such as in case someone
wants to output instruction outside basic block explicitly). Often the CFG may be better
viewed as integral part of instruction chain, than structure built on the top of it. However,
in principle the control
ow graph for the tree representation is not an integral part of
the representation, in that a function tree may be expanded without �rst building a
ow
graph for the tree representation at all. This happens when compiling without any tree

optimization enabled. When the tree optimizations are enabled and the instruction stream
is rewritten in SSA form, the CFG is very tightly coupled with the instruction stream. In
particular, statement insertion and removal has to be done with care. In fact, the whole
tree representation can not be easily used or maintained without proper maintenance of
the CFG simultaneously.

In the RTL representation, each instruction has a BLOCK_FOR_INSN value that represents
pointer to the basic block that contains the instruction. In the tree representation, the
function bb_for_stmt returns a pointer to the basic block containing the queried statement.

When changes need to be applied to a function in its tree representation, block statement
iterators should be used. These iterators provide an integrated abstraction of the
ow
graph and the instruction stream. Block statement iterators iterators are constructed using
the block_stmt_iterator data structure and several modi�er are available, including the
following:

bsi_start

This function initializes a block_stmt_iterator that points to the �rst non-
empty statement in a basic block.

bsi_last This function initializes a block_stmt_iterator that points to the last state-
ment in a basic block.

bsi_end_p

This predicate is true if a block_stmt_iterator represents the end of a basic
block.

bsi_next This function takes a block_stmt_iterator and makes it point to its successor.

bsi_prev This function takes a block_stmt_iterator and makes it point to its prede-
cessor.

bsi_insert_after

This function inserts a statement after the block_stmt_iterator passed in.
The �nal parameter determines whether the statement iterator is updated to
point to the newly inserted statement, or left pointing to the original statement.

196 GNU Compiler Collection (GCC) Internals

bsi_insert_before

This function inserts a statement before the block_stmt_iterator passed in.
The �nal parameter determines whether the statement iterator is updated to
point to the newly inserted statement, or left pointing to the original statement.

bsi_remove

This function removes the block_stmt_iterator passed in and rechains the
remaining statements in a basic block, if any.

In the RTL representation, the macros BB_HEAD and BB_END may be used to get the
head and end rtx of a basic block. No abstract iterators are de�ned for traversing the
insn chain, but you can just use NEXT_INSN and PREV_INSN instead. See See Section 12.18
[Insns], page 177.

Usually a code manipulating pass simpli�es the instruction stream and the
ow of control,
possibly eliminating some edges. This may for example happen when a conditional jump is
replaced with an unconditional jump, but also when simplifying possibly trapping instruc-
tion to non-trapping while compiling Java. Updating of edges is not transparent and each
optimization pass is required to do so manually. However only few cases occur in practice.
The pass may call purge_dead_edges on a given basic block to remove super
uous edges,
if any.

Another common scenario is redirection of branch instructions, but this is best modeled as
redirection of edges in the control
ow graph and thus use of redirect_edge_and_branch is
preferred over more low level functions, such as redirect_jump that operate on RTL chain
only. The CFG hooks de�ned in `cfghooks.h' should provide the complete API required
for manipulating and maintaining the CFG.

It is also possible that a pass has to insert control
ow instruction into the middle of a
basic block, thus creating an entry point in the middle of the basic block, which is impossible
by de�nition: The block must be split to make sure it only has one entry point, i.e. the
head of the basic block. The CFG hook split_block may be used when an instruction in
the middle of a basic block has to become the target of a jump or branch instruction.

For a global optimizer, a common operation is to split edges in the
ow graph and insert
instructions on them. In the RTL representation, this can be easily done using the insert_
insn_on_edge function that emits an instruction \on the edge", caching it for a later
commit_edge_insertions call that will take care of moving the inserted instructions o�
the edge into the instruction stream contained in a basic block. This includes the creation
of new basic blocks where needed. In the tree representation, the equivalent functions
are bsi_insert_on_edge which inserts a block statement iterator on an edge, and bsi_

commit_edge_inserts which
ushes the instruction to actual instruction stream.

While debugging the optimization pass, an verify_flow_info function may be useful to
�nd bugs in the control
ow graph updating code.

Note that at present, the representation of control
ow in the tree representation is
discarded before expanding to RTL. Long term the CFG should be maintained and \ex-
panded" to the RTL representation along with the function tree itself.

13.5 Liveness information

Liveness information is useful to determine whether some register is \live" at given point
of program, i.e. that it contains a value that may be used at a later point in the program.

Chapter 13: Control Flow Graph 197

This information is used, for instance, during register allocation, as the pseudo registers
only need to be assigned to a unique hard register or to a stack slot if they are live. The
hard registers and stack slots may be freely reused for other values when a register is dead.

The liveness information is stored partly in the RTL instruction stream and partly in the

ow graph. Local information is stored in the instruction stream: Each instruction may
contain REG_DEAD notes representing that the value of a given register is no longer needed,
or REG_UNUSED notes representing that the value computed by the instruction is never used.
The second is useful for instructions computing multiple values at once.

Global liveness information is stored in the control
ow graph. Each basic block contains
two bitmaps, global_live_at_start and global_live_at_end representing liveness of
each register at the entry and exit of the basic block. The �le flow.c contains functions
to compute liveness of each register at any given place in the instruction stream using this
information.

Liveness is expensive to compute and thus it is desirable to keep it up to date during
code modifying passes. This can be easily accomplished using the flags �eld of a basic
block. Functions modifying the instruction stream automatically set the BB_DIRTY
ag
of a modi�es basic block, so the pass may simply useclear_bb_flags before doing any
modi�cations and then ask the data
ow module to have liveness updated via the update_
life_info_in_dirty_blocks function.

This scheme works reliably as long as no control
ow graph transformations are done.
The task of updating liveness after control
ow graph changes is more di�cult as normal
iterative data
ow analysis may produce invalid results or get into an in�nite cycle when
the initial solution is not below the desired one. Only simple transformations, like splitting
basic blocks or inserting on edges, are safe, as functions to implement them already know
how to update liveness information locally.

198 GNU Compiler Collection (GCC) Internals

Chapter 14: Machine Descriptions 199

14 Machine Descriptions

A machine description has two parts: a �le of instruction patterns (`.md' �le) and a C
header �le of macro de�nitions.

The `.md' �le for a target machine contains a pattern for each instruction that the target
machine supports (or at least each instruction that is worth telling the compiler about).
It may also contain comments. A semicolon causes the rest of the line to be a comment,
unless the semicolon is inside a quoted string.

See the next chapter for information on the C header �le.

14.1 Overview of How the Machine Description is Used

There are three main conversions that happen in the compiler:

1. The front end reads the source code and builds a parse tree.

2. The parse tree is used to generate an RTL insn list based on named instruction patterns.

3. The insn list is matched against the RTL templates to produce assembler code.

For the generate pass, only the names of the insns matter, from either a named define_

insn or a define_expand. The compiler will choose the pattern with the right name and
apply the operands according to the documentation later in this chapter, without regard
for the RTL template or operand constraints. Note that the names the compiler looks for
are hard-coded in the compiler|it will ignore unnamed patterns and patterns with names
it doesn't know about, but if you don't provide a named pattern it needs, it will abort.

If a define_insn is used, the template given is inserted into the insn list. If a define_

expand is used, one of three things happens, based on the condition logic. The condition
logic may manually create new insns for the insn list, say via emit_insn(), and invoke DONE.
For certain named patterns, it may invoke FAIL to tell the compiler to use an alternate way
of performing that task. If it invokes neither DONE nor FAIL, the template given in the
pattern is inserted, as if the define_expand were a define_insn.

Once the insn list is generated, various optimization passes convert, replace, and rearrange
the insns in the insn list. This is where the define_split and define_peephole patterns
get used, for example.

Finally, the insn list's RTL is matched up with the RTL templates in the define_insn

patterns, and those patterns are used to emit the �nal assembly code. For this purpose,
each named define_insn acts like it's unnamed, since the names are ignored.

14.2 Everything about Instruction Patterns

Each instruction pattern contains an incomplete RTL expression, with pieces to be �lled in
later, operand constraints that restrict how the pieces can be �lled in, and an output pattern
or C code to generate the assembler output, all wrapped up in a define_insn expression.

A define_insn is an RTL expression containing four or �ve operands:

1. An optional name. The presence of a name indicate that this instruction pattern can
perform a certain standard job for the RTL-generation pass of the compiler. This pass
knows certain names and will use the instruction patterns with those names, if the
names are de�ned in the machine description.

200 GNU Compiler Collection (GCC) Internals

The absence of a name is indicated by writing an empty string where the name should
go. Nameless instruction patterns are never used for generating RTL code, but they
may permit several simpler insns to be combined later on.

Names that are not thus known and used in RTL-generation have no e�ect; they are
equivalent to no name at all.

For the purpose of debugging the compiler, you may also specify a name beginning
with the `*' character. Such a name is used only for identifying the instruction in RTL
dumps; it is entirely equivalent to having a nameless pattern for all other purposes.

2. The RTL template (see Section 14.4 [RTL Template], page 201) is a vector of incomplete
RTL expressions which show what the instruction should look like. It is incomplete
because it may contain match_operand, match_operator, and match_dup expressions
that stand for operands of the instruction.

If the vector has only one element, that element is the template for the instruction
pattern. If the vector has multiple elements, then the instruction pattern is a parallel
expression containing the elements described.

3. A condition. This is a string which contains a C expression that is the �nal test to
decide whether an insn body matches this pattern.

For a named pattern, the condition (if present) may not depend on the data in the insn
being matched, but only the target-machine-type
ags. The compiler needs to test these
conditions during initialization in order to learn exactly which named instructions are
available in a particular run.

For nameless patterns, the condition is applied only when matching an individual insn,
and only after the insn has matched the pattern's recognition template. The insn's
operands may be found in the vector operands. For an insn where the condition has
once matched, it can't be used to control register allocation, for example by excluding
certain hard registers or hard register combinations.

4. The output template: a string that says how to output matching insns as assembler
code. `%' in this string speci�es where to substitute the value of an operand. See
Section 14.5 [Output Template], page 204.

When simple substitution isn't general enough, you can specify a piece of C code to
compute the output. See Section 14.6 [Output Statement], page 206.

5. Optionally, a vector containing the values of attributes for insns matching this pattern.
See Section 14.19 [Insn Attributes], page 274.

14.3 Example of define_insn

Here is an actual example of an instruction pattern, for the 68000/68020.
(define_insn "tstsi"
[(set (cc0)

(match_operand:SI 0 "general_operand" "rm"))]
""
"*

{
if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
return \"tstl %0\";

return \"cmpl #0,%0\";
}")

Chapter 14: Machine Descriptions 201

This can also be written using braced strings:

(define_insn "tstsi"
[(set (cc0)

(match_operand:SI 0 "general_operand" "rm"))]
""

{
if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
return "tstl %0";

return "cmpl #0,%0";
})

This is an instruction that sets the condition codes based on the value of a general
operand. It has no condition, so any insn whose RTL description has the form shown may
be handled according to this pattern. The name `tstsi' means \test a SImode value" and
tells the RTL generation pass that, when it is necessary to test such a value, an insn to do
so can be constructed using this pattern.

The output control string is a piece of C code which chooses which output template to
return based on the kind of operand and the speci�c type of CPU for which code is being
generated.

`"rm"' is an operand constraint. Its meaning is explained below.

14.4 RTL Template

The RTL template is used to de�ne which insns match the particular pattern and how to
�nd their operands. For named patterns, the RTL template also says how to construct an
insn from speci�ed operands.

Construction involves substituting speci�ed operands into a copy of the template. Match-
ing involves determining the values that serve as the operands in the insn being matched.
Both of these activities are controlled by special expression types that direct matching and
substitution of the operands.

(match_operand:m n predicate constraint)

This expression is a placeholder for operand number n of the insn. When
constructing an insn, operand number n will be substituted at this point. When
matching an insn, whatever appears at this position in the insn will be taken
as operand number n; but it must satisfy predicate or this instruction pattern
will not match at all.

Operand numbers must be chosen consecutively counting from zero in each
instruction pattern. There may be only one match_operand expression in the
pattern for each operand number. Usually operands are numbered in the order
of appearance in match_operand expressions. In the case of a define_expand,
any operand numbers used only in match_dup expressions have higher values
than all other operand numbers.

predicate is a string that is the name of a function that accepts two arguments,
an expression and a machine mode. See Section 14.7 [Predicates], page 207.
During matching, the function will be called with the putative operand as the
expression and m as the mode argument (if m is not speci�ed, VOIDmode will be
used, which normally causes predicate to accept any mode). If it returns zero,
this instruction pattern fails to match. predicate may be an empty string; then

202 GNU Compiler Collection (GCC) Internals

it means no test is to be done on the operand, so anything which occurs in this
position is valid.

Most of the time, predicate will reject modes other than m|but not always.
For example, the predicate address_operand uses m as the mode of memory
ref that the address should be valid for. Many predicates accept const_int

nodes even though their mode is VOIDmode.

constraint controls reloading and the choice of the best register class to use for
a value, as explained later (see Section 14.8 [Constraints], page 211). If the
constraint would be an empty string, it can be omitted.

People are often unclear on the di�erence between the constraint and the predi-
cate. The predicate helps decide whether a given insn matches the pattern. The
constraint plays no role in this decision; instead, it controls various decisions in
the case of an insn which does match.

(match_scratch:m n constraint)

This expression is also a placeholder for operand number n and indicates that
operand must be a scratch or reg expression.

When matching patterns, this is equivalent to
(match_operand:m n "scratch_operand" pred)

but, when generating RTL, it produces a (scratch:m) expression.

If the last few expressions in a parallel are clobber expressions whose
operands are either a hard register or match_scratch, the combiner can add
or delete them when necessary. See Section 12.15 [Side E�ects], page 170.

(match_dup n)

This expression is also a placeholder for operand number n. It is used when the
operand needs to appear more than once in the insn.

In construction, match_dup acts just like match_operand: the operand is sub-
stituted into the insn being constructed. But in matching, match_dup behaves
di�erently. It assumes that operand number n has already been determined by
a match_operand appearing earlier in the recognition template, and it matches
only an identical-looking expression.

Note that match_dup should not be used to tell the compiler that a particular
register is being used for two operands (example: add that adds one register to
another; the second register is both an input operand and the output operand).
Use a matching constraint (see Section 14.8.1 [Simple Constraints], page 212)
for those. match_dup is for the cases where one operand is used in two places
in the template, such as an instruction that computes both a quotient and a
remainder, where the opcode takes two input operands but the RTL template
has to refer to each of those twice; once for the quotient pattern and once for
the remainder pattern.

(match_operator:m n predicate [operands...])

This pattern is a kind of placeholder for a variable RTL expression code.

When constructing an insn, it stands for an RTL expression whose expression
code is taken from that of operand n, and whose operands are constructed from
the patterns operands.

Chapter 14: Machine Descriptions 203

When matching an expression, it matches an expression if the function predi-
cate returns nonzero on that expression and the patterns operands match the
operands of the expression.

Suppose that the function commutative_operator is de�ned as follows, to
match any expression whose operator is one of the commutative arithmetic
operators of RTL and whose mode is mode:

int
commutative_integer_operator (x, mode)

rtx x;
enum machine_mode mode;

{
enum rtx_code code = GET_CODE (x);
if (GET_MODE (x) != mode)
return 0;

return (GET_RTX_CLASS (code) == RTX_COMM_ARITH
|| code == EQ || code == NE);

}

Then the following pattern will match any RTL expression consisting of a com-
mutative operator applied to two general operands:

(match_operator:SI 3 "commutative_operator"
[(match_operand:SI 1 "general_operand" "g")
(match_operand:SI 2 "general_operand" "g")])

Here the vector [operands...] contains two patterns because the expressions
to be matched all contain two operands.

When this pattern does match, the two operands of the commutative operator
are recorded as operands 1 and 2 of the insn. (This is done by the two instances
of match_operand.) Operand 3 of the insn will be the entire commutative
expression: use GET_CODE (operands[3]) to see which commutative operator
was used.

The machine mode m of match_operator works like that of match_operand: it
is passed as the second argument to the predicate function, and that function
is solely responsible for deciding whether the expression to be matched \has"
that mode.

When constructing an insn, argument 3 of the gen-function will specify the
operation (i.e. the expression code) for the expression to be made. It should
be an RTL expression, whose expression code is copied into a new expression
whose operands are arguments 1 and 2 of the gen-function. The subexpressions
of argument 3 are not used; only its expression code matters.

When match_operator is used in a pattern for matching an insn, it usually best
if the operand number of the match_operator is higher than that of the actual
operands of the insn. This improves register allocation because the register
allocator often looks at operands 1 and 2 of insns to see if it can do register
tying.

There is no way to specify constraints in match_operator. The operand of
the insn which corresponds to the match_operator never has any constraints
because it is never reloaded as a whole. However, if parts of its operands are
matched by match_operand patterns, those parts may have constraints of their
own.

204 GNU Compiler Collection (GCC) Internals

(match_op_dup:m n[operands...])

Like match_dup, except that it applies to operators instead of operands. When
constructing an insn, operand number n will be substituted at this point. But in
matching, match_op_dup behaves di�erently. It assumes that operand number
n has already been determined by a match_operator appearing earlier in the
recognition template, and it matches only an identical-looking expression.

(match_parallel n predicate [subpat...])

This pattern is a placeholder for an insn that consists of a parallel expression
with a variable number of elements. This expression should only appear at the
top level of an insn pattern.

When constructing an insn, operand number n will be substituted at this point.
When matching an insn, it matches if the body of the insn is a parallel

expression with at least as many elements as the vector of subpat expressions
in the match_parallel, if each subpat matches the corresponding element of
the parallel, and the function predicate returns nonzero on the parallel

that is the body of the insn. It is the responsibility of the predicate to validate
elements of the parallel beyond those listed in the match_parallel.

A typical use of match_parallel is to match load and store multiple expres-
sions, which can contain a variable number of elements in a parallel. For
example,

(define_insn ""
[(match_parallel 0 "load_multiple_operation"

[(set (match_operand:SI 1 "gpc_reg_operand" "=r")
(match_operand:SI 2 "memory_operand" "m"))

(use (reg:SI 179))
(clobber (reg:SI 179))])]

""
"loadm 0,0,%1,%2")

This example comes from `a29k.md'. The function load_multiple_operation

is de�ned in `a29k.c' and checks that subsequent elements in the parallel are
the same as the set in the pattern, except that they are referencing subsequent
registers and memory locations.

An insn that matches this pattern might look like:

(parallel
[(set (reg:SI 20) (mem:SI (reg:SI 100)))
(use (reg:SI 179))
(clobber (reg:SI 179))
(set (reg:SI 21)

(mem:SI (plus:SI (reg:SI 100)
(const_int 4))))

(set (reg:SI 22)
(mem:SI (plus:SI (reg:SI 100)

(const_int 8))))])

(match_par_dup n [subpat...])

Like match_op_dup, but for match_parallel instead of match_operator.

Chapter 14: Machine Descriptions 205

14.5 Output Templates and Operand Substitution

The output template is a string which speci�es how to output the assembler code for an
instruction pattern. Most of the template is a �xed string which is output literally. The
character `%' is used to specify where to substitute an operand; it can also be used to identify
places where di�erent variants of the assembler require di�erent syntax.

In the simplest case, a `%' followed by a digit n says to output operand n at that point in
the string.

`%' followed by a letter and a digit says to output an operand in an alternate fashion.
Four letters have standard, built-in meanings described below. The machine description
macro PRINT_OPERAND can de�ne additional letters with nonstandard meanings.

`%cdigit ' can be used to substitute an operand that is a constant value without the
syntax that normally indicates an immediate operand.

`%ndigit ' is like `%cdigit ' except that the value of the constant is negated before print-
ing.

`%adigit ' can be used to substitute an operand as if it were a memory reference, with
the actual operand treated as the address. This may be useful when outputting a \load
address" instruction, because often the assembler syntax for such an instruction requires
you to write the operand as if it were a memory reference.

`%ldigit ' is used to substitute a label_ref into a jump instruction.

`%=' outputs a number which is unique to each instruction in the entire compilation. This
is useful for making local labels to be referred to more than once in a single template that
generates multiple assembler instructions.

`%' followed by a punctuation character speci�es a substitution that does not use an
operand. Only one case is standard: `%%' outputs a `%' into the assembler code. Other
nonstandard cases can be de�ned in the PRINT_OPERAND macro. You must also de�ne
which punctuation characters are valid with the PRINT_OPERAND_PUNCT_VALID_P macro.

The template may generate multiple assembler instructions. Write the text for the in-
structions, with `\;' between them.

When the RTL contains two operands which are required by constraint to match each
other, the output template must refer only to the lower-numbered operand. Matching
operands are not always identical, and the rest of the compiler arranges to put the proper
RTL expression for printing into the lower-numbered operand.

One use of nonstandard letters or punctuation following `%' is to distinguish between
di�erent assembler languages for the same machine; for example, Motorola syntax versus
MIT syntax for the 68000. Motorola syntax requires periods in most opcode names, while
MIT syntax does not. For example, the opcode `movel' in MIT syntax is `move.l' in
Motorola syntax. The same �le of patterns is used for both kinds of output syntax, but
the character sequence `%.' is used in each place where Motorola syntax wants a period.
The PRINT_OPERAND macro for Motorola syntax de�nes the sequence to output a period;
the macro for MIT syntax de�nes it to do nothing.

As a special case, a template consisting of the single character # instructs the compiler
to �rst split the insn, and then output the resulting instructions separately. This helps
eliminate redundancy in the output templates. If you have a define_insn that needs
to emit multiple assembler instructions, and there is an matching define_split already

206 GNU Compiler Collection (GCC) Internals

de�ned, then you can simply use # as the output template instead of writing an output
template that emits the multiple assembler instructions.

If the macro ASSEMBLER_DIALECT is de�ned, you can use construct of the form
`{option0|option1|option2}' in the templates. These describe multiple variants of
assembler language syntax. See Section 15.21.7 [Instruction Output], page 402.

14.6 C Statements for Assembler Output

Often a single �xed template string cannot produce correct and e�cient assembler code for
all the cases that are recognized by a single instruction pattern. For example, the opcodes
may depend on the kinds of operands; or some unfortunate combinations of operands may
require extra machine instructions.

If the output control string starts with a `@', then it is actually a series of templates, each
on a separate line. (Blank lines and leading spaces and tabs are ignored.) The templates
correspond to the pattern's constraint alternatives (see Section 14.8.2 [Multi-Alternative],
page 216). For example, if a target machine has a two-address add instruction `addr' to
add into a register and another `addm' to add a register to memory, you might write this
pattern:

(define_insn "addsi3"
[(set (match_operand:SI 0 "general_operand" "=r,m")

(plus:SI (match_operand:SI 1 "general_operand" "0,0")
(match_operand:SI 2 "general_operand" "g,r")))]

""
"@
addr %2,%0
addm %2,%0")

If the output control string starts with a `*', then it is not an output template but rather a
piece of C program that should compute a template. It should execute a return statement
to return the template-string you want. Most such templates use C string literals, which
require doublequote characters to delimit them. To include these doublequote characters in
the string, pre�x each one with `\'.

If the output control string is written as a brace block instead of a double-quoted string,
it is automatically assumed to be C code. In that case, it is not necessary to put in a leading
asterisk, or to escape the doublequotes surrounding C string literals.

The operands may be found in the array operands, whose C data type is rtx [].

It is very common to select di�erent ways of generating assembler code based on whether
an immediate operand is within a certain range. Be careful when doing this, because the
result of INTVAL is an integer on the host machine. If the host machine has more bits in an
int than the target machine has in the mode in which the constant will be used, then some
of the bits you get from INTVAL will be super
uous. For proper results, you must carefully
disregard the values of those bits.

It is possible to output an assembler instruction and then go on to output or compute
more of them, using the subroutine output_asm_insn. This receives two arguments: a
template-string and a vector of operands. The vector may be operands, or it may be
another array of rtx that you declare locally and initialize yourself.

When an insn pattern has multiple alternatives in its constraints, often the appearance
of the assembler code is determined mostly by which alternative was matched. When this

Chapter 14: Machine Descriptions 207

is so, the C code can test the variable which_alternative, which is the ordinal number of
the alternative that was actually satis�ed (0 for the �rst, 1 for the second alternative, etc.).

For example, suppose there are two opcodes for storing zero, `clrreg' for registers and
`clrmem' for memory locations. Here is how a pattern could use which_alternative to
choose between them:

(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r,m")

(const_int 0))]
""
{
return (which_alternative == 0

? "clrreg %0" : "clrmem %0");
})

The example above, where the assembler code to generate was solely determined by the
alternative, could also have been speci�ed as follows, having the output control string start
with a `@':

(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r,m")

(const_int 0))]
""
"@
clrreg %0
clrmem %0")

14.7 Predicates

A predicate determines whether a match_operand or match_operator expression matches,
and therefore whether the surrounding instruction pattern will be used for that combination
of operands. GCC has a number of machine-independent predicates, and you can de�ne
machine-speci�c predicates as needed. By convention, predicates used with match_operand

have names that end in `_operand', and those used with match_operator have names that
end in `_operator'.

All predicates are Boolean functions (in the mathematical sense) of two arguments: the
RTL expression that is being considered at that position in the instruction pattern, and
the machine mode that the match_operand or match_operator speci�es. In this section,
the �rst argument is called op and the second argument mode. Predicates can be called
from C as ordinary two-argument functions; this can be useful in output templates or other
machine-speci�c code.

Operand predicates can allow operands that are not actually acceptable to the hard-
ware, as long as the constraints give reload the ability to �x them up (see Section 14.8
[Constraints], page 211). However, GCC will usually generate better code if the predicates
specify the requirements of the machine instructions as closely as possible. Reload cannot
�x up operands that must be constants (\immediate operands"); you must use a predicate
that allows only constants, or else enforce the requirement in the extra condition.

Most predicates handle their mode argument in a uniform manner. If mode is VOIDmode
(unspeci�ed), then op can have any mode. If mode is anything else, then op must have the
same mode, unless op is a CONST_INT or integer CONST_DOUBLE. These RTL expressions
always have VOIDmode, so it would be counterproductive to check that their mode matches.

208 GNU Compiler Collection (GCC) Internals

Instead, predicates that accept CONST_INT and/or integer CONST_DOUBLE check that the
value stored in the constant will �t in the requested mode.

Predicates with this behavior are called normal. genrecog can optimize the instruction
recognizer based on knowledge of how normal predicates treat modes. It can also diagnose
certain kinds of common errors in the use of normal predicates; for instance, it is almost
always an error to use a normal predicate without specifying a mode.

Predicates that do something di�erent with their mode argument are called special. The
generic predicates address_operand and pmode_register_operand are special predicates.
genrecog does not do any optimizations or diagnosis when special predicates are used.

14.7.1 Machine-Independent Predicates

These are the generic predicates available to all back ends. They are de�ned in `recog.c'.
The �rst category of predicates allow only constant, or immediate, operands.

[Function]immediate_operand
This predicate allows any sort of constant that �ts in mode. It is an appropriate
choice for instructions that take operands that must be constant.

[Function]const_int_operand
This predicate allows any CONST_INT expression that �ts inmode. It is an appropriate
choice for an immediate operand that does not allow a symbol or label.

[Function]const_double_operand
This predicate accepts any CONST_DOUBLE expression that has exactly mode. If mode
is VOIDmode, it will also accept CONST_INT. It is intended for immediate
oating point
constants.

The second category of predicates allow only some kind of machine register.

[Function]register_operand
This predicate allows any REG or SUBREG expression that is valid for mode. It is often
suitable for arithmetic instruction operands on a RISC machine.

[Function]pmode_register_operand
This is a slight variant on register_operand which works around a limitation in the
machine-description reader.

(match_operand n "pmode_register_operand" constraint)

means exactly what
(match_operand:P n "register_operand" constraint)

would mean, if the machine-description reader accepted `:P' mode su�xes. Unfor-
tunately, it cannot, because Pmode is an alias for some other mode, and might vary
with machine-speci�c options. See Section 15.29 [Misc], page 423.

[Function]scratch_operand
This predicate allows hard registers and SCRATCH expressions, but not pseudo-
registers. It is used internally by match_scratch; it should not be used
directly.

The third category of predicates allow only some kind of memory reference.

Chapter 14: Machine Descriptions 209

[Function]memory_operand
This predicate allows any valid reference to a quantity of mode mode in memory,
as determined by the weak form of GO_IF_LEGITIMATE_ADDRESS (see Section 15.14
[Addressing Modes], page 364).

[Function]address_operand
This predicate is a little unusual; it allows any operand that is a valid expression
for the address of a quantity of mode mode, again determined by the weak form of
GO_IF_LEGITIMATE_ADDRESS. To �rst order, if `(mem:mode (exp))' is acceptable to
memory_operand, then exp is acceptable to address_operand. Note that exp does
not necessarily have the mode mode.

[Function]indirect_operand
This is a stricter form of memory_operand which allows only memory references with
a general_operand as the address expression. New uses of this predicate are dis-
couraged, because general_operand is very permissive, so it's hard to tell what an
indirect_operand does or does not allow. If a target has di�erent requirements
for memory operands for di�erent instructions, it is better to de�ne target-speci�c
predicates which enforce the hardware's requirements explicitly.

[Function]push_operand
This predicate allows a memory reference suitable for pushing a value onto the stack.
This will be a MEM which refers to stack_pointer_rtx, with a side-e�ect in its address
expression (see Section 12.16 [Incdec], page 175); which one is determined by the
STACK_PUSH_CODE macro (see Section 15.10.1 [Frame Layout], page 333).

[Function]pop_operand
This predicate allows a memory reference suitable for popping a value o� the stack.
Again, this will be a MEM referring to stack_pointer_rtx, with a side-e�ect in its
address expression. However, this time STACK_POP_CODE is expected.

The fourth category of predicates allow some combination of the above operands.

[Function]nonmemory_operand
This predicate allows any immediate or register operand valid for mode.

[Function]nonimmediate_operand
This predicate allows any register or memory operand valid for mode.

[Function]general_operand
This predicate allows any immediate, register, or memory operand valid for mode.

Finally, there is one generic operator predicate.

[Function]comparison_operator
This predicate matches any expression which performs an arithmetic comparison in
mode; that is, COMPARISON_P is true for the expression code.

210 GNU Compiler Collection (GCC) Internals

14.7.2 De�ning Machine-Speci�c Predicates

Many machines have requirements for their operands that cannot be expressed precisely
using the generic predicates. You can de�ne additional predicates using define_predicate
and define_special_predicate expressions. These expressions have three operands:

� The name of the predicate, as it will be referred to in match_operand or match_

operator expressions.

� An RTL expression which evaluates to true if the predicate allows the operand op, false
if it does not. This expression can only use the following RTL codes:

MATCH_OPERAND

When written inside a predicate expression, a MATCH_OPERAND expression
evaluates to true if the predicate it names would allow op. The operand
number and constraint are ignored. Due to limitations in genrecog, you
can only refer to generic predicates and predicates that have already been
de�ned.

MATCH_CODE

This expression evaluates to true if op or a speci�ed subexpression of op
has one of a given list of RTX codes.

The �rst operand of this expression is a string constant containing a
comma-separated list of RTX code names (in lower case). These are the
codes for which the MATCH_CODE will be true.

The second operand is a string constant which indicates what subexpres-
sion of op to examine. If it is absent or the empty string, op itself is
examined. Otherwise, the string constant must be a sequence of digits
and/or lowercase letters. Each character indicates a subexpression to ex-
tract from the current expression; for the �rst character this is op, for the
second and subsequent characters it is the result of the previous character.
A digit n extracts `XEXP (e, n)'; a letter l extracts `XVECEXP (e, 0, n)'
where n is the alphabetic ordinal of l (0 for `a', 1 for 'b', and so on). The
MATCH_CODE then examines the RTX code of the subexpression extracted
by the complete string. It is not possible to extract components of an
rtvec that is not at position 0 within its RTX object.

MATCH_TEST

This expression has one operand, a string constant containing a C expres-
sion. The predicate's arguments, op and mode, are available with those
names in the C expression. The MATCH_TEST evaluates to true if the C
expression evaluates to a nonzero value. MATCH_TEST expressions must not
have side e�ects.

AND

IOR

NOT

IF_THEN_ELSE

The basic `MATCH_' expressions can be combined using these logical opera-
tors, which have the semantics of the C operators `&&', `||', `!', and `? :'

Chapter 14: Machine Descriptions 211

respectively. As in Common Lisp, you may give an AND or IOR expres-
sion an arbitrary number of arguments; this has exactly the same e�ect as
writing a chain of two-argument AND or IOR expressions.

� An optional block of C code, which should execute `return true' if the predicate is
found to match and `return false' if it does not. It must not have any side e�ects.
The predicate arguments, op and mode, are available with those names.

If a code block is present in a predicate de�nition, then the RTL expression must
evaluate to true and the code block must execute `return true' for the predicate to
allow the operand. The RTL expression is evaluated �rst; do not re-check anything in
the code block that was checked in the RTL expression.

The program genrecog scans define_predicate and define_special_predicate ex-
pressions to determine which RTX codes are possibly allowed. You should always make this
explicit in the RTL predicate expression, using MATCH_OPERAND and MATCH_CODE.

Here is an example of a simple predicate de�nition, from the IA64 machine description:

;; True if op is a SYMBOL_REF which refers to the sdata section.
(define_predicate "small_addr_symbolic_operand"
(and (match_code "symbol_ref")

(match_test "SYMBOL_REF_SMALL_ADDR_P (op)")))

And here is another, showing the use of the C block.

;; True if op is a register operand that is (or could be) a GR reg.
(define_predicate "gr_register_operand"
(match_operand 0 "register_operand")

{
unsigned int regno;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);

regno = REGNO (op);
return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno));

})

Predicates written with define_predicate automatically include a test that mode is
VOIDmode, or op has the same mode as mode, or op is a CONST_INT or CONST_DOUBLE. They
do not check speci�cally for integer CONST_DOUBLE, nor do they test that the value of either
kind of constant �ts in the requested mode. This is because target-speci�c predicates that
take constants usually have to do more stringent value checks anyway. If you need the
exact same treatment of CONST_INT or CONST_DOUBLE that the generic predicates provide,
use a MATCH_OPERAND subexpression to call const_int_operand, const_double_operand,
or immediate_operand.

Predicates written with define_special_predicate do not get any automatic mode
checks, and are treated as having special mode handling by genrecog.

The program genpreds is responsible for generating code to test predicates. It also writes
a header �le containing function declarations for all machine-speci�c predicates. It is not
necessary to declare these predicates in `cpu-protos.h'.

212 GNU Compiler Collection (GCC) Internals

14.8 Operand Constraints

Each match_operand in an instruction pattern can specify constraints for the operands
allowed. The constraints allow you to �ne-tune matching within the set of operands allowed
by the predicate.

Constraints can say whether an operand may be in a register, and which kinds of register;
whether the operand can be a memory reference, and which kinds of address; whether the
operand may be an immediate constant, and which possible values it may have. Constraints
can also require two operands to match.

14.8.1 Simple Constraints

The simplest kind of constraint is a string full of letters, each of which describes one kind
of operand that is permitted. Here are the letters that are allowed:

whitespace
Whitespace characters are ignored and can be inserted at any position except
the �rst. This enables each alternative for di�erent operands to be visually
aligned in the machine description even if they have di�erent number of con-
straints and modi�ers.

`m' A memory operand is allowed, with any kind of address that the machine sup-
ports in general.

`o' A memory operand is allowed, but only if the address is o�settable. This
means that adding a small integer (actually, the width in bytes of the operand,
as determined by its machine mode) may be added to the address and the result
is also a valid memory address.

For example, an address which is constant is o�settable; so is an address that
is the sum of a register and a constant (as long as a slightly larger constant
is also within the range of address-o�sets supported by the machine); but an
autoincrement or autodecrement address is not o�settable. More complicated
indirect/indexed addresses may or may not be o�settable depending on the
other addressing modes that the machine supports.

Note that in an output operand which can be matched by another operand,
the constraint letter `o' is valid only when accompanied by both `<' (if the
target machine has predecrement addressing) and `>' (if the target machine has
preincrement addressing).

`V' A memory operand that is not o�settable. In other words, anything that would
�t the `m' constraint but not the `o' constraint.

`<' A memory operand with autodecrement addressing (either predecrement or
postdecrement) is allowed.

`>' A memory operand with autoincrement addressing (either preincrement or
postincrement) is allowed.

`r' A register operand is allowed provided that it is in a general register.

`i' An immediate integer operand (one with constant value) is allowed. This in-
cludes symbolic constants whose values will be known only at assembly time or
later.

Chapter 14: Machine Descriptions 213

`n' An immediate integer operand with a known numeric value is allowed. Many
systems cannot support assembly-time constants for operands less than a word
wide. Constraints for these operands should use `n' rather than `i'.

`I', `J', `K', . . . `P'
Other letters in the range `I' through `P' may be de�ned in a machine-dependent
fashion to permit immediate integer operands with explicit integer values in
speci�ed ranges. For example, on the 68000, `I' is de�ned to stand for the
range of values 1 to 8. This is the range permitted as a shift count in the shift
instructions.

`E' An immediate
oating operand (expression code const_double) is allowed, but
only if the target
oating point format is the same as that of the host machine
(on which the compiler is running).

`F' An immediate
oating operand (expression code const_double or
const_vector) is allowed.

`G', `H' `G' and `H' may be de�ned in a machine-dependent fashion to permit immediate

oating operands in particular ranges of values.

`s' An immediate integer operand whose value is not an explicit integer is allowed.

This might appear strange; if an insn allows a constant operand with a value
not known at compile time, it certainly must allow any known value. So why
use `s' instead of `i'? Sometimes it allows better code to be generated.

For example, on the 68000 in a fullword instruction it is possible to use an
immediate operand; but if the immediate value is between �128 and 127, better
code results from loading the value into a register and using the register. This
is because the load into the register can be done with a `moveq' instruction. We
arrange for this to happen by de�ning the letter `K' to mean \any integer outside
the range �128 to 127", and then specifying `Ks' in the operand constraints.

`g' Any register, memory or immediate integer operand is allowed, except for reg-
isters that are not general registers.

`X' Any operand whatsoever is allowed, even if it does not satisfy general_

operand. This is normally used in the constraint of a match_scratch when
certain alternatives will not actually require a scratch register.

`0', `1', `2', . . . `9'
An operand that matches the speci�ed operand number is allowed. If a digit
is used together with letters within the same alternative, the digit should come
last.

This number is allowed to be more than a single digit. If multiple digits are en-
countered consecutively, they are interpreted as a single decimal integer. There
is scant chance for ambiguity, since to-date it has never been desirable that
`10' be interpreted as matching either operand 1 or operand 0. Should this be
desired, one can use multiple alternatives instead.

This is called a matching constraint and what it really means is that the as-
sembler has only a single operand that �lls two roles considered separate in the

214 GNU Compiler Collection (GCC) Internals

RTL insn. For example, an add insn has two input operands and one output
operand in the RTL, but on most CISC machines an add instruction really has
only two operands, one of them an input-output operand:

addl #35,r12

Matching constraints are used in these circumstances. More precisely, the two
operands that match must include one input-only operand and one output-only
operand. Moreover, the digit must be a smaller number than the number of
the operand that uses it in the constraint.

For operands to match in a particular case usually means that they are identical-
looking RTL expressions. But in a few special cases speci�c kinds of dissimi-
larity are allowed. For example, *x as an input operand will match *x++ as an
output operand. For proper results in such cases, the output template should
always use the output-operand's number when printing the operand.

`p' An operand that is a valid memory address is allowed. This is for \load address"
and \push address" instructions.

`p' in the constraint must be accompanied by address_operand as the predicate
in the match_operand. This predicate interprets the mode speci�ed in the
match_operand as the mode of the memory reference for which the address
would be valid.

other-letters
Other letters can be de�ned in machine-dependent fashion to stand for par-
ticular classes of registers or other arbitrary operand types. `d', `a' and `f'
are de�ned on the 68000/68020 to stand for data, address and
oating point
registers.

In order to have valid assembler code, each operand must satisfy its constraint. But a
failure to do so does not prevent the pattern from applying to an insn. Instead, it directs
the compiler to modify the code so that the constraint will be satis�ed. Usually this is done
by copying an operand into a register.

Contrast, therefore, the two instruction patterns that follow:

(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r")

(plus:SI (match_dup 0)
(match_operand:SI 1 "general_operand" "r")))]

""
"...")

which has two operands, one of which must appear in two places, and

(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r")

(plus:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "r")))]

""
"...")

which has three operands, two of which are required by a constraint to be identical. If we
are considering an insn of the form

(insn n prev next

(set (reg:SI 3)

Chapter 14: Machine Descriptions 215

(plus:SI (reg:SI 6) (reg:SI 109)))
...)

the �rst pattern would not apply at all, because this insn does not contain two identical
subexpressions in the right place. The pattern would say, \That does not look like an
add instruction; try other patterns". The second pattern would say, \Yes, that's an add
instruction, but there is something wrong with it". It would direct the reload pass of the
compiler to generate additional insns to make the constraint true. The results might look
like this:

(insn n2 prev n

(set (reg:SI 3) (reg:SI 6))
...)

(insn n n2 next

(set (reg:SI 3)
(plus:SI (reg:SI 3) (reg:SI 109)))

...)

It is up to you to make sure that each operand, in each pattern, has constraints that
can handle any RTL expression that could be present for that operand. (When multiple
alternatives are in use, each pattern must, for each possible combination of operand expres-
sions, have at least one alternative which can handle that combination of operands.) The
constraints don't need to allow any possible operand|when this is the case, they do not
constrain|but they must at least point the way to reloading any possible operand so that
it will �t.

� If the constraint accepts whatever operands the predicate permits, there is no problem:
reloading is never necessary for this operand.

For example, an operand whose constraints permit everything except registers is safe
provided its predicate rejects registers.

An operand whose predicate accepts only constant values is safe provided its constraints
include the letter `i'. If any possible constant value is accepted, then nothing less than
`i' will do; if the predicate is more selective, then the constraints may also be more
selective.

� Any operand expression can be reloaded by copying it into a register. So if an operand's
constraints allow some kind of register, it is certain to be safe. It need not permit all
classes of registers; the compiler knows how to copy a register into another register of
the proper class in order to make an instruction valid.

� A nono�settable memory reference can be reloaded by copying the address into a
register. So if the constraint uses the letter `o', all memory references are taken care
of.

� A constant operand can be reloaded by allocating space in memory to hold it as preini-
tialized data. Then the memory reference can be used in place of the constant. So if
the constraint uses the letters `o' or `m', constant operands are not a problem.

� If the constraint permits a constant and a pseudo register used in an insn was not
allocated to a hard register and is equivalent to a constant, the register will be replaced
with the constant. If the predicate does not permit a constant and the insn is re-
recognized for some reason, the compiler will crash. Thus the predicate must always
recognize any objects allowed by the constraint.

216 GNU Compiler Collection (GCC) Internals

If the operand's predicate can recognize registers, but the constraint does not permit
them, it can make the compiler crash. When this operand happens to be a register, the
reload pass will be stymied, because it does not know how to copy a register temporarily
into memory.

If the predicate accepts a unary operator, the constraint applies to the operand. For
example, the MIPS processor at ISA level 3 supports an instruction which adds two registers
in SImode to produce a DImode result, but only if the registers are correctly sign extended.
This predicate for the input operands accepts a sign_extend of an SImode register. Write
the constraint to indicate the type of register that is required for the operand of the sign_
extend.

14.8.2 Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of possible operands. For ex-
ample, on the 68000, a logical-or instruction can combine register or an immediate value
into memory, or it can combine any kind of operand into a register; but it cannot combine
one memory location into another.

These constraints are represented as multiple alternatives. An alternative can be de-
scribed by a series of letters for each operand. The overall constraint for an operand is
made from the letters for this operand from the �rst alternative, a comma, the letters for
this operand from the second alternative, a comma, and so on until the last alternative.
Here is how it is done for fullword logical-or on the 68000:

(define_insn "iorsi3"
[(set (match_operand:SI 0 "general_operand" "=m,d")

(ior:SI (match_operand:SI 1 "general_operand" "%0,0")
(match_operand:SI 2 "general_operand" "dKs,dmKs")))]

...)

The �rst alternative has `m' (memory) for operand 0, `0' for operand 1 (meaning it must
match operand 0), and `dKs' for operand 2. The second alternative has `d' (data register)
for operand 0, `0' for operand 1, and `dmKs' for operand 2. The `=' and `%' in the constraints
apply to all the alternatives; their meaning is explained in the next section (see Section 14.8.3
[Class Preferences], page 217).

If all the operands �t any one alternative, the instruction is valid. Otherwise, for each
alternative, the compiler counts how many instructions must be added to copy the operands
so that that alternative applies. The alternative requiring the least copying is chosen. If
two alternatives need the same amount of copying, the one that comes �rst is chosen. These
choices can be altered with the `?' and `!' characters:

? Disparage slightly the alternative that the `?' appears in, as a choice when no
alternative applies exactly. The compiler regards this alternative as one unit
more costly for each `?' that appears in it.

! Disparage severely the alternative that the `!' appears in. This alternative can
still be used if it �ts without reloading, but if reloading is needed, some other
alternative will be used.

When an insn pattern has multiple alternatives in its constraints, often the appearance
of the assembler code is determined mostly by which alternative was matched. When this
is so, the C code for writing the assembler code can use the variable which_alternative,

Chapter 14: Machine Descriptions 217

which is the ordinal number of the alternative that was actually satis�ed (0 for the �rst, 1
for the second alternative, etc.). See Section 14.6 [Output Statement], page 206.

14.8.3 Register Class Preferences

The operand constraints have another function: they enable the compiler to decide which
kind of hardware register a pseudo register is best allocated to. The compiler examines the
constraints that apply to the insns that use the pseudo register, looking for the machine-
dependent letters such as `d' and `a' that specify classes of registers. The pseudo register
is put in whichever class gets the most \votes". The constraint letters `g' and `r' also vote:
they vote in favor of a general register. The machine description says which registers are
considered general.

Of course, on some machines all registers are equivalent, and no register classes are
de�ned. Then none of this complexity is relevant.

14.8.4 Constraint Modi�er Characters

Here are constraint modi�er characters.

`=' Means that this operand is write-only for this instruction: the previous value
is discarded and replaced by output data.

`+' Means that this operand is both read and written by the instruction.

When the compiler �xes up the operands to satisfy the constraints, it needs
to know which operands are inputs to the instruction and which are outputs
from it. `=' identi�es an output; `+' identi�es an operand that is both input and
output; all other operands are assumed to be input only.

If you specify `=' or `+' in a constraint, you put it in the �rst character of the
constraint string.

`&' Means (in a particular alternative) that this operand is an earlyclobber operand,
which is modi�ed before the instruction is �nished using the input operands.
Therefore, this operand may not lie in a register that is used as an input operand
or as part of any memory address.

`&' applies only to the alternative in which it is written. In constraints with
multiple alternatives, sometimes one alternative requires `&' while others do
not. See, for example, the `movdf' insn of the 68000.

An input operand can be tied to an earlyclobber operand if its only use as an
input occurs before the early result is written. Adding alternatives of this form
often allows GCC to produce better code when only some of the inputs can be
a�ected by the earlyclobber. See, for example, the `mulsi3' insn of the ARM.

`&' does not obviate the need to write `='.

`%' Declares the instruction to be commutative for this operand and the following
operand. This means that the compiler may interchange the two operands if
that is the cheapest way to make all operands �t the constraints. This is often
used in patterns for addition instructions that really have only two operands:
the result must go in one of the arguments. Here for example, is how the 68000
halfword-add instruction is de�ned:

218 GNU Compiler Collection (GCC) Internals

(define_insn "addhi3"
[(set (match_operand:HI 0 "general_operand" "=m,r")

(plus:HI (match_operand:HI 1 "general_operand" "%0,0")
(match_operand:HI 2 "general_operand" "di,g")))]

...)

GCC can only handle one commutative pair in an asm; if you use more, the
compiler may fail. Note that you need not use the modi�er if the two alterna-
tives are strictly identical; this would only waste time in the reload pass. The
modi�er is not operational after register allocation, so the result of define_
peephole2 and define_splits performed after reload cannot rely on `%' to
make the intended insn match.

`#' Says that all following characters, up to the next comma, are to be ignored as
a constraint. They are signi�cant only for choosing register preferences.

`*' Says that the following character should be ignored when choosing register
preferences. `*' has no e�ect on the meaning of the constraint as a constraint,
and no e�ect on reloading.

Here is an example: the 68000 has an instruction to sign-extend a halfword
in a data register, and can also sign-extend a value by copying it into an ad-
dress register. While either kind of register is acceptable, the constraints on
an address-register destination are less strict, so it is best if register allocation
makes an address register its goal. Therefore, `*' is used so that the `d' con-
straint letter (for data register) is ignored when computing register preferences.

(define_insn "extendhisi2"
[(set (match_operand:SI 0 "general_operand" "=*d,a")

(sign_extend:SI
(match_operand:HI 1 "general_operand" "0,g")))]

...)

14.8.5 Constraints for Particular Machines

Whenever possible, you should use the general-purpose constraint letters in asm arguments,
since they will convey meaning more readily to people reading your code. Failing that, use
the constraint letters that usually have very similar meanings across architectures. The
most commonly used constraints are `m' and `r' (for memory and general-purpose registers
respectively; see Section 14.8.1 [Simple Constraints], page 212), and `I', usually the letter
indicating the most common immediate-constant format.

Each architecture de�nes additional constraints. These constraints are used by the com-
piler itself for instruction generation, as well as for asm statements; therefore, some of the
constraints are not particularly useful for asm. Here is a summary of some of the machine-
dependent constraints available on some particular machines; it includes both constraints
that are useful for asm and constraints that aren't. The compiler source �le mentioned in
the table heading for each architecture is the de�nitive reference for the meanings of that
architecture's constraints.

ARM family|`config/arm/arm.h'

f Floating-point register

w VFP
oating-point register

Chapter 14: Machine Descriptions 219

F One of the
oating-point constants 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 or
10.0

G Floating-point constant that would satisfy the constraint `F' if it
were negated

I Integer that is valid as an immediate operand in a data processing
instruction. That is, an integer in the range 0 to 255 rotated by a
multiple of 2

J Integer in the range �4095 to 4095

K Integer that satis�es constraint `I' when inverted (ones comple-
ment)

L Integer that satis�es constraint `I' when negated (twos comple-
ment)

M Integer in the range 0 to 32

Q A memory reference where the exact address is in a single register
(\m'' is preferable for asm statements)

R An item in the constant pool

S A symbol in the text segment of the current �le

Uv A memory reference suitable for VFP load/store insns
(reg+constant o�set)

Uy A memory reference suitable for iWMMXt load/store instructions.

Uq A memory reference suitable for the ARMv4 ldrsb instruction.

AVR family|`config/avr/constraints.md'

l Registers from r0 to r15

a Registers from r16 to r23

d Registers from r16 to r31

w Registers from r24 to r31. These registers can be used in `adiw'
command

e Pointer register (r26{r31)

b Base pointer register (r28{r31)

q Stack pointer register (SPH:SPL)

t Temporary register r0

x Register pair X (r27:r26)

y Register pair Y (r29:r28)

z Register pair Z (r31:r30)

I Constant greater than �1, less than 64

J Constant greater than �64, less than 1

220 GNU Compiler Collection (GCC) Internals

K Constant integer 2

L Constant integer 0

M Constant that �ts in 8 bits

N Constant integer �1

O Constant integer 8, 16, or 24

P Constant integer 1

G A
oating point constant 0.0

CRX Architecture|`config/crx/crx.h'

b Registers from r0 to r14 (registers without stack pointer)

l Register r16 (64-bit accumulator lo register)

h Register r17 (64-bit accumulator hi register)

k Register pair r16-r17. (64-bit accumulator lo-hi pair)

I Constant that �ts in 3 bits

J Constant that �ts in 4 bits

K Constant that �ts in 5 bits

L Constant that is one of -1, 4, -4, 7, 8, 12, 16, 20, 32, 48

G Floating point constant that is legal for store immediate

PowerPC and IBM RS6000|`config/rs6000/rs6000.h'

b Address base register

f Floating point register

v Vector register

h `MQ', `CTR', or `LINK' register

q `MQ' register

c `CTR' register

l `LINK' register

x `CR' register (condition register) number 0

y `CR' register (condition register)

z `FPMEM' stack memory for FPR-GPR transfers

I Signed 16-bit constant

J Unsigned 16-bit constant shifted left 16 bits (use `L' instead for
SImode constants)

K Unsigned 16-bit constant

L Signed 16-bit constant shifted left 16 bits

Chapter 14: Machine Descriptions 221

M Constant larger than 31

N Exact power of 2

O Zero

P Constant whose negation is a signed 16-bit constant

G Floating point constant that can be loaded into a register with one
instruction per word

Q Memory operand that is an o�set from a register (`m' is preferable
for asm statements)

R AIX TOC entry

S Constant suitable as a 64-bit mask operand

T Constant suitable as a 32-bit mask operand

U System V Release 4 small data area reference

MorphoTech family|`config/mt/mt.h'

I Constant for an arithmetic insn (16-bit signed integer).

J The constant 0.

K Constant for a logical insn (16-bit zero-extended integer).

L A constant that can be loaded with lui (i.e. the bottom 16 bits are
zero).

M A constant that takes two words to load (i.e. not matched by I, K,
or L).

N Negative 16-bit constants other than -65536.

O A 15-bit signed integer constant.

P A positive 16-bit constant.

Intel 386|`config/i386/constraints.md'

R Legacy register|the eight integer registers available on all i386
processors (a, b, c, d, si, di, bp, sp).

q Any register accessible as rl. In 32-bit mode, a, b, c, and d; in
64-bit mode, any integer register.

Q Any register accessible as rh: a, b, c, and d.

l Any register that can be used as the index in a base+index memory
access: that is, any general register except the stack pointer.

a The a register.

b The b register.

c The c register.

d The d register.

222 GNU Compiler Collection (GCC) Internals

S The si register.

D The di register.

A The a and d registers, as a pair (for instructions that return half
the result in one and half in the other).

f Any 80387
oating-point (stack) register.

t Top of 80387
oating-point stack (%st(0)).

u Second from top of 80387
oating-point stack (%st(1)).

y Any MMX register.

x Any SSE register.

Y Any SSE2 register.

I Integer constant in the range 0 . . . 31, for 32-bit shifts.

J Integer constant in the range 0 . . . 63, for 64-bit shifts.

K Signed 8-bit integer constant.

L 0xFF or 0xFFFF, for andsi as a zero-extending move.

M 0, 1, 2, or 3 (shifts for the lea instruction).

N Unsigned 8-bit integer constant (for in and out instructions).

O Integer constant in the range 0 . . . 127, for 128-bit shifts.

G Standard 80387
oating point constant.

C Standard SSE
oating point constant.

e 32-bit signed integer constant, or a symbolic reference known to
�t that range (for immediate operands in sign-extending x86-64
instructions).

Z 32-bit unsigned integer constant, or a symbolic reference known to
�t that range (for immediate operands in zero-extending x86-64
instructions).

Intel IA-64|`config/ia64/ia64.h'

a General register r0 to r3 for addl instruction

b Branch register

c Predicate register (`c' as in \conditional")

d Application register residing in M-unit

e Application register residing in I-unit

f Floating-point register

m Memory operand. Remember that `m' allows postincrement and
postdecrement which require printing with `%Pn' on IA-64. Use `S'
to disallow postincrement and postdecrement.

Chapter 14: Machine Descriptions 223

G Floating-point constant 0.0 or 1.0

I 14-bit signed integer constant

J 22-bit signed integer constant

K 8-bit signed integer constant for logical instructions

L 8-bit adjusted signed integer constant for compare pseudo-ops

M 6-bit unsigned integer constant for shift counts

N 9-bit signed integer constant for load and store postincrements

O The constant zero

P 0 or �1 for dep instruction

Q Non-volatile memory for
oating-point loads and stores

R Integer constant in the range 1 to 4 for shladd instruction

S Memory operand except postincrement and postdecrement

FRV|`config/frv/frv.h'

a Register in the class ACC_REGS (acc0 to acc7).

b Register in the class EVEN_ACC_REGS (acc0 to acc7).

c Register in the class CC_REGS (fcc0 to fcc3 and icc0 to icc3).

d Register in the class GPR_REGS (gr0 to gr63).

e Register in the class EVEN_REGS (gr0 to gr63). Odd registers are
excluded not in the class but through the use of a machine mode
larger than 4 bytes.

f Register in the class FPR_REGS (fr0 to fr63).

h Register in the class FEVEN_REGS (fr0 to fr63). Odd registers are
excluded not in the class but through the use of a machine mode
larger than 4 bytes.

l Register in the class LR_REG (the lr register).

q Register in the class QUAD_REGS (gr2 to gr63). Register numbers
not divisible by 4 are excluded not in the class but through the use
of a machine mode larger than 8 bytes.

t Register in the class ICC_REGS (icc0 to icc3).

u Register in the class FCC_REGS (fcc0 to fcc3).

v Register in the class ICR_REGS (cc4 to cc7).

w Register in the class FCR_REGS (cc0 to cc3).

x Register in the class QUAD_FPR_REGS (fr0 to fr63). Register num-
bers not divisible by 4 are excluded not in the class but through
the use of a machine mode larger than 8 bytes.

224 GNU Compiler Collection (GCC) Internals

z Register in the class SPR_REGS (lcr and lr).

A Register in the class QUAD_ACC_REGS (acc0 to acc7).

B Register in the class ACCG_REGS (accg0 to accg7).

C Register in the class CR_REGS (cc0 to cc7).

G Floating point constant zero

I 6-bit signed integer constant

J 10-bit signed integer constant

L 16-bit signed integer constant

M 16-bit unsigned integer constant

N 12-bit signed integer constant that is negative|i.e. in the range of
�2048 to �1

O Constant zero

P 12-bit signed integer constant that is greater than zero|i.e. in the
range of 1 to 2047.

Black�n family|`config/bfin/bfin.h'

a P register

d D register

z A call clobbered P register.

D Even-numbered D register

W Odd-numbered D register

e Accumulator register.

A Even-numbered accumulator register.

B Odd-numbered accumulator register.

b I register

v B register

f M register

c Registers used for circular bu�ering, i.e. I, B, or L registers.

C The CC register.

t LT0 or LT1.

k LC0 or LC1.

u LB0 or LB1.

x Any D, P, B, M, I or L register.

y Additional registers typically used only in prologues and epilogues:
RETS, RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP.

Chapter 14: Machine Descriptions 225

w Any register except accumulators or CC.

Ksh Signed 16 bit integer (in the range -32768 to 32767)

Kuh Unsigned 16 bit integer (in the range 0 to 65535)

Ks7 Signed 7 bit integer (in the range -64 to 63)

Ku7 Unsigned 7 bit integer (in the range 0 to 127)

Ku5 Unsigned 5 bit integer (in the range 0 to 31)

Ks4 Signed 4 bit integer (in the range -8 to 7)

Ks3 Signed 3 bit integer (in the range -3 to 4)

Ku3 Unsigned 3 bit integer (in the range 0 to 7)

Pn Constant n, where n is a single-digit constant in the range 0 to 4.

M1 Constant 255.

M2 Constant 65535.

J An integer constant with exactly a single bit set.

L An integer constant with all bits set except exactly one.

H

Q Any SYMBOL REF.

M32C|`config/m32c/m32c.c'

Rsp

Rfb

Rsb `$sp', `$fb', `$sb'.

Rcr Any control register, when they're 16 bits wide (nothing if control
registers are 24 bits wide)

Rcl Any control register, when they're 24 bits wide.

R0w

R1w

R2w

R3w $r0, $r1, $r2, $r3.

R02 $r0 or $r2, or $r2r0 for 32 bit values.

R13 $r1 or $r3, or $r3r1 for 32 bit values.

Rdi A register that can hold a 64 bit value.

Rhl $r0 or $r1 (registers with addressable high/low bytes)

R23 $r2 or $r3

Raa Address registers

Raw Address registers when they're 16 bits wide.

Ral Address registers when they're 24 bits wide.

226 GNU Compiler Collection (GCC) Internals

Rqi Registers that can hold QI values.

Rad Registers that can be used with displacements ($a0, $a1, $sb).

Rsi Registers that can hold 32 bit values.

Rhi Registers that can hold 16 bit values.

Rhc Registers chat can hold 16 bit values, including all control registers.

Rra $r0 through R1, plus $a0 and $a1.

Rfl The
ags register.

Rmm The memory-based pseudo-registers $mem0 through $mem15.

Rpi Registers that can hold pointers (16 bit registers for r8c, m16c; 24
bit registers for m32cm, m32c).

Rpa Matches multiple registers in a PARALLEL to form a larger regis-
ter. Used to match function return values.

Is3 -8 . . . 7

IS1 -128 . . . 127

IS2 -32768 . . . 32767

IU2 0 . . . 65535

In4 -8 . . . -1 or 1 . . . 8

In5 -16 . . . -1 or 1 . . . 16

In6 -32 . . . -1 or 1 . . . 32

IM2 -65536 . . . -1

Ilb An 8 bit value with exactly one bit set.

Ilw A 16 bit value with exactly one bit set.

Sd The common src/dest memory addressing modes.

Sa Memory addressed using $a0 or $a1.

Si Memory addressed with immediate addresses.

Ss Memory addressed using the stack pointer ($sp).

Sf Memory addressed using the frame base register ($fb).

Ss Memory addressed using the small base register ($sb).

S1 $r1h

MIPS|`config/mips/constraints.md'

d An address register. This is equivalent to r unless generating
MIPS16 code.

f A
oating-point register (if available).

h The hi register.

Chapter 14: Machine Descriptions 227

l The lo register.

x The hi and lo registers.

c A register suitable for use in an indirect jump. This will always be
$25 for `-mabicalls'.

y Equivalent to r; retained for backwards compatibility.

z A
oating-point condition code register.

I A signed 16-bit constant (for arithmetic instructions).

J Integer zero.

K An unsigned 16-bit constant (for logic instructions).

L A signed 32-bit constant in which the lower 16 bits are zero. Such
constants can be loaded using lui.

M A constant that cannot be loaded using lui, addiu or ori.

N A constant in the range -65535 to -1 (inclusive).

O A signed 15-bit constant.

P A constant in the range 1 to 65535 (inclusive).

G Floating-point zero.

R An address that can be used in a non-macro load or store.

Motorola 680x0|`config/m68k/constraints.md'

a Address register

d Data register

f 68881
oating-point register, if available

I Integer in the range 1 to 8

J 16-bit signed number

K Signed number whose magnitude is greater than 0x80

L Integer in the range �8 to �1

M Signed number whose magnitude is greater than 0x100

N Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate

O 16 (for rotate using swap)

P Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate

R Numbers that mov3q can handle

G Floating point constant that is not a 68881 constant

S Operands that satisfy 'm' when -mpcrel is in e�ect

T Operands that satisfy 's' when -mpcrel is not in e�ect

228 GNU Compiler Collection (GCC) Internals

Q Address register indirect addressing mode

U Register o�set addressing

W const call operand

Cs symbol ref or const

Ci const int

C0 const int 0

Cj Range of signed numbers that don't �t in 16 bits

Cmvq Integers valid for mvq

Capsw Integers valid for a moveq followed by a swap

Cmvz Integers valid for mvz

Cmvs Integers valid for mvs

Ap push operand

Ac Non-register operands allowed in clr

Motorola 68HC11 & 68HC12 families|`config/m68hc11/m68hc11.h'

a Register `a'

b Register `b'

d Register `d'

q An 8-bit register

t Temporary soft register .tmp

u A soft register .d1 to .d31

w Stack pointer register

x Register `x'

y Register `y'

z Pseudo register `z' (replaced by `x' or `y' at the end)

A An address register: x, y or z

B An address register: x or y

D Register pair (x:d) to form a 32-bit value

L Constants in the range �65536 to 65535

M Constants whose 16-bit low part is zero

N Constant integer 1 or �1

O Constant integer 16

P Constants in the range �8 to 2

Chapter 14: Machine Descriptions 229

SPARC|`config/sparc/sparc.h'

f Floating-point register on the SPARC-V8 architecture and lower

oating-point register on the SPARC-V9 architecture.

e Floating-point register. It is equivalent to `f' on the SPARC-V8
architecture and contains both lower and upper
oating-point reg-
isters on the SPARC-V9 architecture.

c Floating-point condition code register.

d Lower
oating-point register. It is only valid on the SPARC-V9
architecture when the Visual Instruction Set is available.

b Floating-point register. It is only valid on the SPARC-V9 architec-
ture when the Visual Instruction Set is available.

h 64-bit global or out register for the SPARC-V8+ architecture.

I Signed 13-bit constant

J Zero

K 32-bit constant with the low 12 bits clear (a constant that can be
loaded with the sethi instruction)

L A constant in the range supported by movcc instructions

M A constant in the range supported by movrcc instructions

N Same as `K', except that it veri�es that bits that are not in the
lower 32-bit range are all zero. Must be used instead of `K' for
modes wider than SImode

O The constant 4096

G Floating-point zero

H Signed 13-bit constant, sign-extended to 32 or 64 bits

Q Floating-point constant whose integral representation can be moved
into an integer register using a single sethi instruction

R Floating-point constant whose integral representation can be moved
into an integer register using a single mov instruction

S Floating-point constant whose integral representation can be moved
into an integer register using a high/lo sum instruction sequence

T Memory address aligned to an 8-byte boundary

U Even register

W Memory address for `e' constraint registers

Y Vector zero

TMS320C3x/C4x|`config/c4x/c4x.h'

a Auxiliary (address) register (ar0-ar7)

230 GNU Compiler Collection (GCC) Internals

b Stack pointer register (sp)

c Standard (32-bit) precision integer register

f Extended (40-bit) precision register (r0-r11)

k Block count register (bk)

q Extended (40-bit) precision low register (r0-r7)

t Extended (40-bit) precision register (r0-r1)

u Extended (40-bit) precision register (r2-r3)

v Repeat count register (rc)

x Index register (ir0-ir1)

y Status (condition code) register (st)

z Data page register (dp)

G Floating-point zero

H Immediate 16-bit
oating-point constant

I Signed 16-bit constant

J Signed 8-bit constant

K Signed 5-bit constant

L Unsigned 16-bit constant

M Unsigned 8-bit constant

N Ones complement of unsigned 16-bit constant

O High 16-bit constant (32-bit constant with 16 LSBs zero)

Q Indirect memory reference with signed 8-bit or index register dis-
placement

R Indirect memory reference with unsigned 5-bit displacement

S Indirect memory reference with 1 bit or index register displacement

T Direct memory reference

U Symbolic address

S/390 and zSeries|`config/s390/s390.h'

a Address register (general purpose register except r0)

c Condition code register

d Data register (arbitrary general purpose register)

f Floating-point register

I Unsigned 8-bit constant (0{255)

J Unsigned 12-bit constant (0{4095)

Chapter 14: Machine Descriptions 231

K Signed 16-bit constant (�32768{32767)

L Value appropriate as displacement.

(0..4095)

for short displacement

(-524288..524287)

for long displacement

M Constant integer with a value of 0x7���f.

N Multiple letter constraint followed by 4 parameter letters.

0..9: number of the part counting from most to least signif-
icant

H,Q: mode of the part

D,S,H: mode of the containing operand

0,F: value of the other parts (F|all bits set)

The constraint matches if the speci�ed part of a constant has a
value di�erent from it's other parts.

Q Memory reference without index register and with short displace-
ment.

R Memory reference with index register and short displacement.

S Memory reference without index register but with long displace-
ment.

T Memory reference with index register and long displacement.

U Pointer with short displacement.

W Pointer with long displacement.

Y Shift count operand.

Score family|`config/score/score.h'

d Registers from r0 to r32.

e Registers from r0 to r16.

t r8|r11 or r22|r27 registers.

h hi register.

l lo register.

x hi + lo register.

q cnt register.

y lcb register.

z scb register.

a cnt + lcb + scb register.

232 GNU Compiler Collection (GCC) Internals

c cr0|cr15 register.

b cp1 registers.

f cp2 registers.

i cp3 registers.

j cp1 + cp2 + cp3 registers.

I High 16-bit constant (32-bit constant with 16 LSBs zero).

J Unsigned 5 bit integer (in the range 0 to 31).

K Unsigned 16 bit integer (in the range 0 to 65535).

L Signed 16 bit integer (in the range �32768 to 32767).

M Unsigned 14 bit integer (in the range 0 to 16383).

N Signed 14 bit integer (in the range �8192 to 8191).

Z Any SYMBOL REF.

Xstormy16|`config/stormy16/stormy16.h'

a Register r0.

b Register r1.

c Register r2.

d Register r8.

e Registers r0 through r7.

t Registers r0 and r1.

y The carry register.

z Registers r8 and r9.

I A constant between 0 and 3 inclusive.

J A constant that has exactly one bit set.

K A constant that has exactly one bit clear.

L A constant between 0 and 255 inclusive.

M A constant between �255 and 0 inclusive.

N A constant between �3 and 0 inclusive.

O A constant between 1 and 4 inclusive.

P A constant between �4 and �1 inclusive.

Q A memory reference that is a stack push.

R A memory reference that is a stack pop.

S A memory reference that refers to a constant address of known
value.

Chapter 14: Machine Descriptions 233

T The register indicated by Rx (not implemented yet).

U A constant that is not between 2 and 15 inclusive.

Z The constant 0.

Xtensa|`config/xtensa/xtensa.h'

a General-purpose 32-bit register

b One-bit boolean register

A MAC16 40-bit accumulator register

I Signed 12-bit integer constant, for use in MOVI instructions

J Signed 8-bit integer constant, for use in ADDI instructions

K Integer constant valid for BccI instructions

L Unsigned constant valid for BccUI instructions

14.8.6 De�ning Machine-Speci�c Constraints

Machine-speci�c constraints fall into two categories: register and non-register constraints.
Within the latter category, constraints which allow subsets of all possible memory or address
operands should be specially marked, to give reload more information.

Machine-speci�c constraints can be given names of arbitrary length, but they must be
entirely composed of letters, digits, underscores (`_'), and angle brackets (`< >'). Like C
identi�ers, they must begin with a letter or underscore.

In order to avoid ambiguity in operand constraint strings, no constraint can have a name
that begins with any other constraint's name. For example, if x is de�ned as a constraint
name, xy may not be, and vice versa. As a consequence of this rule, no constraint may
begin with one of the generic constraint letters: `E F V X g i m n o p r s'.

Register constraints correspond directly to register classes. See Section 15.8 [Register
Classes], page 323. There is thus not much
exibility in their de�nitions.

[MD Expression]define_register_constraint name regclass docstring
All three arguments are string constants. name is the name of the constraint, as it
will appear in match_operand expressions. regclass can be either the name of the
corresponding register class (see Section 15.8 [Register Classes], page 323), or a C
expression which evaluates to the appropriate register class. If it is an expression,
it must have no side e�ects, and it cannot look at the operand. The usual use of
expressions is to map some register constraints to NO_REGS when the register class is
not available on a given subarchitecture.

docstring is a sentence documenting the meaning of the constraint. Docstrings are
explained further below.

Non-register constraints are more like predicates: the constraint de�nition gives a Boolean
expression which indicates whether the constraint matches.

[MD Expression]define_constraint name docstring exp
The name and docstring arguments are the same as for define_register_

constraint, but note that the docstring comes immediately after the name for

234 GNU Compiler Collection (GCC) Internals

these expressions. exp is an RTL expression, obeying the same rules as the RTL
expressions in predicate de�nitions. See Section 14.7.2 [De�ning Predicates],
page 210, for details. If it evaluates true, the constraint matches; if it evaluates false,
it doesn't. Constraint expressions should indicate which RTL codes they might
match, just like predicate expressions.

match_test C expressions have access to the following variables:

op The RTL object de�ning the operand.

mode The machine mode of op.

ival `INTVAL (op)', if op is a const_int.

hval `CONST_DOUBLE_HIGH (op)', if op is an integer const_double.

lval `CONST_DOUBLE_LOW (op)', if op is an integer const_double.

rval `CONST_DOUBLE_REAL_VALUE (op)', if op is a
oating-point
const_double.

The *val variables should only be used once another piece of the expression has veri�ed
that op is the appropriate kind of RTL object.

Most non-register constraints should be de�ned with define_constraint. The remain-
ing two de�nition expressions are only appropriate for constraints that should be handled
specially by reload if they fail to match.

[MD Expression]define_memory_constraint name docstring exp
Use this expression for constraints that match a subset of all memory operands:
that is, reload can make them match by converting the operand to the form
`(mem (reg X))', where X is a base register (from the register class speci�ed by
BASE_REG_CLASS, see Section 15.8 [Register Classes], page 323).

For example, on the S/390, some instructions do not accept arbitrary memory ref-
erences, but only those that do not make use of an index register. The constraint
letter `Q' is de�ned to represent a memory address of this type. If `Q' is de�ned
with define_memory_constraint, a `Q' constraint can handle any memory operand,
because reload knows it can simply copy the memory address into a base register
if required. This is analogous to the way a `o' constraint can handle any memory
operand.

The syntax and semantics are otherwise identical to define_constraint.

[MD Expression]define_address_constraint name docstring exp
Use this expression for constraints that match a subset of all address operands: that
is, reload can make the constraint match by converting the operand to the form
`(reg X)', again with X a base register.

Constraints de�ned with define_address_constraint can only be used with the
address_operand predicate, or machine-speci�c predicates that work the same way.
They are treated analogously to the generic `p' constraint.

The syntax and semantics are otherwise identical to define_constraint.

Chapter 14: Machine Descriptions 235

For historical reasons, names beginning with the letters `G H' are reserved for constraints
that match only const_doubles, and names beginning with the letters `I J K L M N O P' are
reserved for constraints that match only const_ints. This may change in the future. For
the time being, constraints with these names must be written in a stylized form, so that
genpreds can tell you did it correctly:

(define_constraint "[GHIJKLMNOP]..."
"doc..."
(and (match_code "const_int") ; const_double for G/H

condition...)) ; usually a match_test

It is �ne to use names beginning with other letters for constraints that match const_

doubles or const_ints.

Each docstring in a constraint de�nition should be one or more complete sentences,
marked up in Texinfo format. They are currently unused. In the future they will be copied
into the GCC manual, in Section 14.8.5 [Machine Constraints], page 218, replacing the
hand-maintained tables currently found in that section. Also, in the future the compiler
may use this to give more helpful diagnostics when poor choice of asm constraints causes a
reload failure.

If you put the pseudo-Texinfo directive `@internal' at the beginning of a docstring, then
(in the future) it will appear only in the internals manual's version of the machine-speci�c
constraint tables. Use this for constraints that should not appear in asm statements.

14.8.7 Testing constraints from C

It is occasionally useful to test a constraint from C code rather than implicitly via the
constraint string in a match_operand. The generated �le `tm_p.h' declares a few interfaces
for working with machine-speci�c constraints. None of these interfaces work with the generic
constraints described in Section 14.8.1 [Simple Constraints], page 212. This may change in
the future.

Warning: `tm_p.h' may declare other functions that operate on constraints, besides the
ones documented here. Do not use those functions from machine-dependent code. They
exist to implement the old constraint interface that machine-independent components of
the compiler still expect. They will change or disappear in the future.

Some valid constraint names are not valid C identi�ers, so there is a mangling scheme
for referring to them from C. Constraint names that do not contain angle brackets or
underscores are left unchanged. Underscores are doubled, each `<' is replaced with `_l', and
each `>' with `_g'. Here are some examples:

Original Mangled

x x

P42x P42x

P4_x P4__x

P4>x P4_gx

P4>> P4_g_g

P4_g> P4__g_g

Throughout this section, the variable c is either a constraint in the abstract sense, or a
constant from enum constraint_num; the variable m is a mangled constraint name (usually
as part of a larger identi�er).

236 GNU Compiler Collection (GCC) Internals

[Enum]constraint_num
For each machine-speci�c constraint, there is a corresponding enumeration constant:
`CONSTRAINT_' plus the mangled name of the constraint. Functions that take an enum

constraint_num as an argument expect one of these constants.

Machine-independent constraints do not have associated constants. This may change
in the future.

[Function]inline bool satisfies_constraint_m (rtx exp)
For each machine-speci�c, non-register constraint m, there is one of these functions; it
returns true if exp satis�es the constraint. These functions are only visible if `rtl.h'
was included before `tm_p.h'.

[Function]bool constraint_satisfied_p (rtx exp, enum constraint num c)
Like the satisfies_constraint_m functions, but the constraint to test is given as
an argument, c. If c speci�es a register constraint, this function will always return
false.

[Function]enum reg_class regclass_for_constraint (enum constraint num c)
Returns the register class associated with c. If c is not a register constraint, or those
registers are not available for the currently selected subtarget, returns NO_REGS.

Here is an example use of satisfies_constraint_m . In peephole optimizations (see
Section 14.18 [Peephole De�nitions], page 270), operand constraint strings are ignored, so if
there are relevant constraints, they must be tested in the C condition. In the example, the
optimization is applied if operand 2 does not satisfy the `K' constraint. (This is a simpli�ed
version of a peephole de�nition from the i386 machine description.)

(define_peephole2
[(match_scratch:SI 3 "r")
(set (match_operand:SI 0 "register_operand" "")

(mult:SI (match_operand:SI 1 "memory_operand" "")
(match_operand:SI 2 "immediate_operand" "")))]

"!satisfies_constraint_K (operands[2])"

[(set (match_dup 3) (match_dup 1))
(set (match_dup 0) (mult:SI (match_dup 3) (match_dup 2)))]

"")

14.9 Standard Pattern Names For Generation

Here is a table of the instruction names that are meaningful in the RTL generation pass of
the compiler. Giving one of these names to an instruction pattern tells the RTL generation
pass that it can use the pattern to accomplish a certain task.

`movm ' Here m stands for a two-letter machine mode name, in lowercase. This instruc-
tion pattern moves data with that machine mode from operand 1 to operand
0. For example, `movsi' moves full-word data.

If operand 0 is a subreg with mode m of a register whose own mode is wider
than m, the e�ect of this instruction is to store the speci�ed value in the part
of the register that corresponds to mode m. Bits outside of m, but which

Chapter 14: Machine Descriptions 237

are within the same target word as the subreg are unde�ned. Bits which are
outside the target word are left unchanged.

This class of patterns is special in several ways. First of all, each of these names
up to and including full word size must be de�ned, because there is no other
way to copy a datum from one place to another. If there are patterns accepting
operands in larger modes, `movm ' must be de�ned for integer modes of those
sizes.

Second, these patterns are not used solely in the RTL generation pass. Even
the reload pass can generate move insns to copy values from stack slots into
temporary registers. When it does so, one of the operands is a hard register
and the other is an operand that can need to be reloaded into a register.

Therefore, when given such a pair of operands, the pattern must generate RTL
which needs no reloading and needs no temporary registers|no registers other
than the operands. For example, if you support the pattern with a define_

expand, then in such a case the define_expand mustn't call force_reg or any
other such function which might generate new pseudo registers.

This requirement exists even for subword modes on a RISC machine where
fetching those modes from memory normally requires several insns and some
temporary registers.

During reload a memory reference with an invalid address may be passed as
an operand. Such an address will be replaced with a valid address later in the
reload pass. In this case, nothing may be done with the address except to use
it as it stands. If it is copied, it will not be replaced with a valid address. No
attempt should be made to make such an address into a valid address and no
routine (such as change_address) that will do so may be called. Note that
general_operand will fail when applied to such an address.

The global variable reload_in_progress (which must be explicitly declared if
required) can be used to determine whether such special handling is required.

The variety of operands that have reloads depends on the rest of the machine
description, but typically on a RISC machine these can only be pseudo regis-
ters that did not get hard registers, while on other machines explicit memory
references will get optional reloads.

If a scratch register is required to move an object to or from memory, it can be
allocated using gen_reg_rtx prior to life analysis.

If there are cases which need scratch registers during or after reload, you must
provide an appropriate secondary reload target hook.

The global variable no_new_pseudos can be used to determine if it is unsafe to
create new pseudo registers. If this variable is nonzero, then it is unsafe to call
gen_reg_rtx to allocate a new pseudo.

The constraints on a `movm ' must permit moving any hard register to any other
hard register provided that HARD_REGNO_MODE_OK permits mode m in both reg-
isters and REGISTER_MOVE_COST applied to their classes returns a value of 2.

It is obligatory to support
oating point `movm ' instructions into and out of any
registers that can hold �xed point values, because unions and structures (which

238 GNU Compiler Collection (GCC) Internals

have modes SImode or DImode) can be in those registers and they may have

oating point members.

There may also be a need to support �xed point `movm ' instructions in and out
of
oating point registers. Unfortunately, I have forgotten why this was so, and
I don't know whether it is still true. If HARD_REGNO_MODE_OK rejects �xed point
values in
oating point registers, then the constraints of the �xed point `movm '
instructions must be designed to avoid ever trying to reload into a
oating point
register.

`reload_inm '
`reload_outm '

These named patterns have been obsoleted by the target hook secondary_

reload.

Like `movm ', but used when a scratch register is required to move between
operand 0 and operand 1. Operand 2 describes the scratch register. See the
discussion of the SECONDARY_RELOAD_CLASS macro in see Section 15.8 [Register
Classes], page 323.

There are special restrictions on the form of the match_operands used in these
patterns. First, only the predicate for the reload operand is examined, i.e.,
reload_in examines operand 1, but not the predicates for operand 0 or 2.
Second, there may be only one alternative in the constraints. Third, only a
single register class letter may be used for the constraint; subsequent constraint
letters are ignored. As a special exception, an empty constraint string matches
the ALL_REGS register class. This may relieve ports of the burden of de�ning
an ALL_REGS constraint letter just for these patterns.

`movstrictm '
Like `movm ' except that if operand 0 is a subreg with mode m of a register
whose natural mode is wider, the `movstrictm ' instruction is guaranteed not
to alter any of the register except the part which belongs to mode m.

`movmisalignm '
This variant of a move pattern is designed to load or store a value from a
memory address that is not naturally aligned for its mode. For a store, the
memory will be in operand 0; for a load, the memory will be in operand 1.
The other operand is guaranteed not to be a memory, so that it's easy to tell
whether this is a load or store.

This pattern is used by the autovectorizer, and when expanding a MISALIGNED_
INDIRECT_REF expression.

`load_multiple'
Load several consecutive memory locations into consecutive registers. Operand
0 is the �rst of the consecutive registers, operand 1 is the �rst memory location,
and operand 2 is a constant: the number of consecutive registers.

De�ne this only if the target machine really has such an instruction; do not
de�ne this if the most e�cient way of loading consecutive registers from memory
is to do them one at a time.

Chapter 14: Machine Descriptions 239

On some machines, there are restrictions as to which consecutive registers can
be stored into memory, such as particular starting or ending register numbers
or only a range of valid counts. For those machines, use a define_expand (see
Section 14.15 [Expander De�nitions], page 263) and make the pattern fail if the
restrictions are not met.

Write the generated insn as a parallel with elements being a set of one register
from the appropriate memory location (you may also need use or clobber

elements). Use a match_parallel (see Section 14.4 [RTL Template], page 201)
to recognize the insn. See `rs6000.md' for examples of the use of this insn
pattern.

`store_multiple'
Similar to `load_multiple', but store several consecutive registers into con-
secutive memory locations. Operand 0 is the �rst of the consecutive memory
locations, operand 1 is the �rst register, and operand 2 is a constant: the
number of consecutive registers.

`vec_setm '
Set given �eld in the vector value. Operand 0 is the vector to modify, operand
1 is new value of �eld and operand 2 specify the �eld index.

`vec_extractm '
Extract given �eld from the vector value. Operand 1 is the vector, operand 2
specify �eld index and operand 0 place to store value into.

`vec_initm '
Initialize the vector to given values. Operand 0 is the vector to initialize and
operand 1 is parallel containing values for individual �elds.

`pushm1' Output a push instruction. Operand 0 is value to push. Used only when PUSH_

ROUNDING is de�ned. For historical reason, this pattern may be missing and in
such case an mov expander is used instead, with a MEM expression forming the
push operation. The mov expander method is deprecated.

`addm3' Add operand 2 and operand 1, storing the result in operand 0. All operands
must have mode m. This can be used even on two-address machines, by means
of constraints requiring operands 1 and 0 to be the same location.

`subm3', `mulm3'
`divm3', `udivm3'
`modm3', `umodm3'
`uminm3', `umaxm3'
`andm3', `iorm3', `xorm3'

Similar, for other arithmetic operations.

`sminm3', `smaxm3'
Signed minimum and maximum operations. When used with
oating point, if
both operands are zeros, or if either operand is NaN, then it is unspeci�ed which
of the two operands is returned as the result.

240 GNU Compiler Collection (GCC) Internals

`reduc_smin_m ', `reduc_smax_m '
Find the signed minimum/maximum of the elements of a vector. The vector is
operand 1, and the scalar result is stored in the least signi�cant bits of operand
0 (also a vector). The output and input vector should have the same modes.

`reduc_umin_m ', `reduc_umax_m '
Find the unsigned minimum/maximum of the elements of a vector. The vector
is operand 1, and the scalar result is stored in the least signi�cant bits of operand
0 (also a vector). The output and input vector should have the same modes.

`reduc_splus_m '
Compute the sum of the signed elements of a vector. The vector is operand 1,
and the scalar result is stored in the least signi�cant bits of operand 0 (also a
vector). The output and input vector should have the same modes.

`reduc_uplus_m '
Compute the sum of the unsigned elements of a vector. The vector is operand
1, and the scalar result is stored in the least signi�cant bits of operand 0 (also
a vector). The output and input vector should have the same modes.

`sdot_prodm '
`udot_prodm '

Compute the sum of the products of two signed/unsigned elements. Operand 1
and operand 2 are of the same mode. Their product, which is of a wider mode,
is computed and added to operand 3. Operand 3 is of a mode equal or wider
than the mode of the product. The result is placed in operand 0, which is of
the same mode as operand 3.

`ssum_widenm3 '
`usum_widenm3 '

Operands 0 and 2 are of the same mode, which is wider than the mode of
operand 1. Add operand 1 to operand 2 and place the widened result in operand
0. (This is used express accumulation of elements into an accumulator of a wider
mode.)

`vec_shl_m ', `vec_shr_m '
Whole vector left/right shift in bits. Operand 1 is a vector to be shifted.
Operand 2 is an integer shift amount in bits. Operand 0 is where the resulting
shifted vector is stored. The output and input vectors should have the same
modes.

`mulhisi3'
Multiply operands 1 and 2, which have mode HImode, and store a SImode

product in operand 0.

`mulqihi3', `mulsidi3'
Similar widening-multiplication instructions of other widths.

`umulqihi3', `umulhisi3', `umulsidi3'
Similar widening-multiplication instructions that do unsigned multiplication.

Chapter 14: Machine Descriptions 241

`usmulqihi3', `usmulhisi3', `usmulsidi3'
Similar widening-multiplication instructions that interpret the �rst operand as
unsigned and the second operand as signed, then do a signed multiplication.

`smulm3_highpart'
Perform a signed multiplication of operands 1 and 2, which have mode m, and
store the most signi�cant half of the product in operand 0. The least signi�cant
half of the product is discarded.

`umulm3_highpart'
Similar, but the multiplication is unsigned.

`maddmn4' Multiply operands 1 and 2, sign-extend them to mode n, add operand 3, and
store the result in operand 0. Operands 1 and 2 have mode m and operands 0
and 3 have mode n. Both modes must be integer modes and n must be twice
the size of m.

In other words, maddmn4 is like mulmn3 except that it also adds operand 3.

These instructions are not allowed to FAIL.

`umaddmn4'
Like maddmn4, but zero-extend the multiplication operands instead of sign-
extending them.

`msubmn4' Multiply operands 1 and 2, sign-extend them to mode n, subtract the result
from operand 3, and store the result in operand 0. Operands 1 and 2 have mode
m and operands 0 and 3 have mode n. Both modes must be integer modes and
n must be twice the size of m.

In other words, msubmn4 is like mulmn3 except that it also subtracts the result
from operand 3.

These instructions are not allowed to FAIL.

`umsubmn4'
Like msubmn4, but zero-extend the multiplication operands instead of sign-
extending them.

`divmodm4'
Signed division that produces both a quotient and a remainder. Operand 1 is
divided by operand 2 to produce a quotient stored in operand 0 and a remainder
stored in operand 3.

For machines with an instruction that produces both a quotient and a remain-
der, provide a pattern for `divmodm4' but do not provide patterns for `divm3'
and `modm3'. This allows optimization in the relatively common case when both
the quotient and remainder are computed.

If an instruction that just produces a quotient or just a remainder exists and is
more e�cient than the instruction that produces both, write the output routine
of `divmodm4' to call find_reg_note and look for a REG_UNUSED note on the
quotient or remainder and generate the appropriate instruction.

`udivmodm4'
Similar, but does unsigned division.

242 GNU Compiler Collection (GCC) Internals

`ashlm3' Arithmetic-shift operand 1 left by a number of bits speci�ed by operand 2, and
store the result in operand 0. Here m is the mode of operand 0 and operand 1;
operand 2's mode is speci�ed by the instruction pattern, and the compiler will
convert the operand to that mode before generating the instruction. The mean-
ing of out-of-range shift counts can optionally be speci�ed by TARGET_SHIFT_

TRUNCATION_MASK. See [TARGET SHIFT TRUNCATION MASK], page 425.

`ashrm3', `lshrm3', `rotlm3', `rotrm3'
Other shift and rotate instructions, analogous to the ashlm3 instructions.

`negm2' Negate operand 1 and store the result in operand 0.

`absm2' Store the absolute value of operand 1 into operand 0.

`sqrtm2' Store the square root of operand 1 into operand 0.

The sqrt built-in function of C always uses the mode which corresponds to
the C data type double and the sqrtf built-in function uses the mode which
corresponds to the C data type float.

`cosm2' Store the cosine of operand 1 into operand 0.

The cos built-in function of C always uses the mode which corresponds to
the C data type double and the cosf built-in function uses the mode which
corresponds to the C data type float.

`sinm2' Store the sine of operand 1 into operand 0.

The sin built-in function of C always uses the mode which corresponds to
the C data type double and the sinf built-in function uses the mode which
corresponds to the C data type float.

`expm2' Store the exponential of operand 1 into operand 0.

The exp built-in function of C always uses the mode which corresponds to
the C data type double and the expf built-in function uses the mode which
corresponds to the C data type float.

`logm2' Store the natural logarithm of operand 1 into operand 0.

The log built-in function of C always uses the mode which corresponds to
the C data type double and the logf built-in function uses the mode which
corresponds to the C data type float.

`powm3' Store the value of operand 1 raised to the exponent operand 2 into operand 0.

The pow built-in function of C always uses the mode which corresponds to
the C data type double and the powf built-in function uses the mode which
corresponds to the C data type float.

`atan2m3' Store the arc tangent (inverse tangent) of operand 1 divided by operand 2 into
operand 0, using the signs of both arguments to determine the quadrant of the
result.

The atan2 built-in function of C always uses the mode which corresponds to
the C data type double and the atan2f built-in function uses the mode which
corresponds to the C data type float.

Chapter 14: Machine Descriptions 243

`floorm2' Store the largest integral value not greater than argument.

The floor built-in function of C always uses the mode which corresponds to
the C data type double and the floorf built-in function uses the mode which
corresponds to the C data type float.

`btruncm2'
Store the argument rounded to integer towards zero.

The trunc built-in function of C always uses the mode which corresponds to
the C data type double and the truncf built-in function uses the mode which
corresponds to the C data type float.

`roundm2' Store the argument rounded to integer away from zero.

The round built-in function of C always uses the mode which corresponds to
the C data type double and the roundf built-in function uses the mode which
corresponds to the C data type float.

`ceilm2' Store the argument rounded to integer away from zero.

The ceil built-in function of C always uses the mode which corresponds to
the C data type double and the ceilf built-in function uses the mode which
corresponds to the C data type float.

`nearbyintm2'
Store the argument rounded according to the default rounding mode

The nearbyint built-in function of C always uses the mode which corresponds
to the C data type double and the nearbyintf built-in function uses the mode
which corresponds to the C data type float.

`rintm2' Store the argument rounded according to the default rounding mode and raise
the inexact exception when the result di�ers in value from the argument

The rint built-in function of C always uses the mode which corresponds to
the C data type double and the rintf built-in function uses the mode which
corresponds to the C data type float.

`copysignm3'
Store a value with the magnitude of operand 1 and the sign of operand 2 into
operand 0.

The copysign built-in function of C always uses the mode which corresponds
to the C data type double and the copysignf built-in function uses the mode
which corresponds to the C data type float.

`ffsm2' Store into operand 0 one plus the index of the least signi�cant 1-bit of operand
1. If operand 1 is zero, store zero. m is the mode of operand 0; operand 1's
mode is speci�ed by the instruction pattern, and the compiler will convert the
operand to that mode before generating the instruction.

The ffs built-in function of C always uses the mode which corresponds to the
C data type int.

`clzm2' Store into operand 0 the number of leading 0-bits in x, starting at the most sig-
ni�cant bit position. If x is 0, the result is unde�ned. m is the mode of operand
0; operand 1's mode is speci�ed by the instruction pattern, and the compiler
will convert the operand to that mode before generating the instruction.

244 GNU Compiler Collection (GCC) Internals

`ctzm2' Store into operand 0 the number of trailing 0-bits in x, starting at the least sig-
ni�cant bit position. If x is 0, the result is unde�ned. m is the mode of operand
0; operand 1's mode is speci�ed by the instruction pattern, and the compiler
will convert the operand to that mode before generating the instruction.

`popcountm2'
Store into operand 0 the number of 1-bits in x. m is the mode of operand 0;
operand 1's mode is speci�ed by the instruction pattern, and the compiler will
convert the operand to that mode before generating the instruction.

`paritym2'
Store into operand 0 the parity of x, i.e. the number of 1-bits in x modulo 2. m is
the mode of operand 0; operand 1's mode is speci�ed by the instruction pattern,
and the compiler will convert the operand to that mode before generating the
instruction.

`one_cmplm2'
Store the bitwise-complement of operand 1 into operand 0.

`cmpm ' Compare operand 0 and operand 1, and set the condition codes. The RTL
pattern should look like this:

(set (cc0) (compare (match_operand:m 0 ...)
(match_operand:m 1 ...)))

`tstm ' Compare operand 0 against zero, and set the condition codes. The RTL pattern
should look like this:

(set (cc0) (match_operand:m 0 ...))

`tstm ' patterns should not be de�ned for machines that do not use (cc0).
Doing so would confuse the optimizer since it would no longer be clear which
set operations were comparisons. The `cmpm ' patterns should be used instead.

`movmemm ' Block move instruction. The destination and source blocks of memory are the
�rst two operands, and both are mem:BLKs with an address in mode Pmode.

The number of bytes to move is the third operand, in mode m. Usually, you
specify word_mode for m. However, if you can generate better code knowing
the range of valid lengths is smaller than those representable in a full word, you
should provide a pattern with a mode corresponding to the range of values you
can handle e�ciently (e.g., QImode for values in the range 0{127; note we avoid
numbers that appear negative) and also a pattern with word_mode.

The fourth operand is the known shared alignment of the source and destination,
in the form of a const_int rtx. Thus, if the compiler knows that both source
and destination are word-aligned, it may provide the value 4 for this operand.

Descriptions of multiple movmemm patterns can only be bene�cial if the pat-
terns for smaller modes have fewer restrictions on their �rst, second and fourth
operands. Note that the mode m in movmemm does not impose any restriction
on the mode of individually moved data units in the block.

These patterns need not give special consideration to the possibility that the
source and destination strings might overlap.

Chapter 14: Machine Descriptions 245

`movstr' String copy instruction, with stpcpy semantics. Operand 0 is an output
operand in mode Pmode. The addresses of the destination and source strings
are operands 1 and 2, and both are mem:BLKs with addresses in mode Pmode.
The execution of the expansion of this pattern should store in operand 0 the
address in which the NUL terminator was stored in the destination string.

`setmemm ' Block set instruction. The destination string is the �rst operand, given as a
mem:BLK whose address is in mode Pmode. The number of bytes to set is the
second operand, in mode m. The value to initialize the memory with is the
third operand. Targets that only support the clearing of memory should reject
any value that is not the constant 0. See `movmemm ' for a discussion of the choice
of mode.

The fourth operand is the known alignment of the destination, in the form of
a const_int rtx. Thus, if the compiler knows that the destination is word-
aligned, it may provide the value 4 for this operand.

The use for multiple setmemm is as for movmemm .

`cmpstrnm '
String compare instruction, with �ve operands. Operand 0 is the output; it
has mode m. The remaining four operands are like the operands of `movmemm '.
The two memory blocks speci�ed are compared byte by byte in lexicographic
order starting at the beginning of each string. The instruction is not allowed to
prefetch more than one byte at a time since either string may end in the �rst
byte and reading past that may access an invalid page or segment and cause a
fault. The e�ect of the instruction is to store a value in operand 0 whose sign
indicates the result of the comparison.

`cmpstrm ' String compare instruction, without known maximum length. Operand 0 is the
output; it has mode m. The second and third operand are the blocks of memory
to be compared; both are mem:BLK with an address in mode Pmode.

The fourth operand is the known shared alignment of the source and destination,
in the form of a const_int rtx. Thus, if the compiler knows that both source
and destination are word-aligned, it may provide the value 4 for this operand.

The two memory blocks speci�ed are compared byte by byte in lexicographic
order starting at the beginning of each string. The instruction is not allowed to
prefetch more than one byte at a time since either string may end in the �rst
byte and reading past that may access an invalid page or segment and cause a
fault. The e�ect of the instruction is to store a value in operand 0 whose sign
indicates the result of the comparison.

`cmpmemm ' Block compare instruction, with �ve operands like the operands of `cmpstrm '.
The two memory blocks speci�ed are compared byte by byte in lexicographic
order starting at the beginning of each block. Unlike `cmpstrm ' the instruction
can prefetch any bytes in the two memory blocks. The e�ect of the instruction is
to store a value in operand 0 whose sign indicates the result of the comparison.

`strlenm ' Compute the length of a string, with three operands. Operand 0 is the result
(of mode m), operand 1 is a mem referring to the �rst character of the string,

246 GNU Compiler Collection (GCC) Internals

operand 2 is the character to search for (normally zero), and operand 3 is a
constant describing the known alignment of the beginning of the string.

`floatmn2'
Convert signed integer operand 1 (valid for �xed point mode m) to
oating
point mode n and store in operand 0 (which has mode n).

`floatunsmn2'
Convert unsigned integer operand 1 (valid for �xed point mode m) to
oating
point mode n and store in operand 0 (which has mode n).

`fixmn2' Convert operand 1 (valid for
oating point mode m) to �xed point mode n as a
signed number and store in operand 0 (which has mode n). This instruction's
result is de�ned only when the value of operand 1 is an integer.

If the machine description de�nes this pattern, it also needs to de�ne the ftrunc
pattern.

`fixunsmn2'
Convert operand 1 (valid for
oating point mode m) to �xed point mode n as an
unsigned number and store in operand 0 (which has mode n). This instruction's
result is de�ned only when the value of operand 1 is an integer.

`ftruncm2'
Convert operand 1 (valid for
oating point mode m) to an integer value, still
represented in
oating point modem, and store it in operand 0 (valid for
oating
point mode m).

`fix_truncmn2'
Like `fixmn2' but works for any
oating point value of mode m by converting
the value to an integer.

`fixuns_truncmn2'
Like `fixunsmn2' but works for any
oating point value of mode m by convert-
ing the value to an integer.

`truncmn2'
Truncate operand 1 (valid for mode m) to mode n and store in operand 0 (which
has mode n). Both modes must be �xed point or both
oating point.

`extendmn2'
Sign-extend operand 1 (valid for mode m) to mode n and store in operand 0
(which has mode n). Both modes must be �xed point or both
oating point.

`zero_extendmn2'
Zero-extend operand 1 (valid for mode m) to mode n and store in operand 0
(which has mode n). Both modes must be �xed point.

`extv' Extract a bit-�eld from operand 1 (a register or memory operand), where
operand 2 speci�es the width in bits and operand 3 the starting bit, and store
it in operand 0. Operand 0 must have mode word_mode. Operand 1 may have
mode byte_mode or word_mode; often word_mode is allowed only for registers.
Operands 2 and 3 must be valid for word_mode.

Chapter 14: Machine Descriptions 247

The RTL generation pass generates this instruction only with constants for
operands 2 and 3 and the constant is never zero for operand 2.

The bit-�eld value is sign-extended to a full word integer before it is stored in
operand 0.

`extzv' Like `extv' except that the bit-�eld value is zero-extended.

`insv' Store operand 3 (which must be valid for word_mode) into a bit-�eld in operand
0, where operand 1 speci�es the width in bits and operand 2 the starting bit.
Operand 0 may have mode byte_mode or word_mode; often word_mode is al-
lowed only for registers. Operands 1 and 2 must be valid for word_mode.

The RTL generation pass generates this instruction only with constants for
operands 1 and 2 and the constant is never zero for operand 1.

`movmodecc'
Conditionally move operand 2 or operand 3 into operand 0 according to the
comparison in operand 1. If the comparison is true, operand 2 is moved into
operand 0, otherwise operand 3 is moved.

The mode of the operands being compared need not be the same as the operands
being moved. Some machines, sparc64 for example, have instructions that
conditionally move an integer value based on the
oating point condition codes
and vice versa.

If the machine does not have conditional move instructions, do not de�ne these
patterns.

`addmodecc'
Similar to `movmodecc' but for conditional addition. Conditionally move
operand 2 or (operands 2 + operand 3) into operand 0 according to the
comparison in operand 1. If the comparison is true, operand 2 is moved into
operand 0, otherwise (operand 2 + operand 3) is moved.

`scond ' Store zero or nonzero in the operand according to the condition codes. Value
stored is nonzero i� the condition cond is true. cond is the name of a comparison
operation expression code, such as eq, lt or leu.

You specify the mode that the operand must have when you write the match_
operand expression. The compiler automatically sees which mode you have
used and supplies an operand of that mode.

The value stored for a true condition must have 1 as its low bit, or else must
be negative. Otherwise the instruction is not suitable and you should omit it
from the machine description. You describe to the compiler exactly which value
is stored by de�ning the macro STORE_FLAG_VALUE (see Section 15.29 [Misc],
page 423). If a description cannot be found that can be used for all the `scond '
patterns, you should omit those operations from the machine description.

These operations may fail, but should do so only in relatively uncommon cases;
if they would fail for common cases involving integer comparisons, it is best to
omit these patterns.

If these operations are omitted, the compiler will usually generate code that
copies the constant one to the target and branches around an assignment of

248 GNU Compiler Collection (GCC) Internals

zero to the target. If this code is more e�cient than the potential instructions
used for the `scond ' pattern followed by those required to convert the result
into a 1 or a zero in SImode, you should omit the `scond ' operations from the
machine description.

`bcond ' Conditional branch instruction. Operand 0 is a label_ref that refers to the
label to jump to. Jump if the condition codes meet condition cond.

Some machines do not follow the model assumed here where a comparison in-
struction is followed by a conditional branch instruction. In that case, the
`cmpm ' (and `tstm ') patterns should simply store the operands away and gen-
erate all the required insns in a define_expand (see Section 14.15 [Expander
De�nitions], page 263) for the conditional branch operations. All calls to ex-
pand `bcond ' patterns are immediately preceded by calls to expand either a
`cmpm ' pattern or a `tstm ' pattern.

Machines that use a pseudo register for the condition code value, or where the
mode used for the comparison depends on the condition being tested, should
also use the above mechanism. See Section 14.12 [Jump Patterns], page 259.

The above discussion also applies to the `movmodecc' and `scond ' patterns.

`cbranchmode4'
Conditional branch instruction combined with a compare instruction. Operand
0 is a comparison operator. Operand 1 and operand 2 are the �rst and second
operands of the comparison, respectively. Operand 3 is a label_ref that refers
to the label to jump to.

`jump' A jump inside a function; an unconditional branch. Operand 0 is the label_ref
of the label to jump to. This pattern name is mandatory on all machines.

`call' Subroutine call instruction returning no value. Operand 0 is the function to
call; operand 1 is the number of bytes of arguments pushed as a const_int;
operand 2 is the number of registers used as operands.

On most machines, operand 2 is not actually stored into the RTL pattern. It is
supplied for the sake of some RISC machines which need to put this information
into the assembler code; they can put it in the RTL instead of operand 1.

Operand 0 should be a mem RTX whose address is the address of the function.
Note, however, that this address can be a symbol_ref expression even if it
would not be a legitimate memory address on the target machine. If it is also
not a valid argument for a call instruction, the pattern for this operation should
be a define_expand (see Section 14.15 [Expander De�nitions], page 263) that
places the address into a register and uses that register in the call instruction.

`call_value'
Subroutine call instruction returning a value. Operand 0 is the hard register in
which the value is returned. There are three more operands, the same as the
three operands of the `call' instruction (but with numbers increased by one).

Subroutines that return BLKmode objects use the `call' insn.

Chapter 14: Machine Descriptions 249

`call_pop', `call_value_pop'
Similar to `call' and `call_value', except used if de�ned and if RETURN_POPS_
ARGS is nonzero. They should emit a parallel that contains both the function
call and a set to indicate the adjustment made to the frame pointer.

For machines where RETURN_POPS_ARGS can be nonzero, the use of these pat-
terns increases the number of functions for which the frame pointer can be
eliminated, if desired.

`untyped_call'
Subroutine call instruction returning a value of any type. Operand 0 is the
function to call; operand 1 is a memory location where the result of calling the
function is to be stored; operand 2 is a parallel expression where each element
is a set expression that indicates the saving of a function return value into the
result block.

This instruction pattern should be de�ned to support __builtin_apply on
machines where special instructions are needed to call a subroutine with ar-
bitrary arguments or to save the value returned. This instruction pattern is
required on machines that have multiple registers that can hold a return value
(i.e. FUNCTION_VALUE_REGNO_P is true for more than one register).

`return' Subroutine return instruction. This instruction pattern name should be de�ned
only if a single instruction can do all the work of returning from a function.

Like the `movm ' patterns, this pattern is also used after the RTL generation
phase. In this case it is to support machines where multiple instructions are
usually needed to return from a function, but some class of functions only re-
quires one instruction to implement a return. Normally, the applicable functions
are those which do not need to save any registers or allocate stack space.

For such machines, the condition speci�ed in this pattern should only be true
when reload_completed is nonzero and the function's epilogue would only be
a single instruction. For machines with register windows, the routine leaf_

function_p may be used to determine if a register window push is required.

Machines that have conditional return instructions should de�ne patterns such
as

(define_insn ""
[(set (pc)

(if_then_else (match_operator
0 "comparison_operator"
[(cc0) (const_int 0)])

(return)
(pc)))]

"condition"
"...")

where condition would normally be the same condition speci�ed on the named
`return' pattern.

`untyped_return'
Untyped subroutine return instruction. This instruction pattern should be
de�ned to support __builtin_return on machines where special instructions
are needed to return a value of any type.

250 GNU Compiler Collection (GCC) Internals

Operand 0 is a memory location where the result of calling a function with
__builtin_apply is stored; operand 1 is a parallel expression where each
element is a set expression that indicates the restoring of a function return
value from the result block.

`nop' No-op instruction. This instruction pattern name should always be de�ned to
output a no-op in assembler code. (const_int 0) will do as an RTL pattern.

`indirect_jump'
An instruction to jump to an address which is operand zero. This pattern name
is mandatory on all machines.

`casesi' Instruction to jump through a dispatch table, including bounds checking. This
instruction takes �ve operands:

1. The index to dispatch on, which has mode SImode.

2. The lower bound for indices in the table, an integer constant.

3. The total range of indices in the table|the largest index minus the smallest
one (both inclusive).

4. A label that precedes the table itself.

5. A label to jump to if the index has a value outside the bounds.

The table is a addr_vec or addr_diff_vec inside of a jump_insn. The number
of elements in the table is one plus the di�erence between the upper bound and
the lower bound.

`tablejump'
Instruction to jump to a variable address. This is a low-level capability which
can be used to implement a dispatch table when there is no `casesi' pattern.

This pattern requires two operands: the address or o�set, and a label which
should immediately precede the jump table. If the macro CASE_VECTOR_PC_

RELATIVE evaluates to a nonzero value then the �rst operand is an o�set which
counts from the address of the table; otherwise, it is an absolute address to
jump to. In either case, the �rst operand has mode Pmode.

The `tablejump' insn is always the last insn before the jump table it uses. Its
assembler code normally has no need to use the second operand, but you should
incorporate it in the RTL pattern so that the jump optimizer will not delete
the table as unreachable code.

`decrement_and_branch_until_zero'
Conditional branch instruction that decrements a register and jumps if the
register is nonzero. Operand 0 is the register to decrement and test; operand
1 is the label to jump to if the register is nonzero. See Section 14.13 [Looping
Patterns], page 260.

This optional instruction pattern is only used by the combiner, typically for
loops reversed by the loop optimizer when strength reduction is enabled.

`doloop_end'
Conditional branch instruction that decrements a register and jumps if the
register is nonzero. This instruction takes �ve operands: Operand 0 is the

Chapter 14: Machine Descriptions 251

register to decrement and test; operand 1 is the number of loop iterations as a
const_int or const0_rtx if this cannot be determined until run-time; operand
2 is the actual or estimated maximum number of iterations as a const_int;
operand 3 is the number of enclosed loops as a const_int (an innermost loop
has a value of 1); operand 4 is the label to jump to if the register is nonzero.
See Section 14.13 [Looping Patterns], page 260.

This optional instruction pattern should be de�ned for machines with low-
overhead looping instructions as the loop optimizer will try to modify suit-
able loops to utilize it. If nested low-overhead looping is not supported, use a
define_expand (see Section 14.15 [Expander De�nitions], page 263) and make
the pattern fail if operand 3 is not const1_rtx. Similarly, if the actual or esti-
mated maximum number of iterations is too large for this instruction, make it
fail.

`doloop_begin'
Companion instruction to doloop_end required for machines that need to per-
form some initialization, such as loading special registers used by a low-overhead
looping instruction. If initialization insns do not always need to be emitted, use
a define_expand (see Section 14.15 [Expander De�nitions], page 263) and make
it fail.

`canonicalize_funcptr_for_compare'
Canonicalize the function pointer in operand 1 and store the result into operand
0.

Operand 0 is always a reg and has mode Pmode; operand 1 may be a reg, mem,
symbol_ref, const_int, etc and also has mode Pmode.

Canonicalization of a function pointer usually involves computing the address
of the function which would be called if the function pointer were used in an
indirect call.

Only de�ne this pattern if function pointers on the target machine can have
di�erent values but still call the same function when used in an indirect call.

`save_stack_block'
`save_stack_function'
`save_stack_nonlocal'
`restore_stack_block'
`restore_stack_function'
`restore_stack_nonlocal'

Most machines save and restore the stack pointer by copying it to or from an
object of mode Pmode. Do not de�ne these patterns on such machines.

Some machines require special handling for stack pointer saves and restores. On
those machines, de�ne the patterns corresponding to the non-standard cases by
using a define_expand (see Section 14.15 [Expander De�nitions], page 263)
that produces the required insns. The three types of saves and restores are:

1. `save_stack_block' saves the stack pointer at the start of a block that
allocates a variable-sized object, and `restore_stack_block' restores the
stack pointer when the block is exited.

252 GNU Compiler Collection (GCC) Internals

2. `save_stack_function' and `restore_stack_function' do a similar job
for the outermost block of a function and are used when the function al-
locates variable-sized objects or calls alloca. Only the epilogue uses the
restored stack pointer, allowing a simpler save or restore sequence on some
machines.

3. `save_stack_nonlocal' is used in functions that contain labels branched to
by nested functions. It saves the stack pointer in such a way that the inner
function can use `restore_stack_nonlocal' to restore the stack pointer.
The compiler generates code to restore the frame and argument pointer
registers, but some machines require saving and restoring additional data
such as register window information or stack backchains. Place insns in
these patterns to save and restore any such required data.

When saving the stack pointer, operand 0 is the save area and operand 1 is the
stack pointer. The mode used to allocate the save area defaults to Pmode but
you can override that choice by de�ning the STACK_SAVEAREA_MODE macro (see
Section 15.5 [Storage Layout], page 304). You must specify an integral mode, or
VOIDmode if no save area is needed for a particular type of save (either because
no save is needed or because a machine-speci�c save area can be used). Operand
0 is the stack pointer and operand 1 is the save area for restore operations. If
`save_stack_block' is de�ned, operand 0 must not be VOIDmode since these
saves can be arbitrarily nested.

A save area is a mem that is at a constant o�set from virtual_stack_vars_rtx

when the stack pointer is saved for use by nonlocal gotos and a reg in the other
two cases.

`allocate_stack'
Subtract (or add if STACK_GROWS_DOWNWARD is unde�ned) operand 1 from the
stack pointer to create space for dynamically allocated data.

Store the resultant pointer to this space into operand 0. If you are allocating
space from the main stack, do this by emitting a move insn to copy virtual_

stack_dynamic_rtx to operand 0. If you are allocating the space elsewhere,
generate code to copy the location of the space to operand 0. In the latter
case, you must ensure this space gets freed when the corresponding space on
the main stack is free.

Do not de�ne this pattern if all that must be done is the subtraction. Some
machines require other operations such as stack probes or maintaining the back
chain. De�ne this pattern to emit those operations in addition to updating the
stack pointer.

`check_stack'
If stack checking cannot be done on your system by probing the stack with
a load or store instruction (see Section 15.10.3 [Stack Checking], page 339),
de�ne this pattern to perform the needed check and signaling an error if the
stack has over
owed. The single operand is the location in the stack furthest
from the current stack pointer that you need to validate. Normally, on machines
where this pattern is needed, you would obtain the stack limit from a global or
thread-speci�c variable or register.

Chapter 14: Machine Descriptions 253

`nonlocal_goto'
Emit code to generate a non-local goto, e.g., a jump from one function to a
label in an outer function. This pattern has four arguments, each representing
a value to be used in the jump. The �rst argument is to be loaded into the
frame pointer, the second is the address to branch to (code to dispatch to the
actual label), the third is the address of a location where the stack is saved, and
the last is the address of the label, to be placed in the location for the incoming
static chain.

On most machines you need not de�ne this pattern, since GCC will already
generate the correct code, which is to load the frame pointer and static chain,
restore the stack (using the `restore_stack_nonlocal' pattern, if de�ned),
and jump indirectly to the dispatcher. You need only de�ne this pattern if this
code will not work on your machine.

`nonlocal_goto_receiver'
This pattern, if de�ned, contains code needed at the target of a nonlocal goto
after the code already generated by GCC. You will not normally need to de�ne
this pattern. A typical reason why you might need this pattern is if some value,
such as a pointer to a global table, must be restored when the frame pointer
is restored. Note that a nonlocal goto only occurs within a unit-of-translation,
so a global table pointer that is shared by all functions of a given module need
not be restored. There are no arguments.

`exception_receiver'
This pattern, if de�ned, contains code needed at the site of an exception handler
that isn't needed at the site of a nonlocal goto. You will not normally need
to de�ne this pattern. A typical reason why you might need this pattern is if
some value, such as a pointer to a global table, must be restored after control

ow is branched to the handler of an exception. There are no arguments.

`builtin_setjmp_setup'
This pattern, if de�ned, contains additional code needed to initialize the jmp_
buf. You will not normally need to de�ne this pattern. A typical reason why
you might need this pattern is if some value, such as a pointer to a global table,
must be restored. Though it is preferred that the pointer value be recalculated
if possible (given the address of a label for instance). The single argument is
a pointer to the jmp_buf. Note that the bu�er is �ve words long and that the
�rst three are normally used by the generic mechanism.

`builtin_setjmp_receiver'
This pattern, if de�ned, contains code needed at the site of an built-in setjmp
that isn't needed at the site of a nonlocal goto. You will not normally need
to de�ne this pattern. A typical reason why you might need this pattern is if
some value, such as a pointer to a global table, must be restored. It takes one
argument, which is the label to which builtin longjmp transfered control; this
pattern may be emitted at a small o�set from that label.

254 GNU Compiler Collection (GCC) Internals

`builtin_longjmp'
This pattern, if de�ned, performs the entire action of the longjmp. You will not
normally need to de�ne this pattern unless you also de�ne builtin_setjmp_

setup. The single argument is a pointer to the jmp_buf.

`eh_return'
This pattern, if de�ned, a�ects the way __builtin_eh_return, and thence the
call frame exception handling library routines, are built. It is intended to handle
non-trivial actions needed along the abnormal return path.

The address of the exception handler to which the function should return is
passed as operand to this pattern. It will normally need to copied by the
pattern to some special register or memory location. If the pattern needs to
determine the location of the target call frame in order to do so, it may use
EH_RETURN_STACKADJ_RTX, if de�ned; it will have already been assigned.

If this pattern is not de�ned, the default action will be to simply copy the return
address to EH_RETURN_HANDLER_RTX. Either that macro or this pattern needs
to be de�ned if call frame exception handling is to be used.

`prologue'
This pattern, if de�ned, emits RTL for entry to a function. The function entry is
responsible for setting up the stack frame, initializing the frame pointer register,
saving callee saved registers, etc.

Using a prologue pattern is generally preferred over de�ning TARGET_ASM_

FUNCTION_PROLOGUE to emit assembly code for the prologue.

The prologue pattern is particularly useful for targets which perform instruc-
tion scheduling.

`epilogue'
This pattern emits RTL for exit from a function. The function exit is responsible
for deallocating the stack frame, restoring callee saved registers and emitting
the return instruction.

Using an epilogue pattern is generally preferred over de�ning TARGET_ASM_

FUNCTION_EPILOGUE to emit assembly code for the epilogue.

The epilogue pattern is particularly useful for targets which perform instruc-
tion scheduling or which have delay slots for their return instruction.

`sibcall_epilogue'
This pattern, if de�ned, emits RTL for exit from a function without the �nal
branch back to the calling function. This pattern will be emitted before any
sibling call (aka tail call) sites.

The sibcall_epilogue pattern must not clobber any arguments used for pa-
rameter passing or any stack slots for arguments passed to the current function.

`trap' This pattern, if de�ned, signals an error, typically by causing some kind of
signal to be raised. Among other places, it is used by the Java front end to
signal `invalid array index' exceptions.

`conditional_trap'
Conditional trap instruction. Operand 0 is a piece of RTL which performs a
comparison. Operand 1 is the trap code, an integer.

Chapter 14: Machine Descriptions 255

A typical conditional_trap pattern looks like

(define_insn "conditional_trap"
[(trap_if (match_operator 0 "trap_operator"

[(cc0) (const_int 0)])
(match_operand 1 "const_int_operand" "i"))]

""
"...")

`prefetch'
This pattern, if de�ned, emits code for a non-faulting data prefetch instruction.
Operand 0 is the address of the memory to prefetch. Operand 1 is a constant
1 if the prefetch is preparing for a write to the memory address, or a constant
0 otherwise. Operand 2 is the expected degree of temporal locality of the data
and is a value between 0 and 3, inclusive; 0 means that the data has no temporal
locality, so it need not be left in the cache after the access; 3 means that the
data has a high degree of temporal locality and should be left in all levels of
cache possible; 1 and 2 mean, respectively, a low or moderate degree of temporal
locality.

Targets that do not support write prefetches or locality hints can ignore the
values of operands 1 and 2.

`memory_barrier'
If the target memory model is not fully synchronous, then this pattern should be
de�ned to an instruction that orders both loads and stores before the instruction
with respect to loads and stores after the instruction. This pattern has no
operands.

`sync_compare_and_swapmode '
This pattern, if de�ned, emits code for an atomic compare-and-swap operation.
Operand 1 is the memory on which the atomic operation is performed. Operand
2 is the \old" value to be compared against the current contents of the memory
location. Operand 3 is the \new" value to store in the memory if the compare
succeeds. Operand 0 is the result of the operation; it should contain the contents
of the memory before the operation. If the compare succeeds, this should
obviously be a copy of operand 2.

This pattern must show that both operand 0 and operand 1 are modi�ed.

This pattern must issue any memory barrier instructions such that all memory
operations before the atomic operation occur before the atomic operation and all
memory operations after the atomic operation occur after the atomic operation.

`sync_compare_and_swap_ccmode '
This pattern is just like sync_compare_and_swapmode , except it should act as if
compare part of the compare-and-swap were issued via cmpm . This comparison
will only be used with EQ and NE branches and setcc operations.

Some targets do expose the success or failure of the compare-and-swap operation
via the status
ags. Ideally we wouldn't need a separate named pattern in order
to take advantage of this, but the combine pass does not handle patterns with
multiple sets, which is required by de�nition for sync_compare_and_swapmode .

256 GNU Compiler Collection (GCC) Internals

`sync_addmode ', `sync_submode '
`sync_iormode ', `sync_andmode '
`sync_xormode ', `sync_nandmode '

These patterns emit code for an atomic operation on memory. Operand 0 is the
memory on which the atomic operation is performed. Operand 1 is the second
operand to the binary operator.

The \nand" operation is ~op0 & op1.

This pattern must issue any memory barrier instructions such that all memory
operations before the atomic operation occur before the atomic operation and all
memory operations after the atomic operation occur after the atomic operation.

If these patterns are not de�ned, the operation will be constructed from a
compare-and-swap operation, if de�ned.

`sync_old_addmode ', `sync_old_submode '
`sync_old_iormode ', `sync_old_andmode '
`sync_old_xormode ', `sync_old_nandmode '

These patterns are emit code for an atomic operation on memory, and return the
value that the memory contained before the operation. Operand 0 is the result
value, operand 1 is the memory on which the atomic operation is performed,
and operand 2 is the second operand to the binary operator.

This pattern must issue any memory barrier instructions such that all memory
operations before the atomic operation occur before the atomic operation and all
memory operations after the atomic operation occur after the atomic operation.

If these patterns are not de�ned, the operation will be constructed from a
compare-and-swap operation, if de�ned.

`sync_new_addmode ', `sync_new_submode '
`sync_new_iormode ', `sync_new_andmode '
`sync_new_xormode ', `sync_new_nandmode '

These patterns are like their sync_old_op counterparts, except that they return
the value that exists in the memory location after the operation, rather than
before the operation.

`sync_lock_test_and_setmode '
This pattern takes two forms, based on the capabilities of the target. In either
case, operand 0 is the result of the operand, operand 1 is the memory on which
the atomic operation is performed, and operand 2 is the value to set in the lock.

In the ideal case, this operation is an atomic exchange operation, in which the
previous value in memory operand is copied into the result operand, and the
value operand is stored in the memory operand.

For less capable targets, any value operand that is not the constant 1 should
be rejected with FAIL. In this case the target may use an atomic test-and-set
bit operation. The result operand should contain 1 if the bit was previously set
and 0 if the bit was previously clear. The true contents of the memory operand
are implementation de�ned.

Chapter 14: Machine Descriptions 257

This pattern must issue any memory barrier instructions such that the pattern
as a whole acts as an acquire barrier, that is all memory operations after the
pattern do not occur until the lock is acquired.

If this pattern is not de�ned, the operation will be constructed from a compare-
and-swap operation, if de�ned.

`sync_lock_releasemode '
This pattern, if de�ned, releases a lock set by sync_lock_test_and_setmode .
Operand 0 is the memory that contains the lock; operand 1 is the value to store
in the lock.

If the target doesn't implement full semantics for sync_lock_test_and_

setmode , any value operand which is not the constant 0 should be rejected
with FAIL, and the true contents of the memory operand are implementation
de�ned.

This pattern must issue any memory barrier instructions such that the pattern
as a whole acts as a release barrier, that is the lock is released only after all
previous memory operations have completed.

If this pattern is not de�ned, then a memory_barrier pattern will be emitted,
followed by a store of the value to the memory operand.

`stack_protect_set'
This pattern, if de�ned, moves a Pmode value from the memory in operand 1
to the memory in operand 0 without leaving the value in a register afterward.
This is to avoid leaking the value some place that an attacker might use to
rewrite the stack guard slot after having clobbered it.

If this pattern is not de�ned, then a plain move pattern is generated.

`stack_protect_test'
This pattern, if de�ned, compares a Pmode value from the memory in operand 1
with the memory in operand 0 without leaving the value in a register afterward
and branches to operand 2 if the values weren't equal.

If this pattern is not de�ned, then a plain compare pattern and conditional
branch pattern is used.

14.10 When the Order of Patterns Matters

Sometimes an insn can match more than one instruction pattern. Then the pattern that
appears �rst in the machine description is the one used. Therefore, more speci�c patterns
(patterns that will match fewer things) and faster instructions (those that will produce
better code when they do match) should usually go �rst in the description.

In some cases the e�ect of ordering the patterns can be used to hide a pattern when it is
not valid. For example, the 68000 has an instruction for converting a fullword to
oating
point and another for converting a byte to
oating point. An instruction converting an
integer to
oating point could match either one. We put the pattern to convert the fullword
�rst to make sure that one will be used rather than the other. (Otherwise a large integer
might be generated as a single-byte immediate quantity, which would not work.) Instead
of using this pattern ordering it would be possible to make the pattern for convert-a-byte
smart enough to deal properly with any constant value.

258 GNU Compiler Collection (GCC) Internals

14.11 Interdependence of Patterns

Every machine description must have a named pattern for each of the conditional branch
names `bcond '. The recognition template must always have the form

(set (pc)
(if_then_else (cond (cc0) (const_int 0))

(label_ref (match_operand 0 "" ""))
(pc)))

In addition, every machine description must have an anonymous pattern for each of the
possible reverse-conditional branches. Their templates look like

(set (pc)
(if_then_else (cond (cc0) (const_int 0))

(pc)
(label_ref (match_operand 0 "" ""))))

They are necessary because jump optimization can turn direct-conditional branches into
reverse-conditional branches.

It is often convenient to use the match_operator construct to reduce the number of
patterns that must be speci�ed for branches. For example,

(define_insn ""
[(set (pc)

(if_then_else (match_operator 0 "comparison_operator"
[(cc0) (const_int 0)])

(pc)
(label_ref (match_operand 1 "" ""))))]

"condition"
"...")

In some cases machines support instructions identical except for the machine mode of
one or more operands. For example, there may be \sign-extend halfword" and \sign-extend
byte" instructions whose patterns are

(set (match_operand:SI 0 ...)
(extend:SI (match_operand:HI 1 ...)))

(set (match_operand:SI 0 ...)
(extend:SI (match_operand:QI 1 ...)))

Constant integers do not specify a machine mode, so an instruction to extend a constant
value could match either pattern. The pattern it actually will match is the one that appears
�rst in the �le. For correct results, this must be the one for the widest possible mode
(HImode, here). If the pattern matches the QImode instruction, the results will be incorrect
if the constant value does not actually �t that mode.

Such instructions to extend constants are rarely generated because they are optimized
away, but they do occasionally happen in nonoptimized compilations.

If a constraint in a pattern allows a constant, the reload pass may replace a register with
a constant permitted by the constraint in some cases. Similarly for memory references.
Because of this substitution, you should not provide separate patterns for increment and
decrement instructions. Instead, they should be generated from the same pattern that sup-
ports register-register add insns by examining the operands and generating the appropriate
machine instruction.

Chapter 14: Machine Descriptions 259

14.12 De�ning Jump Instruction Patterns

For most machines, GCC assumes that the machine has a condition code. A comparison
insn sets the condition code, recording the results of both signed and unsigned comparison
of the given operands. A separate branch insn tests the condition code and branches or not
according its value. The branch insns come in distinct signed and unsigned
avors. Many
common machines, such as the VAX, the 68000 and the 32000, work this way.

Some machines have distinct signed and unsigned compare instructions, and only one set
of conditional branch instructions. The easiest way to handle these machines is to treat
them just like the others until the �nal stage where assembly code is written. At this time,
when outputting code for the compare instruction, peek ahead at the following branch using
next_cc0_user (insn). (The variable insn refers to the insn being output, in the output-
writing code in an instruction pattern.) If the RTL says that is an unsigned branch, output
an unsigned compare; otherwise output a signed compare. When the branch itself is output,
you can treat signed and unsigned branches identically.

The reason you can do this is that GCC always generates a pair of consecutive RTL insns,
possibly separated by note insns, one to set the condition code and one to test it, and keeps
the pair inviolate until the end.

To go with this technique, you must de�ne the machine-description macro NOTICE_

UPDATE_CC to do CC_STATUS_INIT; in other words, no compare instruction is super
uous.

Some machines have compare-and-branch instructions and no condition code. A similar
technique works for them. When it is time to \output" a compare instruction, record its
operands in two static variables. When outputting the branch-on-condition-code instruction
that follows, actually output a compare-and-branch instruction that uses the remembered
operands.

It also works to de�ne patterns for compare-and-branch instructions. In optimizing com-
pilation, the pair of compare and branch instructions will be combined according to these
patterns. But this does not happen if optimization is not requested. So you must use one
of the solutions above in addition to any special patterns you de�ne.

In many RISC machines, most instructions do not a�ect the condition code and there
may not even be a separate condition code register. On these machines, the restriction
that the de�nition and use of the condition code be adjacent insns is not necessary and can
prevent important optimizations. For example, on the IBM RS/6000, there is a delay for
taken branches unless the condition code register is set three instructions earlier than the
conditional branch. The instruction scheduler cannot perform this optimization if it is not
permitted to separate the de�nition and use of the condition code register.

On these machines, do not use (cc0), but instead use a register to represent the condition
code. If there is a speci�c condition code register in the machine, use a hard register. If
the condition code or comparison result can be placed in any general register, or if there
are multiple condition registers, use a pseudo register.

On some machines, the type of branch instruction generated may depend on the way the
condition code was produced; for example, on the 68k and SPARC, setting the condition
code directly from an add or subtract instruction does not clear the over
ow bit the way that
a test instruction does, so a di�erent branch instruction must be used for some conditional
branches. For machines that use (cc0), the set and use of the condition code must be
adjacent (separated only by note insns) allowing
ags in cc_status to be used. (See

260 GNU Compiler Collection (GCC) Internals

Section 15.16 [Condition Code], page 369.) Also, the comparison and branch insns can be
located from each other by using the functions prev_cc0_setter and next_cc0_user.

However, this is not true on machines that do not use (cc0). On those machines, no
assumptions can be made about the adjacency of the compare and branch insns and the
above methods cannot be used. Instead, we use the machine mode of the condition code
register to record di�erent formats of the condition code register.

Registers used to store the condition code value should have a mode that is in class MODE_
CC. Normally, it will be CCmode. If additional modes are required (as for the add example
mentioned above in the SPARC), de�ne them in `machine-modes.def' (see Section 15.16
[Condition Code], page 369). Also de�ne SELECT_CC_MODE to choose a mode given an
operand of a compare.

If it is known during RTL generation that a di�erent mode will be required (for example,
if the machine has separate compare instructions for signed and unsigned quantities, like
most IBM processors), they can be speci�ed at that time.

If the cases that require di�erent modes would be made by instruction combination, the
macro SELECT_CC_MODE determines which machine mode should be used for the comparison
result. The patterns should be written using that mode. To support the case of the add on
the SPARC discussed above, we have the pattern

(define_insn ""
[(set (reg:CC_NOOV 0)

(compare:CC_NOOV
(plus:SI (match_operand:SI 0 "register_operand" "%r")

(match_operand:SI 1 "arith_operand" "rI"))
(const_int 0)))]

""
"...")

The SELECT_CC_MODE macro on the SPARC returns CC_NOOVmode for comparisons whose
argument is a plus.

14.13 De�ning Looping Instruction Patterns

Some machines have special jump instructions that can be utilized to make loops more
e�cient. A common example is the 68000 `dbra' instruction which performs a decrement
of a register and a branch if the result was greater than zero. Other machines, in particular
digital signal processors (DSPs), have special block repeat instructions to provide low-
overhead loop support. For example, the TI TMS320C3x/C4x DSPs have a block repeat
instruction that loads special registers to mark the top and end of a loop and to count the
number of loop iterations. This avoids the need for fetching and executing a `dbra'-like
instruction and avoids pipeline stalls associated with the jump.

GCC has three special named patterns to support low overhead looping. They are
`decrement_and_branch_until_zero', `doloop_begin', and `doloop_end'. The �rst pat-
tern, `decrement_and_branch_until_zero', is not emitted during RTL generation but may
be emitted during the instruction combination phase. This requires the assistance of the
loop optimizer, using information collected during strength reduction, to reverse a loop to
count down to zero. Some targets also require the loop optimizer to add a REG_NONNEG

note to indicate that the iteration count is always positive. This is needed if the target
performs a signed loop termination test. For example, the 68000 uses a pattern similar to
the following for its dbra instruction:

Chapter 14: Machine Descriptions 261

(define_insn "decrement_and_branch_until_zero"
[(set (pc)

(if_then_else
(ge (plus:SI (match_operand:SI 0 "general_operand" "+d*am")

(const_int -1))
(const_int 0))

(label_ref (match_operand 1 "" ""))
(pc)))
(set (match_dup 0)

(plus:SI (match_dup 0)
(const_int -1)))]
"find_reg_note (insn, REG_NONNEG, 0)"
"...")

Note that since the insn is both a jump insn and has an output, it must deal with its
own reloads, hence the `m' constraints. Also note that since this insn is generated by
the instruction combination phase combining two sequential insns together into an implicit
parallel insn, the iteration counter needs to be biased by the same amount as the decrement
operation, in this case �1. Note that the following similar pattern will not be matched by
the combiner.

(define_insn "decrement_and_branch_until_zero"
[(set (pc)

(if_then_else
(ge (match_operand:SI 0 "general_operand" "+d*am")

(const_int 1))
(label_ref (match_operand 1 "" ""))
(pc)))
(set (match_dup 0)

(plus:SI (match_dup 0)
(const_int -1)))]
"find_reg_note (insn, REG_NONNEG, 0)"
"...")

The other two special looping patterns, `doloop_begin' and `doloop_end', are emitted
by the loop optimizer for certain well-behaved loops with a �nite number of loop iterations
using information collected during strength reduction.

The `doloop_end' pattern describes the actual looping instruction (or the implicit looping
operation) and the `doloop_begin' pattern is an optional companion pattern that can be
used for initialization needed for some low-overhead looping instructions.

Note that some machines require the actual looping instruction to be emitted at the
top of the loop (e.g., the TMS320C3x/C4x DSPs). Emitting the true RTL for a looping
instruction at the top of the loop can cause problems with
ow analysis. So instead, a
dummy doloop insn is emitted at the end of the loop. The machine dependent reorg pass
checks for the presence of this doloop insn and then searches back to the top of the loop,
where it inserts the true looping insn (provided there are no instructions in the loop which
would cause problems). Any additional labels can be emitted at this point. In addition,
if the desired special iteration counter register was not allocated, this machine dependent
reorg pass could emit a traditional compare and jump instruction pair.

The essential di�erence between the `decrement_and_branch_until_zero' and the
`doloop_end' patterns is that the loop optimizer allocates an additional pseudo register
for the latter as an iteration counter. This pseudo register cannot be used within the loop

262 GNU Compiler Collection (GCC) Internals

(i.e., general induction variables cannot be derived from it), however, in many cases the
loop induction variable may become redundant and removed by the
ow pass.

14.14 Canonicalization of Instructions

There are often cases where multiple RTL expressions could represent an operation per-
formed by a single machine instruction. This situation is most commonly encountered with
logical, branch, and multiply-accumulate instructions. In such cases, the compiler attempts
to convert these multiple RTL expressions into a single canonical form to reduce the number
of insn patterns required.

In addition to algebraic simpli�cations, following canonicalizations are performed:

� For commutative and comparison operators, a constant is always made the second
operand. If a machine only supports a constant as the second operand, only patterns
that match a constant in the second operand need be supplied.

� For associative operators, a sequence of operators will always chain to the left; for
instance, only the left operand of an integer plus can itself be a plus. and, ior, xor,
plus, mult, smin, smax, umin, and umax are associative when applied to integers, and
sometimes to
oating-point.

� For these operators, if only one operand is a neg, not, mult, plus, or minus expression,
it will be the �rst operand.

� In combinations of neg, mult, plus, and minus, the neg operations (if any) will be
moved inside the operations as far as possible. For instance, (neg (mult A B)) is
canonicalized as (mult (neg A) B), but (plus (mult (neg A) B) C) is canonicalized
as (minus A (mult B C)).

� For the compare operator, a constant is always the second operand on machines where
cc0 is used (see Section 14.12 [Jump Patterns], page 259). On other machines, there are
rare cases where the compiler might want to construct a compare with a constant as the
�rst operand. However, these cases are not common enough for it to be worthwhile to
provide a pattern matching a constant as the �rst operand unless the machine actually
has such an instruction.

An operand of neg, not, mult, plus, or minus is made the �rst operand under the
same conditions as above.

� (minus x (const_int n)) is converted to (plus x (const_int -n)).

� Within address computations (i.e., inside mem), a left shift is converted into the appro-
priate multiplication by a power of two.

� De Morgan's Law is used to move bitwise negation inside a bitwise logical-and or
logical-or operation. If this results in only one operand being a not expression, it will
be the �rst one.

A machine that has an instruction that performs a bitwise logical-and of one operand
with the bitwise negation of the other should specify the pattern for that instruction
as

(define_insn ""
[(set (match_operand:m 0 ...)

(and:m (not:m (match_operand:m 1 ...))
(match_operand:m 2 ...)))]

"..."

Chapter 14: Machine Descriptions 263

"...")

Similarly, a pattern for a \NAND" instruction should be written
(define_insn ""
[(set (match_operand:m 0 ...)

(ior:m (not:m (match_operand:m 1 ...))
(not:m (match_operand:m 2 ...))))]

"..."
"...")

In both cases, it is not necessary to include patterns for the many logically equivalent
RTL expressions.

� The only possible RTL expressions involving both bitwise exclusive-or and bitwise
negation are (xor:m x y) and (not:m (xor:m x y)).

� The sum of three items, one of which is a constant, will only appear in the form
(plus:m (plus:m x y) constant)

� On machines that do not use cc0, (compare x (const_int 0)) will be converted to x.

� Equality comparisons of a group of bits (usually a single bit) with zero will be written
using zero_extract rather than the equivalent and or sign_extract operations.

Further canonicalization rules are de�ned in the function commutative_operand_

precedence in `gcc/rtlanal.c'.

14.15 De�ning RTL Sequences for Code Generation

On some target machines, some standard pattern names for RTL generation cannot be
handled with single insn, but a sequence of RTL insns can represent them. For these target
machines, you can write a define_expand to specify how to generate the sequence of RTL.

A define_expand is an RTL expression that looks almost like a define_insn; but, unlike
the latter, a define_expand is used only for RTL generation and it can produce more than
one RTL insn.

A define_expand RTX has four operands:

� The name. Each define_expand must have a name, since the only use for it is to refer
to it by name.

� The RTL template. This is a vector of RTL expressions representing a sequence of
separate instructions. Unlike define_insn, there is no implicit surrounding PARALLEL.

� The condition, a string containing a C expression. This expression is used to express
how the availability of this pattern depends on subclasses of target machine, selected
by command-line options when GCC is run. This is just like the condition of a define_
insn that has a standard name. Therefore, the condition (if present) may not depend
on the data in the insn being matched, but only the target-machine-type
ags. The
compiler needs to test these conditions during initialization in order to learn exactly
which named instructions are available in a particular run.

� The preparation statements, a string containing zero or more C statements which are
to be executed before RTL code is generated from the RTL template.

Usually these statements prepare temporary registers for use as internal operands in
the RTL template, but they can also generate RTL insns directly by calling routines
such as emit_insn, etc. Any such insns precede the ones that come from the RTL
template.

264 GNU Compiler Collection (GCC) Internals

Every RTL insn emitted by a define_expand must match some define_insn in the
machine description. Otherwise, the compiler will crash when trying to generate code for
the insn or trying to optimize it.

The RTL template, in addition to controlling generation of RTL insns, also describes
the operands that need to be speci�ed when this pattern is used. In particular, it gives a
predicate for each operand.

A true operand, which needs to be speci�ed in order to generate RTL from the pattern,
should be described with a match_operand in its �rst occurrence in the RTL template.
This enters information on the operand's predicate into the tables that record such things.
GCC uses the information to preload the operand into a register if that is required for valid
RTL code. If the operand is referred to more than once, subsequent references should use
match_dup.

The RTL template may also refer to internal \operands" which are temporary registers
or labels used only within the sequence made by the define_expand. Internal operands are
substituted into the RTL template with match_dup, never with match_operand. The values
of the internal operands are not passed in as arguments by the compiler when it requests
use of this pattern. Instead, they are computed within the pattern, in the preparation
statements. These statements compute the values and store them into the appropriate
elements of operands so that match_dup can �nd them.

There are two special macros de�ned for use in the preparation statements: DONE and
FAIL. Use them with a following semicolon, as a statement.

DONE Use the DONE macro to end RTL generation for the pattern. The only RTL
insns resulting from the pattern on this occasion will be those already emitted
by explicit calls to emit_insn within the preparation statements; the RTL
template will not be generated.

FAIL Make the pattern fail on this occasion. When a pattern fails, it means that the
pattern was not truly available. The calling routines in the compiler will try
other strategies for code generation using other patterns.

Failure is currently supported only for binary (addition, multiplication, shifting,
etc.) and bit-�eld (extv, extzv, and insv) operations.

If the preparation falls through (invokes neither DONE nor FAIL), then the define_expand
acts like a define_insn in that the RTL template is used to generate the insn.

The RTL template is not used for matching, only for generating the initial insn list. If
the preparation statement always invokes DONE or FAIL, the RTL template may be reduced
to a simple list of operands, such as this example:

(define_expand "addsi3"
[(match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "register_operand" "")]
""
"

{
handle_add (operands[0], operands[1], operands[2]);
DONE;

}")

Here is an example, the de�nition of left-shift for the SPUR chip:

Chapter 14: Machine Descriptions 265

(define_expand "ashlsi3"
[(set (match_operand:SI 0 "register_operand" "")

(ashift:SI
(match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "nonmemory_operand" "")))]

""
"

{
if (GET_CODE (operands[2]) != CONST_INT

|| (unsigned) INTVAL (operands[2]) > 3)
FAIL;

}")

This example uses define_expand so that it can generate an RTL insn for shifting when the
shift-count is in the supported range of 0 to 3 but fail in other cases where machine insns
aren't available. When it fails, the compiler tries another strategy using di�erent patterns
(such as, a library call).

If the compiler were able to handle nontrivial condition-strings in patterns with names,
then it would be possible to use a define_insn in that case. Here is another case (zero-
extension on the 68000) which makes more use of the power of define_expand:

(define_expand "zero_extendhisi2"
[(set (match_operand:SI 0 "general_operand" "")

(const_int 0))
(set (strict_low_part

(subreg:HI
(match_dup 0)
0))

(match_operand:HI 1 "general_operand" ""))]
""
"operands[1] = make_safe_from (operands[1], operands[0]);")

Here two RTL insns are generated, one to clear the entire output operand and the other to
copy the input operand into its low half. This sequence is incorrect if the input operand
refers to [the old value of] the output operand, so the preparation statement makes sure this
isn't so. The function make_safe_from copies the operands[1] into a temporary register
if it refers to operands[0]. It does this by emitting another RTL insn.

Finally, a third example shows the use of an internal operand. Zero-extension on the
SPUR chip is done by and-ing the result against a halfword mask. But this mask cannot
be represented by a const_int because the constant value is too large to be legitimate on
this machine. So it must be copied into a register with force_reg and then the register
used in the and.

(define_expand "zero_extendhisi2"
[(set (match_operand:SI 0 "register_operand" "")

(and:SI (subreg:SI
(match_operand:HI 1 "register_operand" "")
0)

(match_dup 2)))]
""
"operands[2]

= force_reg (SImode, GEN_INT (65535)); ")

Note: If the define_expand is used to serve a standard binary or unary arithmetic
operation or a bit-�eld operation, then the last insn it generates must not be a code_label,
barrier or note. It must be an insn, jump_insn or call_insn. If you don't need a real

266 GNU Compiler Collection (GCC) Internals

insn at the end, emit an insn to copy the result of the operation into itself. Such an insn
will generate no code, but it can avoid problems in the compiler.

14.16 De�ning How to Split Instructions

There are two cases where you should specify how to split a pattern into multiple insns.
On machines that have instructions requiring delay slots (see Section 14.19.7 [Delay Slots],
page 281) or that have instructions whose output is not available for multiple cycles (see
Section 14.19.8 [Processor pipeline description], page 282), the compiler phases that optimize
these cases need to be able to move insns into one-instruction delay slots. However, some
insns may generate more than one machine instruction. These insns cannot be placed into
a delay slot.

Often you can rewrite the single insn as a list of individual insns, each corresponding to
one machine instruction. The disadvantage of doing so is that it will cause the compilation
to be slower and require more space. If the resulting insns are too complex, it may also
suppress some optimizations. The compiler splits the insn if there is a reason to believe
that it might improve instruction or delay slot scheduling.

The insn combiner phase also splits putative insns. If three insns are merged into one
insn with a complex expression that cannot be matched by some define_insn pattern,
the combiner phase attempts to split the complex pattern into two insns that are recog-
nized. Usually it can break the complex pattern into two patterns by splitting out some
subexpression. However, in some other cases, such as performing an addition of a large
constant in two insns on a RISC machine, the way to split the addition into two insns is
machine-dependent.

The define_split de�nition tells the compiler how to split a complex insn into several
simpler insns. It looks like this:

(define_split
[insn-pattern]
"condition"
[new-insn-pattern-1
new-insn-pattern-2

...]
"preparation-statements")

insn-pattern is a pattern that needs to be split and condition is the �nal condition to be
tested, as in a define_insn. When an insn matching insn-pattern and satisfying condition
is found, it is replaced in the insn list with the insns given by new-insn-pattern-1, new-insn-
pattern-2, etc.

The preparation-statements are similar to those statements that are speci�ed for define_
expand (see Section 14.15 [Expander De�nitions], page 263) and are executed before the
new RTL is generated to prepare for the generated code or emit some insns whose pattern
is not �xed. Unlike those in define_expand, however, these statements must not generate
any new pseudo-registers. Once reload has completed, they also must not allocate any space
in the stack frame.

Patterns are matched against insn-pattern in two di�erent circumstances. If an insn
needs to be split for delay slot scheduling or insn scheduling, the insn is already known
to be valid, which means that it must have been matched by some define_insn and, if
reload_completed is nonzero, is known to satisfy the constraints of that define_insn. In

Chapter 14: Machine Descriptions 267

that case, the new insn patterns must also be insns that are matched by some define_insn
and, if reload_completed is nonzero, must also satisfy the constraints of those de�nitions.

As an example of this usage of define_split, consider the following example from
`a29k.md', which splits a sign_extend from HImode to SImode into a pair of shift insns:

(define_split
[(set (match_operand:SI 0 "gen_reg_operand" "")

(sign_extend:SI (match_operand:HI 1 "gen_reg_operand" "")))]
""
[(set (match_dup 0)

(ashift:SI (match_dup 1)
(const_int 16)))

(set (match_dup 0)
(ashiftrt:SI (match_dup 0)

(const_int 16)))]
"

{ operands[1] = gen_lowpart (SImode, operands[1]); }")

When the combiner phase tries to split an insn pattern, it is always the case that the
pattern is not matched by any define_insn. The combiner pass �rst tries to split a single
set expression and then the same set expression inside a parallel, but followed by a
clobber of a pseudo-reg to use as a scratch register. In these cases, the combiner expects
exactly two new insn patterns to be generated. It will verify that these patterns match
some define_insn de�nitions, so you need not do this test in the define_split (of course,
there is no point in writing a define_split that will never produce insns that match).

Here is an example of this use of define_split, taken from `rs6000.md':

(define_split
[(set (match_operand:SI 0 "gen_reg_operand" "")

(plus:SI (match_operand:SI 1 "gen_reg_operand" "")
(match_operand:SI 2 "non_add_cint_operand" "")))]

""
[(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3)))
(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))]

"
{
int low = INTVAL (operands[2]) & 0xffff;
int high = (unsigned) INTVAL (operands[2]) >> 16;

if (low & 0x8000)
high++, low |= 0xffff0000;

operands[3] = GEN_INT (high << 16);
operands[4] = GEN_INT (low);

}")

Here the predicate non_add_cint_operand matches any const_int that is not a valid
operand of a single add insn. The add with the smaller displacement is written so that it
can be substituted into the address of a subsequent operation.

An example that uses a scratch register, from the same �le, generates an equality com-
parison of a register and a large constant:

(define_split
[(set (match_operand:CC 0 "cc_reg_operand" "")

(compare:CC (match_operand:SI 1 "gen_reg_operand" "")
(match_operand:SI 2 "non_short_cint_operand" "")))

(clobber (match_operand:SI 3 "gen_reg_operand" ""))]

268 GNU Compiler Collection (GCC) Internals

"find_single_use (operands[0], insn, 0)
&& (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ

|| GET_CODE (*find_single_use (operands[0], insn, 0)) == NE)"
[(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4)))
(set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))]
"

{
/* Get the constant we are comparing against, C, and see what it
looks like sign-extended to 16 bits. Then see what constant
could be XOR'ed with C to get the sign-extended value. */

int c = INTVAL (operands[2]);
int sextc = (c << 16) >> 16;
int xorv = c ^ sextc;

operands[4] = GEN_INT (xorv);
operands[5] = GEN_INT (sextc);

}")

To avoid confusion, don't write a single define_split that accepts some insns that
match some define_insn as well as some insns that don't. Instead, write two separate
define_split de�nitions, one for the insns that are valid and one for the insns that are
not valid.

The splitter is allowed to split jump instructions into sequence of jumps or create new
jumps in while splitting non-jump instructions. As the central
owgraph and branch pre-
diction information needs to be updated, several restriction apply.

Splitting of jump instruction into sequence that over by another jump instruction is always
valid, as compiler expect identical behavior of new jump. When new sequence contains
multiple jump instructions or new labels, more assistance is needed. Splitter is required
to create only unconditional jumps, or simple conditional jump instructions. Additionally
it must attach a REG_BR_PROB note to each conditional jump. A global variable split_

branch_probability holds the probability of the original branch in case it was an simple
conditional jump, �1 otherwise. To simplify recomputing of edge frequencies, the new
sequence is required to have only forward jumps to the newly created labels.

For the common case where the pattern of a de�ne split exactly matches the pattern of
a de�ne insn, use define_insn_and_split. It looks like this:

(define_insn_and_split
[insn-pattern]
"condition"
"output-template"
"split-condition"
[new-insn-pattern-1
new-insn-pattern-2

...]
"preparation-statements"
[insn-attributes])

insn-pattern, condition, output-template, and insn-attributes are used as in define_insn.
The new-insn-pattern vector and the preparation-statements are used as in a define_split.
The split-condition is also used as in define_split, with the additional behavior that if
the condition starts with `&&', the condition used for the split will be the constructed as a
logical \and" of the split condition with the insn condition. For example, from i386.md:

Chapter 14: Machine Descriptions 269

(define_insn_and_split "zero_extendhisi2_and"
[(set (match_operand:SI 0 "register_operand" "=r")

(zero_extend:SI (match_operand:HI 1 "register_operand" "0")))
(clobber (reg:CC 17))]
"TARGET_ZERO_EXTEND_WITH_AND && !optimize_size"
"#"
"&& reload_completed"
[(parallel [(set (match_dup 0)

(and:SI (match_dup 0) (const_int 65535)))
(clobber (reg:CC 17))])]

""
[(set_attr "type" "alu1")])

In this case, the actual split condition will be `TARGET_ZERO_EXTEND_WITH_AND &&

!optimize_size && reload_completed'.

The define_insn_and_split construction provides exactly the same functionality as
two separate define_insn and define_split patterns. It exists for compactness, and as
a maintenance tool to prevent having to ensure the two patterns' templates match.

14.17 Including Patterns in Machine Descriptions.

The include pattern tells the compiler tools where to look for patterns that are in �les
other than in the �le `.md'. This is used only at build time and there is no preprocessing
allowed.

It looks like:

(include
pathname)

For example:

(include "filestuff")

Where pathname is a string that speci�es the location of the �le, speci�es the include �le
to be in `gcc/config/target/filestuff'. The directory `gcc/config/target' is regarded
as the default directory.

Machine descriptions may be split up into smaller more manageable subsections and
placed into subdirectories.

By specifying:

(include "BOGUS/filestuff")

the include �le is speci�ed to be in `gcc/config/target/BOGUS/filestuff'.

Specifying an absolute path for the include �le such as;

(include "/u2/BOGUS/filestuff")

is permitted but is not encouraged.

270 GNU Compiler Collection (GCC) Internals

14.17.1 RTL Generation Tool Options for Directory Search

The `-Idir ' option speci�es directories to search for machine descriptions. For example:

genrecog -I/p1/abc/proc1 -I/p2/abcd/pro2 target.md

Add the directory dir to the head of the list of directories to be searched for header �les.
This can be used to override a system machine de�nition �le, substituting your own version,
since these directories are searched before the default machine description �le directories.
If you use more than one `-I' option, the directories are scanned in left-to-right order; the
standard default directory come after.

14.18 Machine-Speci�c Peephole Optimizers

In addition to instruction patterns the `md' �le may contain de�nitions of machine-speci�c
peephole optimizations.

The combiner does not notice certain peephole optimizations when the data
ow in the
program does not suggest that it should try them. For example, sometimes two consecutive
insns related in purpose can be combined even though the second one does not appear to
use a register computed in the �rst one. A machine-speci�c peephole optimizer can detect
such opportunities.

There are two forms of peephole de�nitions that may be used. The original define_
peephole is run at assembly output time to match insns and substitute assembly text. Use
of define_peephole is deprecated.

A newer define_peephole2 matches insns and substitutes new insns. The peephole2

pass is run after register allocation but before scheduling, which may result in much better
code for targets that do scheduling.

14.18.1 RTL to Text Peephole Optimizers

A de�nition looks like this:
(define_peephole
[insn-pattern-1
insn-pattern-2

...]
"condition"
"template"
"optional-insn-attributes")

The last string operand may be omitted if you are not using any machine-speci�c information
in this machine description. If present, it must obey the same rules as in a define_insn.

In this skeleton, insn-pattern-1 and so on are patterns to match consecutive insns. The
optimization applies to a sequence of insns when insn-pattern-1 matches the �rst one, insn-
pattern-2 matches the next, and so on.

Each of the insns matched by a peephole must also match a define_insn. Peepholes are
checked only at the last stage just before code generation, and only optionally. Therefore,
any insn which would match a peephole but no define_insn will cause a crash in code
generation in an unoptimized compilation, or at various optimization stages.

The operands of the insns are matched with match_operands, match_operator, and
match_dup, as usual. What is not usual is that the operand numbers apply to all the insn

Chapter 14: Machine Descriptions 271

patterns in the de�nition. So, you can check for identical operands in two insns by using
match_operand in one insn and match_dup in the other.

The operand constraints used in match_operand patterns do not have any direct e�ect
on the applicability of the peephole, but they will be validated afterward, so make sure your
constraints are general enough to apply whenever the peephole matches. If the peephole
matches but the constraints are not satis�ed, the compiler will crash.

It is safe to omit constraints in all the operands of the peephole; or you can write con-
straints which serve as a double-check on the criteria previously tested.

Once a sequence of insns matches the patterns, the condition is checked. This is a C
expression which makes the �nal decision whether to perform the optimization (we do so
if the expression is nonzero). If condition is omitted (in other words, the string is empty)
then the optimization is applied to every sequence of insns that matches the patterns.

The de�ned peephole optimizations are applied after register allocation is complete.
Therefore, the peephole de�nition can check which operands have ended up in which kinds
of registers, just by looking at the operands.

The way to refer to the operands in condition is to write operands[i] for operand number
i (as matched by (match_operand i ...)). Use the variable insn to refer to the last of
the insns being matched; use prev_active_insn to �nd the preceding insns.

When optimizing computations with intermediate results, you can use condition to match
only when the intermediate results are not used elsewhere. Use the C expression dead_or_

set_p (insn, op), where insn is the insn in which you expect the value to be used for the
last time (from the value of insn, together with use of prev_nonnote_insn), and op is the
intermediate value (from operands[i]).

Applying the optimization means replacing the sequence of insns with one new insn. The
template controls ultimate output of assembler code for this combined insn. It works exactly
like the template of a define_insn. Operand numbers in this template are the same ones
used in matching the original sequence of insns.

The result of a de�ned peephole optimizer does not need to match any of the insn patterns
in the machine description; it does not even have an opportunity to match them. The
peephole optimizer de�nition itself serves as the insn pattern to control how the insn is
output.

De�ned peephole optimizers are run as assembler code is being output, so the insns they
produce are never combined or rearranged in any way.

Here is an example, taken from the 68000 machine description:
(define_peephole
[(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))
(set (match_operand:DF 0 "register_operand" "=f")

(match_operand:DF 1 "register_operand" "ad"))]
"FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])"

{
rtx xoperands[2];
xoperands[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);

#ifdef MOTOROLA
output_asm_insn ("move.l %1,(sp)", xoperands);
output_asm_insn ("move.l %1,-(sp)", operands);
return "fmove.d (sp)+,%0";

#else

272 GNU Compiler Collection (GCC) Internals

output_asm_insn ("movel %1,sp@", xoperands);
output_asm_insn ("movel %1,sp@-", operands);
return "fmoved sp@+,%0";

#endif
})

The e�ect of this optimization is to change

jbsr _foobar
addql #4,sp
movel d1,sp@-
movel d0,sp@-
fmoved sp@+,fp0

into

jbsr _foobar
movel d1,sp@
movel d0,sp@-
fmoved sp@+,fp0

insn-pattern-1 and so on look almost like the second operand of define_insn. There
is one important di�erence: the second operand of define_insn consists of one or more
RTX's enclosed in square brackets. Usually, there is only one: then the same action can
be written as an element of a define_peephole. But when there are multiple actions in a
define_insn, they are implicitly enclosed in a parallel. Then you must explicitly write
the parallel, and the square brackets within it, in the define_peephole. Thus, if an insn
pattern looks like this,

(define_insn "divmodsi4"
[(set (match_operand:SI 0 "general_operand" "=d")

(div:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "dmsK")))

(set (match_operand:SI 3 "general_operand" "=d")
(mod:SI (match_dup 1) (match_dup 2)))]

"TARGET_68020"
"divsl%.l %2,%3:%0")

then the way to mention this insn in a peephole is as follows:

(define_peephole
[...
(parallel
[(set (match_operand:SI 0 "general_operand" "=d")

(div:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "dmsK")))

(set (match_operand:SI 3 "general_operand" "=d")
(mod:SI (match_dup 1) (match_dup 2)))])

...]
...)

14.18.2 RTL to RTL Peephole Optimizers

The define_peephole2 de�nition tells the compiler how to substitute one sequence of
instructions for another sequence, what additional scratch registers may be needed and
what their lifetimes must be.

(define_peephole2
[insn-pattern-1
insn-pattern-2

...]
"condition"

Chapter 14: Machine Descriptions 273

[new-insn-pattern-1
new-insn-pattern-2

...]
"preparation-statements")

The de�nition is almost identical to define_split (see Section 14.16 [Insn Splitting],
page 266) except that the pattern to match is not a single instruction, but a sequence of
instructions.

It is possible to request additional scratch registers for use in the output template. If
appropriate registers are not free, the pattern will simply not match.

Scratch registers are requested with a match_scratch pattern at the top level of the input
pattern. The allocated register (initially) will be dead at the point requested within the
original sequence. If the scratch is used at more than a single point, a match_dup pattern
at the top level of the input pattern marks the last position in the input sequence at which
the register must be available.

Here is an example from the IA-32 machine description:

(define_peephole2
[(match_scratch:SI 2 "r")
(parallel [(set (match_operand:SI 0 "register_operand" "")

(match_operator:SI 3 "arith_or_logical_operator"
[(match_dup 0)
(match_operand:SI 1 "memory_operand" "")]))

(clobber (reg:CC 17))])]
"! optimize_size && ! TARGET_READ_MODIFY"
[(set (match_dup 2) (match_dup 1))
(parallel [(set (match_dup 0)

(match_op_dup 3 [(match_dup 0) (match_dup 2)]))
(clobber (reg:CC 17))])]

"")

This pattern tries to split a load from its use in the hopes that we'll be able to schedule
around the memory load latency. It allocates a single SImode register of class GENERAL_REGS
("r") that needs to be live only at the point just before the arithmetic.

A real example requiring extended scratch lifetimes is harder to come by, so here's a silly
made-up example:

(define_peephole2
[(match_scratch:SI 4 "r")
(set (match_operand:SI 0 "" "") (match_operand:SI 1 "" ""))
(set (match_operand:SI 2 "" "") (match_dup 1))
(match_dup 4)
(set (match_operand:SI 3 "" "") (match_dup 1))]
"/* determine 1 does not overlap 0 and 2 */"
[(set (match_dup 4) (match_dup 1))
(set (match_dup 0) (match_dup 4))
(set (match_dup 2) (match_dup 4))]
(set (match_dup 3) (match_dup 4))]
"")

If we had not added the (match_dup 4) in the middle of the input sequence, it might have
been the case that the register we chose at the beginning of the sequence is killed by the
�rst or second set.

274 GNU Compiler Collection (GCC) Internals

14.19 Instruction Attributes

In addition to describing the instruction supported by the target machine, the `md' �le also
de�nes a group of attributes and a set of values for each. Every generated insn is assigned
a value for each attribute. One possible attribute would be the e�ect that the insn has on
the machine's condition code. This attribute can then be used by NOTICE_UPDATE_CC to
track the condition codes.

14.19.1 De�ning Attributes and their Values

The define_attr expression is used to de�ne each attribute required by the target machine.
It looks like:

(define_attr name list-of-values default)

name is a string specifying the name of the attribute being de�ned.

list-of-values is either a string that speci�es a comma-separated list of values that can
be assigned to the attribute, or a null string to indicate that the attribute takes numeric
values.

default is an attribute expression that gives the value of this attribute for insns that
match patterns whose de�nition does not include an explicit value for this attribute. See
Section 14.19.4 [Attr Example], page 278, for more information on the handling of defaults.
See Section 14.19.6 [Constant Attributes], page 280, for information on attributes that do
not depend on any particular insn.

For each de�ned attribute, a number of de�nitions are written to the `insn-attr.h' �le.
For cases where an explicit set of values is speci�ed for an attribute, the following are
de�ned:

� A `#define' is written for the symbol `HAVE_ATTR_name '.

� An enumerated class is de�ned for `attr_name ' with elements of the form `upper-
name_upper-value ' where the attribute name and value are �rst converted to upper-
case.

� A function `get_attr_name ' is de�ned that is passed an insn and returns the attribute
value for that insn.

For example, if the following is present in the `md' �le:

(define_attr "type" "branch,fp,load,store,arith" ...)

the following lines will be written to the �le `insn-attr.h'.

#define HAVE_ATTR_type
enum attr_type {TYPE_BRANCH, TYPE_FP, TYPE_LOAD,

TYPE_STORE, TYPE_ARITH};
extern enum attr_type get_attr_type ();

If the attribute takes numeric values, no enum type will be de�ned and the function to
obtain the attribute's value will return int.

14.19.2 Attribute Expressions

RTL expressions used to de�ne attributes use the codes described above plus a few speci�c
to attribute de�nitions, to be discussed below. Attribute value expressions must have one
of the following forms:

Chapter 14: Machine Descriptions 275

(const_int i)

The integer i speci�es the value of a numeric attribute. i must be non-negative.

The value of a numeric attribute can be speci�ed either with a const_int, or
as an integer represented as a string in const_string, eq_attr (see below),
attr, symbol_ref, simple arithmetic expressions, and set_attr overrides on
speci�c instructions (see Section 14.19.3 [Tagging Insns], page 277).

(const_string value)

The string value speci�es a constant attribute value. If value is speci�ed as
`"*"', it means that the default value of the attribute is to be used for the
insn containing this expression. `"*"' obviously cannot be used in the default
expression of a define_attr.

If the attribute whose value is being speci�ed is numeric, value must be a string
containing a non-negative integer (normally const_int would be used in this
case). Otherwise, it must contain one of the valid values for the attribute.

(if_then_else test true-value false-value)

test speci�es an attribute test, whose format is de�ned below. The value of this
expression is true-value if test is true, otherwise it is false-value.

(cond [test1 value1 ...] default)

The �rst operand of this expression is a vector containing an even number of
expressions and consisting of pairs of test and value expressions. The value
of the cond expression is that of the value corresponding to the �rst true test
expression. If none of the test expressions are true, the value of the cond

expression is that of the default expression.

test expressions can have one of the following forms:

(const_int i)

This test is true if i is nonzero and false otherwise.

(not test)

(ior test1 test2)

(and test1 test2)

These tests are true if the indicated logical function is true.

(match_operand:m n pred constraints)

This test is true if operand n of the insn whose attribute value is being de-
termined has mode m (this part of the test is ignored if m is VOIDmode) and
the function speci�ed by the string pred returns a nonzero value when passed
operand n and mode m (this part of the test is ignored if pred is the null string).

The constraints operand is ignored and should be the null string.

276 GNU Compiler Collection (GCC) Internals

(le arith1 arith2)

(leu arith1 arith2)

(lt arith1 arith2)

(ltu arith1 arith2)

(gt arith1 arith2)

(gtu arith1 arith2)

(ge arith1 arith2)

(geu arith1 arith2)

(ne arith1 arith2)

(eq arith1 arith2)

These tests are true if the indicated comparison of the two arithmetic expres-
sions is true. Arithmetic expressions are formed with plus, minus, mult, div,
mod, abs, neg, and, ior, xor, not, ashift, lshiftrt, and ashiftrt expres-
sions.

const_int and symbol_ref are always valid terms (see Section 14.19.5 [Insn
Lengths], page 279,for additional forms). symbol_ref is a string denoting a C
expression that yields an int when evaluated by the `get_attr_...' routine.
It should normally be a global variable.

(eq_attr name value)

name is a string specifying the name of an attribute.

value is a string that is either a valid value for attribute name, a comma-
separated list of values, or `!' followed by a value or list. If value does not
begin with a `!', this test is true if the value of the name attribute of the
current insn is in the list speci�ed by value. If value begins with a `!', this test
is true if the attribute's value is not in the speci�ed list.

For example,

(eq_attr "type" "load,store")

is equivalent to

(ior (eq_attr "type" "load") (eq_attr "type" "store"))

If name speci�es an attribute of `alternative', it refers to the value of the
compiler variable which_alternative (see Section 14.6 [Output Statement],
page 206) and the values must be small integers. For example,

(eq_attr "alternative" "2,3")

is equivalent to

(ior (eq (symbol_ref "which_alternative") (const_int 2))
(eq (symbol_ref "which_alternative") (const_int 3)))

Note that, for most attributes, an eq_attr test is simpli�ed in cases where the
value of the attribute being tested is known for all insns matching a particular
pattern. This is by far the most common case.

(attr_flag name)

The value of an attr_flag expression is true if the
ag speci�ed by name is
true for the insn currently being scheduled.

name is a string specifying one of a �xed set of
ags to test. Test the
ags
forward and backward to determine the direction of a conditional branch. Test

Chapter 14: Machine Descriptions 277

the
ags very_likely, likely, very_unlikely, and unlikely to determine if
a conditional branch is expected to be taken.

If the very_likely
ag is true, then the likely
ag is also true. Likewise for
the very_unlikely and unlikely
ags.

This example describes a conditional branch delay slot which can be nulli�ed for
forward branches that are taken (annul-true) or for backward branches which
are not taken (annul-false).

(define_delay (eq_attr "type" "cbranch")
[(eq_attr "in_branch_delay" "true")
(and (eq_attr "in_branch_delay" "true")

(attr_flag "forward"))
(and (eq_attr "in_branch_delay" "true")

(attr_flag "backward"))])

The forward and backward
ags are false if the current insn being scheduled
is not a conditional branch.

The very_likely and likely
ags are true if the insn being scheduled is not
a conditional branch. The very_unlikely and unlikely
ags are false if the
insn being scheduled is not a conditional branch.

attr_flag is only used during delay slot scheduling and has no meaning to
other passes of the compiler.

(attr name)

The value of another attribute is returned. This is most useful for numeric
attributes, as eq_attr and attr_flag produce more e�cient code for non-
numeric attributes.

14.19.3 Assigning Attribute Values to Insns

The value assigned to an attribute of an insn is primarily determined by which pattern is
matched by that insn (or which define_peephole generated it). Every define_insn and
define_peephole can have an optional last argument to specify the values of attributes for
matching insns. The value of any attribute not speci�ed in a particular insn is set to the
default value for that attribute, as speci�ed in its define_attr. Extensive use of default
values for attributes permits the speci�cation of the values for only one or two attributes
in the de�nition of most insn patterns, as seen in the example in the next section.

The optional last argument of define_insn and define_peephole is a vector of ex-
pressions, each of which de�nes the value for a single attribute. The most general way of
assigning an attribute's value is to use a set expression whose �rst operand is an attr

expression giving the name of the attribute being set. The second operand of the set is
an attribute expression (see Section 14.19.2 [Expressions], page 274) giving the value of the
attribute.

When the attribute value depends on the `alternative' attribute (i.e., which is the
applicable alternative in the constraint of the insn), the set_attr_alternative expression
can be used. It allows the speci�cation of a vector of attribute expressions, one for each
alternative.

When the generality of arbitrary attribute expressions is not required, the simpler set_
attr expression can be used, which allows specifying a string giving either a single attribute
value or a list of attribute values, one for each alternative.

278 GNU Compiler Collection (GCC) Internals

The form of each of the above speci�cations is shown below. In each case, name is a
string specifying the attribute to be set.

(set_attr name value-string)

value-string is either a string giving the desired attribute value, or a string
containing a comma-separated list giving the values for succeeding alternatives.
The number of elements must match the number of alternatives in the constraint
of the insn pattern.

Note that it may be useful to specify `*' for some alternative, in which case the
attribute will assume its default value for insns matching that alternative.

(set_attr_alternative name [value1 value2 ...])

Depending on the alternative of the insn, the value will be one of the speci�ed
values. This is a shorthand for using a cond with tests on the `alternative'
attribute.

(set (attr name) value)

The �rst operand of this set must be the special RTL expression attr, whose
sole operand is a string giving the name of the attribute being set. value is the
value of the attribute.

The following shows three di�erent ways of representing the same attribute value speci-
�cation:

(set_attr "type" "load,store,arith")

(set_attr_alternative "type"
[(const_string "load") (const_string "store")
(const_string "arith")])

(set (attr "type")
(cond [(eq_attr "alternative" "1") (const_string "load")

(eq_attr "alternative" "2") (const_string "store")]
(const_string "arith")))

The define_asm_attributes expression provides a mechanism to specify the attributes
assigned to insns produced from an asm statement. It has the form:

(define_asm_attributes [attr-sets])

where attr-sets is speci�ed the same as for both the define_insn and the define_peephole
expressions.

These values will typically be the \worst case" attribute values. For example, they might
indicate that the condition code will be clobbered.

A speci�cation for a length attribute is handled specially. The way to compute the length
of an asm insn is to multiply the length speci�ed in the expression define_asm_attributes

by the number of machine instructions speci�ed in the asm statement, determined by count-
ing the number of semicolons and newlines in the string. Therefore, the value of the length
attribute speci�ed in a define_asm_attributes should be the maximum possible length
of a single machine instruction.

14.19.4 Example of Attribute Speci�cations

The judicious use of defaulting is important in the e�cient use of insn attributes. Typ-
ically, insns are divided into types and an attribute, customarily called type, is used to

Chapter 14: Machine Descriptions 279

represent this value. This attribute is normally used only to de�ne the default value for
other attributes. An example will clarify this usage.

Assume we have a RISC machine with a condition code and in which only full-word
operations are performed in registers. Let us assume that we can divide all insns into loads,
stores, (integer) arithmetic operations,
oating point operations, and branches.

Here we will concern ourselves with determining the e�ect of an insn on the condition
code and will limit ourselves to the following possible e�ects: The condition code can be set
unpredictably (clobbered), not be changed, be set to agree with the results of the operation,
or only changed if the item previously set into the condition code has been modi�ed.

Here is part of a sample `md' �le for such a machine:

(define_attr "type" "load,store,arith,fp,branch" (const_string "arith"))

(define_attr "cc" "clobber,unchanged,set,change0"
(cond [(eq_attr "type" "load")

(const_string "change0")
(eq_attr "type" "store,branch")

(const_string "unchanged")
(eq_attr "type" "arith")

(if_then_else (match_operand:SI 0 "" "")
(const_string "set")
(const_string "clobber"))]

(const_string "clobber")))

(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r,r,m")

(match_operand:SI 1 "general_operand" "r,m,r"))]
""
"@
move %0,%1
load %0,%1
store %0,%1"
[(set_attr "type" "arith,load,store")])

Note that we assume in the above example that arithmetic operations performed on
quantities smaller than a machine word clobber the condition code since they will set the
condition code to a value corresponding to the full-word result.

14.19.5 Computing the Length of an Insn

For many machines, multiple types of branch instructions are provided, each for di�erent
length branch displacements. In most cases, the assembler will choose the correct instruction
to use. However, when the assembler cannot do so, GCC can when a special attribute, the
length attribute, is de�ned. This attribute must be de�ned to have numeric values by
specifying a null string in its define_attr.

In the case of the length attribute, two additional forms of arithmetic terms are allowed
in test expressions:

(match_dup n)

This refers to the address of operand n of the current insn, which must be a
label_ref.

280 GNU Compiler Collection (GCC) Internals

(pc) This refers to the address of the current insn. It might have been more consis-
tent with other usage to make this the address of the next insn but this would
be confusing because the length of the current insn is to be computed.

For normal insns, the length will be determined by value of the length attribute. In the
case of addr_vec and addr_diff_vec insn patterns, the length is computed as the number
of vectors multiplied by the size of each vector.

Lengths are measured in addressable storage units (bytes).

The following macros can be used to re�ne the length computation:

ADJUST_INSN_LENGTH (insn, length)

If de�ned, modi�es the length assigned to instruction insn as a function of
the context in which it is used. length is an lvalue that contains the initially
computed length of the insn and should be updated with the correct length of
the insn.

This macro will normally not be required. A case in which it is required is the
ROMP. On this machine, the size of an addr_vec insn must be increased by
two to compensate for the fact that alignment may be required.

The routine that returns get_attr_length (the value of the length attribute) can be
used by the output routine to determine the form of the branch instruction to be written,
as the example below illustrates.

As an example of the speci�cation of variable-length branches, consider the IBM 360. If
we adopt the convention that a register will be set to the starting address of a function, we
can jump to labels within 4k of the start using a four-byte instruction. Otherwise, we need
a six-byte sequence to load the address from memory and then branch to it.

On such a machine, a pattern for a branch instruction might be speci�ed as follows:
(define_insn "jump"
[(set (pc)

(label_ref (match_operand 0 "" "")))]
""

{
return (get_attr_length (insn) == 4

? "b %l0" : "l r15,=a(%l0); br r15");
}
[(set (attr "length")

(if_then_else (lt (match_dup 0) (const_int 4096))
(const_int 4)
(const_int 6)))])

14.19.6 Constant Attributes

A special form of define_attr, where the expression for the default value is a const

expression, indicates an attribute that is constant for a given run of the compiler. Constant
attributes may be used to specify which variety of processor is used. For example,

(define_attr "cpu" "m88100,m88110,m88000"
(const
(cond [(symbol_ref "TARGET_88100") (const_string "m88100")

(symbol_ref "TARGET_88110") (const_string "m88110")]
(const_string "m88000"))))

(define_attr "memory" "fast,slow"

Chapter 14: Machine Descriptions 281

(const
(if_then_else (symbol_ref "TARGET_FAST_MEM")

(const_string "fast")
(const_string "slow"))))

The routine generated for constant attributes has no parameters as it does not depend
on any particular insn. RTL expressions used to de�ne the value of a constant attribute
may use the symbol_ref form, but may not use either the match_operand form or eq_attr
forms involving insn attributes.

14.19.7 Delay Slot Scheduling

The insn attribute mechanism can be used to specify the requirements for delay slots, if any,
on a target machine. An instruction is said to require a delay slot if some instructions that
are physically after the instruction are executed as if they were located before it. Classic
examples are branch and call instructions, which often execute the following instruction
before the branch or call is performed.

On some machines, conditional branch instructions can optionally annul instructions in
the delay slot. This means that the instruction will not be executed for certain branch
outcomes. Both instructions that annul if the branch is true and instructions that annul if
the branch is false are supported.

Delay slot scheduling di�ers from instruction scheduling in that determining whether an
instruction needs a delay slot is dependent only on the type of instruction being generated,
not on data
ow between the instructions. See the next section for a discussion of data-
dependent instruction scheduling.

The requirement of an insn needing one or more delay slots is indicated via the define_
delay expression. It has the following form:

(define_delay test

[delay-1 annul-true-1 annul-false-1

delay-2 annul-true-2 annul-false-2

...])

test is an attribute test that indicates whether this define_delay applies to a particular
insn. If so, the number of required delay slots is determined by the length of the vector
speci�ed as the second argument. An insn placed in delay slot n must satisfy attribute
test delay-n. annul-true-n is an attribute test that speci�es which insns may be annulled
if the branch is true. Similarly, annul-false-n speci�es which insns in the delay slot may
be annulled if the branch is false. If annulling is not supported for that delay slot, (nil)
should be coded.

For example, in the common case where branch and call insns require a single delay slot,
which may contain any insn other than a branch or call, the following would be placed in
the `md' �le:

(define_delay (eq_attr "type" "branch,call")
[(eq_attr "type" "!branch,call") (nil) (nil)])

Multiple define_delay expressions may be speci�ed. In this case, each such expression
speci�es di�erent delay slot requirements and there must be no insn for which tests in two
define_delay expressions are both true.

For example, if we have a machine that requires one delay slot for branches but two for
calls, no delay slot can contain a branch or call insn, and any valid insn in the delay slot
for the branch can be annulled if the branch is true, we might represent this as follows:

282 GNU Compiler Collection (GCC) Internals

(define_delay (eq_attr "type" "branch")
[(eq_attr "type" "!branch,call")
(eq_attr "type" "!branch,call")
(nil)])

(define_delay (eq_attr "type" "call")
[(eq_attr "type" "!branch,call") (nil) (nil)
(eq_attr "type" "!branch,call") (nil) (nil)])

14.19.8 Specifying processor pipeline description

To achieve better performance, most modern processors (super-pipelined, superscalar RISC,
and VLIW processors) have many functional units on which several instructions can be exe-
cuted simultaneously. An instruction starts execution if its issue conditions are satis�ed. If
not, the instruction is stalled until its conditions are satis�ed. Such interlock (pipeline) delay
causes interruption of the fetching of successor instructions (or demands nop instructions,
e.g. for some MIPS processors).

There are two major kinds of interlock delays in modern processors. The �rst one is
a data dependence delay determining instruction latency time. The instruction execution
is not started until all source data have been evaluated by prior instructions (there are
more complex cases when the instruction execution starts even when the data are not avail-
able but will be ready in given time after the instruction execution start). Taking the
data dependence delays into account is simple. The data dependence (true, output, and
anti-dependence) delay between two instructions is given by a constant. In most cases
this approach is adequate. The second kind of interlock delays is a reservation delay. The
reservation delay means that two instructions under execution will be in need of shared pro-
cessors resources, i.e. buses, internal registers, and/or functional units, which are reserved
for some time. Taking this kind of delay into account is complex especially for modern RISC
processors.

The task of exploiting more processor parallelism is solved by an instruction scheduler.
For a better solution to this problem, the instruction scheduler has to have an adequate
description of the processor parallelism (or pipeline description). GCC machine descriptions
describe processor parallelism and functional unit reservations for groups of instructions
with the aid of regular expressions.

The GCC instruction scheduler uses a pipeline hazard recognizer to �gure out the pos-
sibility of the instruction issue by the processor on a given simulated processor cycle. The
pipeline hazard recognizer is automatically generated from the processor pipeline descrip-
tion. The pipeline hazard recognizer generated from the machine description is based on
a deterministic �nite state automaton (DFA): the instruction issue is possible if there is
a transition from one automaton state to another one. This algorithm is very fast, and
furthermore, its speed is not dependent on processor complexity1.

The rest of this section describes the directives that constitute an automaton-based pro-
cessor pipeline description. The order of these constructions within the machine description
�le is not important.

1 However, the size of the automaton depends on processor complexity. To limit this e�ect, machine
descriptions can split orthogonal parts of the machine description among several automata: but then,
since each of these must be stepped independently, this does cause a small decrease in the algorithm's
performance.

Chapter 14: Machine Descriptions 283

The following optional construction describes names of automata generated and used
for the pipeline hazards recognition. Sometimes the generated �nite state automaton used
by the pipeline hazard recognizer is large. If we use more than one automaton and bind
functional units to the automata, the total size of the automata is usually less than the
size of the single automaton. If there is no one such construction, only one �nite state
automaton is generated.

(define_automaton automata-names)

automata-names is a string giving names of the automata. The names are separated by
commas. All the automata should have unique names. The automaton name is used in the
constructions define_cpu_unit and define_query_cpu_unit.

Each processor functional unit used in the description of instruction reservations should
be described by the following construction.

(define_cpu_unit unit-names [automaton-name])

unit-names is a string giving the names of the functional units separated by commas.
Don't use name `nothing', it is reserved for other goals.

automaton-name is a string giving the name of the automaton with which the unit is
bound. The automaton should be described in construction define_automaton. You should
give automaton-name, if there is a de�ned automaton.

The assignment of units to automata are constrained by the uses of the units in insn
reservations. The most important constraint is: if a unit reservation is present on a partic-
ular cycle of an alternative for an insn reservation, then some unit from the same automaton
must be present on the same cycle for the other alternatives of the insn reservation. The
rest of the constraints are mentioned in the description of the subsequent constructions.

The following construction describes CPU functional units analogously to define_cpu_

unit. The reservation of such units can be queried for an automaton state. The instruction
scheduler never queries reservation of functional units for given automaton state. So as
a rule, you don't need this construction. This construction could be used for future code
generation goals (e.g. to generate VLIW insn templates).

(define_query_cpu_unit unit-names [automaton-name])

unit-names is a string giving names of the functional units separated by commas.

automaton-name is a string giving the name of the automaton with which the unit is
bound.

The following construction is the major one to describe pipeline characteristics of an
instruction.

(define_insn_reservation insn-name default_latency

condition regexp)

default latency is a number giving latency time of the instruction. There is an important
di�erence between the old description and the automaton based pipeline description. The
latency time is used for all dependencies when we use the old description. In the automa-
ton based pipeline description, the given latency time is only used for true dependencies.
The cost of anti-dependencies is always zero and the cost of output dependencies is the
di�erence between latency times of the producing and consuming insns (if the di�erence is
negative, the cost is considered to be zero). You can always change the default costs for
any description by using the target hook TARGET_SCHED_ADJUST_COST (see Section 15.18
[Scheduling], page 375).

284 GNU Compiler Collection (GCC) Internals

insn-name is a string giving the internal name of the insn. The internal names are
used in constructions define_bypass and in the automaton description �le generated for
debugging. The internal name has nothing in common with the names in define_insn. It
is a good practice to use insn classes described in the processor manual.

condition de�nes what RTL insns are described by this construction. You should re-
member that you will be in trouble if condition for two or more di�erent define_insn_

reservation constructions is TRUE for an insn. In this case what reservation will be used
for the insn is not de�ned. Such cases are not checked during generation of the pipeline haz-
ards recognizer because in general recognizing that two conditions may have the same value
is quite di�cult (especially if the conditions contain symbol_ref). It is also not checked
during the pipeline hazard recognizer work because it would slow down the recognizer con-
siderably.

regexp is a string describing the reservation of the cpu's functional units by the instruc-
tion. The reservations are described by a regular expression according to the following
syntax:

regexp = regexp "," oneof
| oneof

oneof = oneof "|" allof
| allof

allof = allof "+" repeat
| repeat

repeat = element "*" number
| element

element = cpu_function_unit_name
| reservation_name
| result_name
| "nothing"
| "(" regexp ")"

� `,' is used for describing the start of the next cycle in the reservation.

� `|' is used for describing a reservation described by the �rst regular expression or a
reservation described by the second regular expression or etc.

� `+' is used for describing a reservation described by the �rst regular expression and a
reservation described by the second regular expression and etc.

� `*' is used for convenience and simply means a sequence in which the regular expression
are repeated number times with cycle advancing (see `,').

� `cpu_function_unit_name' denotes reservation of the named functional unit.

� `reservation_name' | see description of construction `define_reservation'.

� `nothing' denotes no unit reservations.

Sometimes unit reservations for di�erent insns contain common parts. In such case,
you can simplify the pipeline description by describing the common part by the following
construction

(define_reservation reservation-name regexp)

Chapter 14: Machine Descriptions 285

reservation-name is a string giving name of regexp. Functional unit names and reservation
names are in the same name space. So the reservation names should be di�erent from the
functional unit names and can not be the reserved name `nothing'.

The following construction is used to describe exceptions in the latency time for given
instruction pair. This is so called bypasses.

(define_bypass number out_insn_names in_insn_names

[guard])

number de�nes when the result generated by the instructions given in string
out insn names will be ready for the instructions given in string in insn names. The
instructions in the string are separated by commas.

guard is an optional string giving the name of a C function which de�nes an additional
guard for the bypass. The function will get the two insns as parameters. If the function
returns zero the bypass will be ignored for this case. The additional guard is necessary to
recognize complicated bypasses, e.g. when the consumer is only an address of insn `store'
(not a stored value).

The following �ve constructions are usually used to describe VLIW processors, or more
precisely, to describe a placement of small instructions into VLIW instruction slots. They
can be used for RISC processors, too.

(exclusion_set unit-names unit-names)
(presence_set unit-names patterns)
(final_presence_set unit-names patterns)
(absence_set unit-names patterns)
(final_absence_set unit-names patterns)

unit-names is a string giving names of functional units separated by commas.

patterns is a string giving patterns of functional units separated by comma. Currently
pattern is one unit or units separated by white-spaces.

The �rst construction (`exclusion_set') means that each functional unit in the �rst
string can not be reserved simultaneously with a unit whose name is in the second string
and vice versa. For example, the construction is useful for describing processors (e.g. some
SPARC processors) with a fully pipelined
oating point functional unit which can execute
simultaneously only single
oating point insns or only double
oating point insns.

The second construction (`presence_set') means that each functional unit in the �rst
string can not be reserved unless at least one of pattern of units whose names are in the
second string is reserved. This is an asymmetric relation. For example, it is useful for
description that VLIW `slot1' is reserved after `slot0' reservation. We could describe it
by the following construction

(presence_set "slot1" "slot0")

Or `slot1' is reserved only after `slot0' and unit `b0' reservation. In this case we could
write

(presence_set "slot1" "slot0 b0")

The third construction (`final_presence_set') is analogous to `presence_set'. The
di�erence between them is when checking is done. When an instruction is issued in given
automaton state re
ecting all current and planned unit reservations, the automaton state
is changed. The �rst state is a source state, the second one is a result state. Checking for
`presence_set' is done on the source state reservation, checking for `final_presence_set'

286 GNU Compiler Collection (GCC) Internals

is done on the result reservation. This construction is useful to describe a reservation which
is actually two subsequent reservations. For example, if we use

(presence_set "slot1" "slot0")

the following insn will be never issued (because `slot1' requires `slot0' which is absent
in the source state).

(define_reservation "insn_and_nop" "slot0 + slot1")

but it can be issued if we use analogous `final_presence_set'.

The forth construction (`absence_set') means that each functional unit in the �rst string
can be reserved only if each pattern of units whose names are in the second string is not
reserved. This is an asymmetric relation (actually `exclusion_set' is analogous to this
one but it is symmetric). For example it might be useful in a VLIW description to say that
`slot0' cannot be reserved after either `slot1' or `slot2' have been reserved. This can be
described as:

(absence_set "slot0" "slot1, slot2")

Or `slot2' can not be reserved if `slot0' and unit `b0' are reserved or `slot1' and unit
`b1' are reserved. In this case we could write

(absence_set "slot2" "slot0 b0, slot1 b1")

All functional units mentioned in a set should belong to the same automaton.

The last construction (`final_absence_set') is analogous to `absence_set' but checking
is done on the result (state) reservation. See comments for `final_presence_set'.

You can control the generator of the pipeline hazard recognizer with the following con-
struction.

(automata_option options)

options is a string giving options which a�ect the generated code. Currently there are
the following options:

� no-minimization makes no minimization of the automaton. This is only worth to do
when we are debugging the description and need to look more accurately at reservations
of states.

� time means printing additional time statistics about generation of automata.

� v means a generation of the �le describing the result automata. The �le has su�x
`.dfa' and can be used for the description veri�cation and debugging.

� w means a generation of warning instead of error for non-critical errors.

� ndfa makes nondeterministic �nite state automata. This a�ects the treatment of op-
erator `|' in the regular expressions. The usual treatment of the operator is to try the
�rst alternative and, if the reservation is not possible, the second alternative. The non-
deterministic treatment means trying all alternatives, some of them may be rejected
by reservations in the subsequent insns.

� progress means output of a progress bar showing how many states were generated so
far for automaton being processed. This is useful during debugging a DFA description.
If you see too many generated states, you could interrupt the generator of the pipeline
hazard recognizer and try to �gure out a reason for generation of the huge automaton.

As an example, consider a superscalar RISC machine which can issue three insns (two
integer insns and one
oating point insn) on the cycle but can �nish only two insns. To
describe this, we de�ne the following functional units.

Chapter 14: Machine Descriptions 287

(define_cpu_unit "i0_pipeline, i1_pipeline, f_pipeline")
(define_cpu_unit "port0, port1")

All simple integer insns can be executed in any integer pipeline and their result is ready
in two cycles. The simple integer insns are issued into the �rst pipeline unless it is reserved,
otherwise they are issued into the second pipeline. Integer division and multiplication insns
can be executed only in the second integer pipeline and their results are ready correspond-
ingly in 8 and 4 cycles. The integer division is not pipelined, i.e. the subsequent integer
division insn can not be issued until the current division insn �nished. Floating point insns
are fully pipelined and their results are ready in 3 cycles. Where the result of a
oating point
insn is used by an integer insn, an additional delay of one cycle is incurred. To describe all
of this we could specify

(define_cpu_unit "div")

(define_insn_reservation "simple" 2 (eq_attr "type" "int")
"(i0_pipeline | i1_pipeline), (port0 | port1)")

(define_insn_reservation "mult" 4 (eq_attr "type" "mult")
"i1_pipeline, nothing*2, (port0 | port1)")

(define_insn_reservation "div" 8 (eq_attr "type" "div")
"i1_pipeline, div*7, div + (port0 | port1)")

(define_insn_reservation "float" 3 (eq_attr "type" "float")
"f_pipeline, nothing, (port0 | port1))

(define_bypass 4 "float" "simple,mult,div")

To simplify the description we could describe the following reservation
(define_reservation "finish" "port0|port1")

and use it in all define_insn_reservation as in the following construction
(define_insn_reservation "simple" 2 (eq_attr "type" "int")

"(i0_pipeline | i1_pipeline), finish")

14.20 Conditional Execution

A number of architectures provide for some form of conditional execution, or predication.
The hallmark of this feature is the ability to nullify most of the instructions in the instruction
set. When the instruction set is large and not entirely symmetric, it can be quite tedious
to describe these forms directly in the `.md' �le. An alternative is the define_cond_exec

template.
(define_cond_exec
[predicate-pattern]
"condition"
"output-template")

predicate-pattern is the condition that must be true for the insn to be executed at runtime
and should match a relational operator. One can use match_operator to match several
relational operators at once. Any match_operand operands must have no more than one
alternative.

condition is a C expression that must be true for the generated pattern to match.

output-template is a string similar to the define_insn output template (see Section 14.5
[Output Template], page 204), except that the `*' and `@' special cases do not apply. This

288 GNU Compiler Collection (GCC) Internals

is only useful if the assembly text for the predicate is a simple pre�x to the main insn. In
order to handle the general case, there is a global variable current_insn_predicate that
will contain the entire predicate if the current insn is predicated, and will otherwise be NULL.

When define_cond_exec is used, an implicit reference to the predicable instruction
attribute is made. See Section 14.19 [Insn Attributes], page 274. This attribute must be
boolean (i.e. have exactly two elements in its list-of-values). Further, it must not be used
with complex expressions. That is, the default and all uses in the insns must be a simple
constant, not dependent on the alternative or anything else.

For each define_insn for which the predicable attribute is true, a new define_insn

pattern will be generated that matches a predicated version of the instruction. For example,
(define_insn "addsi"
[(set (match_operand:SI 0 "register_operand" "r")

(plus:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r")))]

"test1"
"add %2,%1,%0")

(define_cond_exec
[(ne (match_operand:CC 0 "register_operand" "c")

(const_int 0))]
"test2"
"(%0)")

generates a new pattern
(define_insn ""
[(cond_exec

(ne (match_operand:CC 3 "register_operand" "c") (const_int 0))
(set (match_operand:SI 0 "register_operand" "r")

(plus:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r"))))]

"(test2) && (test1)"
"(%3) add %2,%1,%0")

14.21 Constant De�nitions

Using literal constants inside instruction patterns reduces legibility and can be a mainte-
nance problem.

To overcome this problem, you may use the define_constants expression. It contains
a vector of name-value pairs. From that point on, wherever any of the names appears in
the MD �le, it is as if the corresponding value had been written instead. You may use
define_constants multiple times; each appearance adds more constants to the table. It
is an error to rede�ne a constant with a di�erent value.

To come back to the a29k load multiple example, instead of
(define_insn ""
[(match_parallel 0 "load_multiple_operation"

[(set (match_operand:SI 1 "gpc_reg_operand" "=r")
(match_operand:SI 2 "memory_operand" "m"))

(use (reg:SI 179))
(clobber (reg:SI 179))])]

""
"loadm 0,0,%1,%2")

You could write:

Chapter 14: Machine Descriptions 289

(define_constants [
(R_BP 177)
(R_FC 178)
(R_CR 179)
(R_Q 180)

])

(define_insn ""
[(match_parallel 0 "load_multiple_operation"

[(set (match_operand:SI 1 "gpc_reg_operand" "=r")
(match_operand:SI 2 "memory_operand" "m"))

(use (reg:SI R_CR))
(clobber (reg:SI R_CR))])]

""
"loadm 0,0,%1,%2")

The constants that are de�ned with a de�ne constant are also output in the insn-codes.h

header �le as #de�nes.

14.22 Macros

Ports often need to de�ne similar patterns for more than one machine mode or for more
than one rtx code. GCC provides some simple macro facilities to make this process easier.

14.22.1 Mode Macros

Ports often need to de�ne similar patterns for two or more di�erent modes. For example:

� If a processor has hardware support for both single and double
oating-point arithmetic,
the SFmode patterns tend to be very similar to the DFmode ones.

� If a port uses SImode pointers in one con�guration and DImode pointers in another, it
will usually have very similar SImode and DImode patterns for manipulating pointers.

Mode macros allow several patterns to be instantiated from one `.md' �le template. They
can be used with any type of rtx-based construct, such as a define_insn, define_split,
or define_peephole2.

14.22.1.1 De�ning Mode Macros

The syntax for de�ning a mode macro is:

(define_mode_macro name [(mode1 "cond1") ... (moden "condn")])

This allows subsequent `.md' �le constructs to use the mode su�x :name . Every construct
that does so will be expanded n times, once with every use of :name replaced by :mode1 ,
once with every use replaced by :mode2 , and so on. In the expansion for a particular modei,
every C condition will also require that condi be true.

For example:

(define_mode_macro P [(SI "Pmode == SImode") (DI "Pmode == DImode")])

de�nes a new mode su�x :P. Every construct that uses :P will be expanded twice, once
with every :P replaced by :SI and once with every :P replaced by :DI. The :SI version
will only apply if Pmode == SImode and the :DI version will only apply if Pmode == DImode.

As with other `.md' conditions, an empty string is treated as \always true". (mode "")

can also be abbreviated to mode . For example:

290 GNU Compiler Collection (GCC) Internals

(define_mode_macro GPR [SI (DI "TARGET_64BIT")])

means that the :DI expansion only applies if TARGET_64BIT but that the :SI expansion
has no such constraint.

Macros are applied in the order they are de�ned. This can be signi�cant if two macros
are used in a construct that requires substitutions. See Section 14.22.1.2 [Substitutions],
page 290.

14.22.1.2 Substitution in Mode Macros

If an `.md' �le construct uses mode macros, each version of the construct will often need
slightly di�erent strings or modes. For example:

� When a define_expand de�nes several addm3 patterns (see Section 14.9 [Standard
Names], page 236), each expander will need to use the appropriate mode name for m.

� When a define_insn de�nes several instruction patterns, each instruction will often
use a di�erent assembler mnemonic.

� When a define_insn requires operands with di�erent modes, using a macro for one
of the operand modes usually requires a speci�c mode for the other operand(s).

GCC supports such variations through a system of \mode attributes". There are two
standard attributes: mode, which is the name of the mode in lower case, and MODE, which
is the same thing in upper case. You can de�ne other attributes using:

(define_mode_attr name [(mode1 "value1") ... (moden "valuen")])

where name is the name of the attribute and valuei is the value associated with modei.

When GCC replaces some :macro with :mode, it will scan each string and mode in
the pattern for sequences of the form <macro:attr>, where attr is the name of a mode
attribute. If the attribute is de�ned for mode, the whole <...> sequence will be replaced
by the appropriate attribute value.

For example, suppose an `.md' �le has:

(define_mode_macro P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
(define_mode_attr load [(SI "lw") (DI "ld")])

If one of the patterns that uses :P contains the string "<P:load>\t%0,%1", the SI version
of that pattern will use "lw\t%0,%1" and the DI version will use "ld\t%0,%1".

Here is an example of using an attribute for a mode:

(define_mode_macro LONG [SI DI])
(define_mode_attr SHORT [(SI "HI") (DI "SI")])
(define_insn ...
(sign_extend:LONG (match_operand:<LONG:SHORT> ...)) ...)

The macro: pre�x may be omitted, in which case the substitution will be attempted for
every macro expansion.

14.22.1.3 Mode Macro Examples

Here is an example from the MIPS port. It de�nes the following modes and attributes
(among others):

(define_mode_macro GPR [SI (DI "TARGET_64BIT")])
(define_mode_attr d [(SI "") (DI "d")])

and uses the following template to de�ne both subsi3 and subdi3:

Chapter 14: Machine Descriptions 291

(define_insn "sub<mode>3"
[(set (match_operand:GPR 0 "register_operand" "=d")

(minus:GPR (match_operand:GPR 1 "register_operand" "d")
(match_operand:GPR 2 "register_operand" "d")))]

""
"<d>subu\t%0,%1,%2"
[(set_attr "type" "arith")
(set_attr "mode" "<MODE>")])

This is exactly equivalent to:
(define_insn "subsi3"
[(set (match_operand:SI 0 "register_operand" "=d")

(minus:SI (match_operand:SI 1 "register_operand" "d")
(match_operand:SI 2 "register_operand" "d")))]

""
"subu\t%0,%1,%2"
[(set_attr "type" "arith")
(set_attr "mode" "SI")])

(define_insn "subdi3"
[(set (match_operand:DI 0 "register_operand" "=d")

(minus:DI (match_operand:DI 1 "register_operand" "d")
(match_operand:DI 2 "register_operand" "d")))]

""
"dsubu\t%0,%1,%2"
[(set_attr "type" "arith")
(set_attr "mode" "DI")])

14.22.2 Code Macros

Code macros operate in a similar way to mode macros. See Section 14.22.1 [Mode Macros],
page 289.

The construct:
(define_code_macro name [(code1 "cond1") ... (coden "condn")])

de�nes a pseudo rtx code name that can be instantiated as codei if condition condi is
true. Each codei must have the same rtx format. See Section 12.2 [RTL Classes], page 142.

As with mode macros, each pattern that uses name will be expanded n times, once with
all uses of name replaced by code1, once with all uses replaced by code2, and so on. See
Section 14.22.1.1 [De�ning Mode Macros], page 289.

It is possible to de�ne attributes for codes as well as for modes. There are two standard
code attributes: code, the name of the code in lower case, and CODE, the name of the code
in upper case. Other attributes are de�ned using:

(define_code_attr name [(code1 "value1") ... (coden "valuen")])

Here's an example of code macros in action, taken from the MIPS port:
(define_code_macro any_cond [unordered ordered unlt unge uneq ltgt unle ungt

eq ne gt ge lt le gtu geu ltu leu])

(define_expand "b<code>"
[(set (pc)

(if_then_else (any_cond:CC (cc0)
(const_int 0))

(label_ref (match_operand 0 ""))
(pc)))]

""

292 GNU Compiler Collection (GCC) Internals

{
gen_conditional_branch (operands, <CODE>);
DONE;

})

This is equivalent to:
(define_expand "bunordered"
[(set (pc)

(if_then_else (unordered:CC (cc0)
(const_int 0))

(label_ref (match_operand 0 ""))
(pc)))]

""
{
gen_conditional_branch (operands, UNORDERED);
DONE;

})

(define_expand "bordered"
[(set (pc)

(if_then_else (ordered:CC (cc0)
(const_int 0))

(label_ref (match_operand 0 ""))
(pc)))]

""
{
gen_conditional_branch (operands, ORDERED);
DONE;

})

...

Chapter 15: Target Description Macros and Functions 293

15 Target Description Macros and Functions

In addition to the �le `machine.md', a machine description includes a C header �le conven-
tionally given the name `machine.h' and a C source �le named `machine.c'. The header �le
de�nes numerous macros that convey the information about the target machine that does
not �t into the scheme of the `.md' �le. The �le `tm.h' should be a link to `machine.h'. The
header �le `config.h' includes `tm.h' and most compiler source �les include `config.h'.
The source �le de�nes a variable targetm, which is a structure containing pointers to
functions and data relating to the target machine. `machine.c' should also contain their
de�nitions, if they are not de�ned elsewhere in GCC, and other functions called through
the macros de�ned in the `.h' �le.

15.1 The Global targetm Variable

[Variable]struct gcc_target targetm
The target `.c' �le must de�ne the global targetm variable which contains pointers
to functions and data relating to the target machine. The variable is declared in
`target.h'; `target-def.h' de�nes the macro TARGET_INITIALIZER which is used
to initialize the variable, and macros for the default initializers for elements of the
structure. The `.c' �le should override those macros for which the default de�nition
is inappropriate. For example:

#include "target.h"
#include "target-def.h"

/* Initialize the GCC target structure. */

#undef TARGET_COMP_TYPE_ATTRIBUTES
#define TARGET_COMP_TYPE_ATTRIBUTES machine_comp_type_attributes

struct gcc_target targetm = TARGET_INITIALIZER;

Where a macro should be de�ned in the `.c' �le in this manner to form part of the
targetm structure, it is documented below as a \Target Hook" with a prototype. Many
macros will change in future from being de�ned in the `.h' �le to being part of the targetm
structure.

15.2 Controlling the Compilation Driver, `gcc'

You can control the compilation driver.

[Macro]SWITCH_TAKES_ARG (char)
A C expression which determines whether the option `-char ' takes arguments. The
value should be the number of arguments that option takes{zero, for many options.

By default, this macro is de�ned as DEFAULT_SWITCH_TAKES_ARG, which handles the
standard options properly. You need not de�ne SWITCH_TAKES_ARG unless you wish to
add additional options which take arguments. Any rede�nition should call DEFAULT_
SWITCH_TAKES_ARG and then check for additional options.

[Macro]WORD_SWITCH_TAKES_ARG (name)
A C expression which determines whether the option `-name ' takes arguments. The
value should be the number of arguments that option takes{zero, for many options.
This macro rather than SWITCH_TAKES_ARG is used for multi-character option names.

294 GNU Compiler Collection (GCC) Internals

By default, this macro is de�ned as DEFAULT_WORD_SWITCH_TAKES_ARG, which handles
the standard options properly. You need not de�ne WORD_SWITCH_TAKES_ARG unless
you wish to add additional options which take arguments. Any rede�nition should
call DEFAULT_WORD_SWITCH_TAKES_ARG and then check for additional options.

[Macro]SWITCH_CURTAILS_COMPILATION (char)
A C expression which determines whether the option `-char ' stops compilation before
the generation of an executable. The value is boolean, nonzero if the option does stop
an executable from being generated, zero otherwise.

By default, this macro is de�ned as DEFAULT_SWITCH_CURTAILS_COMPILATION, which
handles the standard options properly. You need not de�ne SWITCH_CURTAILS_

COMPILATION unless you wish to add additional options which a�ect the generation of
an executable. Any rede�nition should call DEFAULT_SWITCH_CURTAILS_COMPILATION
and then check for additional options.

[Macro]SWITCHES_NEED_SPACES
A string-valued C expression which enumerates the options for which the linker needs
a space between the option and its argument.

If this macro is not de�ned, the default value is "".

[Macro]TARGET_OPTION_TRANSLATE_TABLE
If de�ned, a list of pairs of strings, the �rst of which is a potential command line
target to the `gcc' driver program, and the second of which is a space-separated (tabs
and other whitespace are not supported) list of options with which to replace the
�rst option. The target de�ning this list is responsible for assuring that the results
are valid. Replacement options may not be the --opt style, they must be the -opt

style. It is the intention of this macro to provide a mechanism for substitution that
a�ects the multilibs chosen, such as one option that enables many options, some of
which select multilibs. Example nonsensical de�nition, where `-malt-abi', `-EB', and
`-mspoo' cause di�erent multilibs to be chosen:

#define TARGET_OPTION_TRANSLATE_TABLE \
{ "-fast", "-march=fast-foo -malt-abi -I/usr/fast-foo" }, \
{ "-compat", "-EB -malign=4 -mspoo" }

[Macro]DRIVER_SELF_SPECS
A list of specs for the driver itself. It should be a suitable initializer for an array of
strings, with no surrounding braces.

The driver applies these specs to its own command line between loading default
`specs' �les (but not command-line speci�ed ones) and choosing the multilib directory
or running any subcommands. It applies them in the order given, so each spec can
depend on the options added by earlier ones. It is also possible to remove options
using `%<option ' in the usual way.

This macro can be useful when a port has several interdependent target options. It
provides a way of standardizing the command line so that the other specs are easier
to write.

Do not de�ne this macro if it does not need to do anything.

Chapter 15: Target Description Macros and Functions 295

[Macro]OPTION_DEFAULT_SPECS
A list of specs used to support con�gure-time default options (i.e. `--with' options) in
the driver. It should be a suitable initializer for an array of structures, each containing
two strings, without the outermost pair of surrounding braces.

The �rst item in the pair is the name of the default. This must match the code in
`config.gcc' for the target. The second item is a spec to apply if a default with this
name was speci�ed. The string `%(VALUE)' in the spec will be replaced by the value
of the default everywhere it occurs.

The driver will apply these specs to its own command line between loading de-
fault `specs' �les and processing DRIVER_SELF_SPECS, using the same mechanism
as DRIVER_SELF_SPECS.

Do not de�ne this macro if it does not need to do anything.

[Macro]CPP_SPEC
A C string constant that tells the GCC driver program options to pass to CPP. It
can also specify how to translate options you give to GCC into options for GCC to
pass to the CPP.

Do not de�ne this macro if it does not need to do anything.

[Macro]CPLUSPLUS_CPP_SPEC
This macro is just like CPP_SPEC, but is used for C++, rather than C. If you do not
de�ne this macro, then the value of CPP_SPEC (if any) will be used instead.

[Macro]CC1_SPEC
A C string constant that tells the GCC driver program options to pass to cc1,
cc1plus, f771, and the other language front ends. It can also specify how to translate
options you give to GCC into options for GCC to pass to front ends.

Do not de�ne this macro if it does not need to do anything.

[Macro]CC1PLUS_SPEC
A C string constant that tells the GCC driver program options to pass to cc1plus.
It can also specify how to translate options you give to GCC into options for GCC to
pass to the cc1plus.

Do not de�ne this macro if it does not need to do anything. Note that everything
de�ned in CC1 SPEC is already passed to cc1plus so there is no need to duplicate
the contents of CC1 SPEC in CC1PLUS SPEC.

[Macro]ASM_SPEC
A C string constant that tells the GCC driver program options to pass to the assem-
bler. It can also specify how to translate options you give to GCC into options for
GCC to pass to the assembler. See the �le `sun3.h' for an example of this.

Do not de�ne this macro if it does not need to do anything.

[Macro]ASM_FINAL_SPEC
A C string constant that tells the GCC driver program how to run any programs
which cleanup after the normal assembler. Normally, this is not needed. See the �le
`mips.h' for an example of this.

Do not de�ne this macro if it does not need to do anything.

296 GNU Compiler Collection (GCC) Internals

[Macro]AS_NEEDS_DASH_FOR_PIPED_INPUT
De�ne this macro, with no value, if the driver should give the assembler an argument
consisting of a single dash, `-', to instruct it to read from its standard input (which
will be a pipe connected to the output of the compiler proper). This argument is
given after any `-o' option specifying the name of the output �le.

If you do not de�ne this macro, the assembler is assumed to read its standard input
if given no non-option arguments. If your assembler cannot read standard input at
all, use a `%{pipe:%e}' construct; see `mips.h' for instance.

[Macro]LINK_SPEC
A C string constant that tells the GCC driver program options to pass to the linker.
It can also specify how to translate options you give to GCC into options for GCC to
pass to the linker.

Do not de�ne this macro if it does not need to do anything.

[Macro]LIB_SPEC
Another C string constant used much like LINK_SPEC. The di�erence between the
two is that LIB_SPEC is used at the end of the command given to the linker.

If this macro is not de�ned, a default is provided that loads the standard C library
from the usual place. See `gcc.c'.

[Macro]LIBGCC_SPEC
Another C string constant that tells the GCC driver program how and when to place
a reference to `libgcc.a' into the linker command line. This constant is placed both
before and after the value of LIB_SPEC.

If this macro is not de�ned, the GCC driver provides a default that passes the string
`-lgcc' to the linker.

[Macro]REAL_LIBGCC_SPEC
By default, if ENABLE_SHARED_LIBGCC is de�ned, the LIBGCC_SPEC is not directly
used by the driver program but is instead modi�ed to refer to di�erent versions of
`libgcc.a' depending on the values of the command line
ags `-static', `-shared',
`-static-libgcc', and `-shared-libgcc'. On targets where these modi�cations are
inappropriate, de�ne REAL_LIBGCC_SPEC instead. REAL_LIBGCC_SPEC tells the driver
how to place a reference to `libgcc' on the link command line, but, unlike LIBGCC_

SPEC, it is used unmodi�ed.

[Macro]USE_LD_AS_NEEDED
A macro that controls the modi�cations to LIBGCC_SPEC mentioned in REAL_LIBGCC_

SPEC. If nonzero, a spec will be generated that uses {as-needed and the shared libgcc
in place of the static exception handler library, when linking without any of -static,
-static-libgcc, or -shared-libgcc.

[Macro]LINK_EH_SPEC
If de�ned, this C string constant is added to LINK_SPEC. When USE_LD_AS_NEEDED

is zero or unde�ned, it also a�ects the modi�cations to LIBGCC_SPEC mentioned in
REAL_LIBGCC_SPEC.

Chapter 15: Target Description Macros and Functions 297

[Macro]STARTFILE_SPEC
Another C string constant used much like LINK_SPEC. The di�erence between the
two is that STARTFILE_SPEC is used at the very beginning of the command given to
the linker.

If this macro is not de�ned, a default is provided that loads the standard C startup
�le from the usual place. See `gcc.c'.

[Macro]ENDFILE_SPEC
Another C string constant used much like LINK_SPEC. The di�erence between the
two is that ENDFILE_SPEC is used at the very end of the command given to the linker.

Do not de�ne this macro if it does not need to do anything.

[Macro]THREAD_MODEL_SPEC
GCC -v will print the thread model GCC was con�gured to use. However, this doesn't
work on platforms that are multilibbed on thread models, such as AIX 4.3. On such
platforms, de�ne THREAD_MODEL_SPEC such that it evaluates to a string without blanks
that names one of the recognized thread models. %*, the default value of this macro,
will expand to the value of thread_file set in `config.gcc'.

[Macro]SYSROOT_SUFFIX_SPEC
De�ne this macro to add a su�x to the target sysroot when GCC is con�gured with
a sysroot. This will cause GCC to search for usr/lib, et al, within sysroot+su�x.

[Macro]SYSROOT_HEADERS_SUFFIX_SPEC
De�ne this macro to add a headers su�x to the target sysroot when GCC is con�gured
with a sysroot. This will cause GCC to pass the updated sysroot+headers su�x to
CPP, causing it to search for usr/include, et al, within sysroot+headers su�x.

[Macro]EXTRA_SPECS
De�ne this macro to provide additional speci�cations to put in the `specs' �le that
can be used in various speci�cations like CC1_SPEC.

The de�nition should be an initializer for an array of structures, containing a string
constant, that de�nes the speci�cation name, and a string constant that provides the
speci�cation.

Do not de�ne this macro if it does not need to do anything.

EXTRA_SPECS is useful when an architecture contains several related targets, which
have various ..._SPECS which are similar to each other, and the maintainer would
like one central place to keep these de�nitions.

For example, the PowerPC System V.4 targets use EXTRA_SPECS to de�ne either _

CALL_SYSV when the System V calling sequence is used or _CALL_AIX when the older
AIX-based calling sequence is used.

The `config/rs6000/rs6000.h' target �le de�nes:

#define EXTRA_SPECS \
{ "cpp_sysv_default", CPP_SYSV_DEFAULT },

#define CPP_SYS_DEFAULT ""

The `config/rs6000/sysv.h' target �le de�nes:

298 GNU Compiler Collection (GCC) Internals

#undef CPP_SPEC
#define CPP_SPEC \
"%{posix: -D_POSIX_SOURCE } \
%{mcall-sysv: -D_CALL_SYSV } \
%{!mcall-sysv: %(cpp_sysv_default) } \
%{msoft-float: -D_SOFT_FLOAT} %{mcpu=403: -D_SOFT_FLOAT}"

#undef CPP_SYSV_DEFAULT
#define CPP_SYSV_DEFAULT "-D_CALL_SYSV"

while the `config/rs6000/eabiaix.h' target �le de�nes CPP_SYSV_DEFAULT as:
#undef CPP_SYSV_DEFAULT
#define CPP_SYSV_DEFAULT "-D_CALL_AIX"

[Macro]LINK_LIBGCC_SPECIAL_1
De�ne this macro if the driver program should �nd the library `libgcc.a'. If you do
not de�ne this macro, the driver program will pass the argument `-lgcc' to tell the
linker to do the search.

[Macro]LINK_GCC_C_SEQUENCE_SPEC
The sequence in which libgcc and libc are speci�ed to the linker. By default this is
%G %L %G.

[Macro]LINK_COMMAND_SPEC
A C string constant giving the complete command line need to execute the linker.
When you do this, you will need to update your port each time a change is made to
the link command line within `gcc.c'. Therefore, de�ne this macro only if you need
to completely rede�ne the command line for invoking the linker and there is no other
way to accomplish the e�ect you need. Overriding this macro may be avoidable by
overriding LINK_GCC_C_SEQUENCE_SPEC instead.

[Macro]LINK_ELIMINATE_DUPLICATE_LDIRECTORIES
A nonzero value causes collect2 to remove duplicate `-Ldirectory ' search direc-
tories from linking commands. Do not give it a nonzero value if removing duplicate
search directories changes the linker's semantics.

[Macro]MULTILIB_DEFAULTS
De�ne this macro as a C expression for the initializer of an array of string to tell the
driver program which options are defaults for this target and thus do not need to be
handled specially when using MULTILIB_OPTIONS.

Do not de�ne this macro if MULTILIB_OPTIONS is not de�ned in the target make�le
fragment or if none of the options listed in MULTILIB_OPTIONS are set by default. See
Section 17.1 [Target Fragment], page 443.

[Macro]RELATIVE_PREFIX_NOT_LINKDIR
De�ne this macro to tell gcc that it should only translate a `-B' pre�x into a `-L'
linker option if the pre�x indicates an absolute �le name.

[Macro]MD_EXEC_PREFIX
If de�ned, this macro is an additional pre�x to try after STANDARD_EXEC_PREFIX.
MD_EXEC_PREFIX is not searched when the `-b' option is used, or the compiler is built
as a cross compiler. If you de�ne MD_EXEC_PREFIX, then be sure to add it to the list
of directories used to �nd the assembler in `configure.in'.

Chapter 15: Target Description Macros and Functions 299

[Macro]STANDARD_STARTFILE_PREFIX
De�ne this macro as a C string constant if you wish to override the standard choice of
libdir as the default pre�x to try when searching for startup �les such as `crt0.o'.
STANDARD_STARTFILE_PREFIX is not searched when the compiler is built as a cross
compiler.

[Macro]STANDARD_STARTFILE_PREFIX_1
De�ne this macro as a C string constant if you wish to override the standard choice
of /lib as a pre�x to try after the default pre�x when searching for startup �les such
as `crt0.o'. STANDARD_STARTFILE_PREFIX_1 is not searched when the compiler is
built as a cross compiler.

[Macro]STANDARD_STARTFILE_PREFIX_2
De�ne this macro as a C string constant if you wish to override the standard choice
of /lib as yet another pre�x to try after the default pre�x when searching for startup
�les such as `crt0.o'. STANDARD_STARTFILE_PREFIX_2 is not searched when the
compiler is built as a cross compiler.

[Macro]MD_STARTFILE_PREFIX
If de�ned, this macro supplies an additional pre�x to try after the standard pre�xes.
MD_EXEC_PREFIX is not searched when the `-b' option is used, or when the compiler
is built as a cross compiler.

[Macro]MD_STARTFILE_PREFIX_1
If de�ned, this macro supplies yet another pre�x to try after the standard pre�xes. It
is not searched when the `-b' option is used, or when the compiler is built as a cross
compiler.

[Macro]INIT_ENVIRONMENT
De�ne this macro as a C string constant if you wish to set environment variables for
programs called by the driver, such as the assembler and loader. The driver passes
the value of this macro to putenv to initialize the necessary environment variables.

[Macro]LOCAL_INCLUDE_DIR
De�ne this macro as a C string constant if you wish to override the standard choice
of `/usr/local/include' as the default pre�x to try when searching for local header
�les. LOCAL_INCLUDE_DIR comes before SYSTEM_INCLUDE_DIR in the search order.

Cross compilers do not search either `/usr/local/include' or its replacement.

[Macro]MODIFY_TARGET_NAME
De�ne this macro if you wish to de�ne command-line switches that modify the default
target name.

For each switch, you can include a string to be appended to the �rst part of the
con�guration name or a string to be deleted from the con�guration name, if present.
The de�nition should be an initializer for an array of structures. Each array ele-
ment should have three elements: the switch name (a string constant, including the
initial dash), one of the enumeration codes ADD or DELETE to indicate whether the
string should be inserted or deleted, and the string to be inserted or deleted (a string
constant).

300 GNU Compiler Collection (GCC) Internals

For example, on a machine where `64' at the end of the con�guration name denotes
a 64-bit target and you want the `-32' and `-64' switches to select between 32- and
64-bit targets, you would code

#define MODIFY_TARGET_NAME \
{ { "-32", DELETE, "64"}, \

{"-64", ADD, "64"}}

[Macro]SYSTEM_INCLUDE_DIR
De�ne this macro as a C string constant if you wish to specify a system-speci�c
directory to search for header �les before the standard directory. SYSTEM_INCLUDE_

DIR comes before STANDARD_INCLUDE_DIR in the search order.

Cross compilers do not use this macro and do not search the directory speci�ed.

[Macro]STANDARD_INCLUDE_DIR
De�ne this macro as a C string constant if you wish to override the standard choice
of `/usr/include' as the default pre�x to try when searching for header �les.

Cross compilers ignore this macro and do not search either `/usr/include' or its
replacement.

[Macro]STANDARD_INCLUDE_COMPONENT
The \component" corresponding to STANDARD_INCLUDE_DIR. See INCLUDE_DEFAULTS,
below, for the description of components. If you do not de�ne this macro, no compo-
nent is used.

[Macro]INCLUDE_DEFAULTS
De�ne this macro if you wish to override the entire default search path for
include �les. For a native compiler, the default search path usually consists
of GCC_INCLUDE_DIR, LOCAL_INCLUDE_DIR, SYSTEM_INCLUDE_DIR, GPLUSPLUS_

INCLUDE_DIR, and STANDARD_INCLUDE_DIR. In addition, GPLUSPLUS_INCLUDE_DIR
and GCC_INCLUDE_DIR are de�ned automatically by `Makefile', and specify private
search areas for GCC. The directory GPLUSPLUS_INCLUDE_DIR is used only for C++
programs.

The de�nition should be an initializer for an array of structures. Each array element
should have four elements: the directory name (a string constant), the component
name (also a string constant), a
ag for C++-only directories, and a
ag showing that
the includes in the directory don't need to be wrapped in extern `C' when compiling
C++. Mark the end of the array with a null element.

The component name denotes what GNU package the include �le is part of, if any,
in all uppercase letters. For example, it might be `GCC' or `BINUTILS'. If the package
is part of a vendor-supplied operating system, code the component name as `0'.

For example, here is the de�nition used for VAX/VMS:
#define INCLUDE_DEFAULTS \
{ \
{ "GNU_GXX_INCLUDE:", "G++", 1, 1}, \
{ "GNU_CC_INCLUDE:", "GCC", 0, 0}, \
{ "SYS$SYSROOT:[SYSLIB.]", 0, 0, 0}, \
{ ".", 0, 0, 0}, \
{ 0, 0, 0, 0} \

}

Chapter 15: Target Description Macros and Functions 301

Here is the order of pre�xes tried for exec �les:

1. Any pre�xes speci�ed by the user with `-B'.

2. The environment variable GCC_EXEC_PREFIX, if any.

3. The directories speci�ed by the environment variable COMPILER_PATH.

4. The macro STANDARD_EXEC_PREFIX.

5. `/usr/lib/gcc/'.

6. The macro MD_EXEC_PREFIX, if any.

Here is the order of pre�xes tried for start�les:

1. Any pre�xes speci�ed by the user with `-B'.

2. The environment variable GCC_EXEC_PREFIX, if any.

3. The directories speci�ed by the environment variable LIBRARY_PATH (or port-speci�c
name; native only, cross compilers do not use this).

4. The macro STANDARD_EXEC_PREFIX.

5. `/usr/lib/gcc/'.

6. The macro MD_EXEC_PREFIX, if any.

7. The macro MD_STARTFILE_PREFIX, if any.

8. The macro STANDARD_STARTFILE_PREFIX.

9. `/lib/'.

10. `/usr/lib/'.

15.3 Run-time Target Speci�cation

Here are run-time target speci�cations.

[Macro]TARGET_CPU_CPP_BUILTINS ()
This function-like macro expands to a block of code that de�nes built-in preproces-
sor macros and assertions for the target cpu, using the functions builtin_define,
builtin_define_std and builtin_assert. When the front end calls this macro it
provides a trailing semicolon, and since it has �nished command line option processing
your code can use those results freely.

builtin_assert takes a string in the form you pass to the command-line option `-A',
such as cpu=mips, and creates the assertion. builtin_define takes a string in the
form accepted by option `-D' and unconditionally de�nes the macro.

builtin_define_std takes a string representing the name of an object-like macro. If
it doesn't lie in the user's namespace, builtin_define_std de�nes it unconditionally.
Otherwise, it de�nes a version with two leading underscores, and another version with
two leading and trailing underscores, and de�nes the original only if an ISO standard
was not requested on the command line. For example, passing unix de�nes __unix,
__unix__ and possibly unix; passing _mips de�nes __mips, __mips__ and possibly
_mips, and passing _ABI64 de�nes only _ABI64.

You can also test for the C dialect being compiled. The variable c_language is set to
one of clk_c, clk_cplusplus or clk_objective_c. Note that if we are preprocessing

302 GNU Compiler Collection (GCC) Internals

assembler, this variable will be clk_c but the function-like macro preprocessing_

asm_p() will return true, so you might want to check for that �rst. If you need to
check for strict ANSI, the variable flag_iso can be used. The function-like macro
preprocessing_trad_p() can be used to check for traditional preprocessing.

[Macro]TARGET_OS_CPP_BUILTINS ()
Similarly to TARGET_CPU_CPP_BUILTINS but this macro is optional and is used for
the target operating system instead.

[Macro]TARGET_OBJFMT_CPP_BUILTINS ()
Similarly to TARGET_CPU_CPP_BUILTINS but this macro is optional and is used for the
target object format. `elfos.h' uses this macro to de�ne __ELF__, so you probably
do not need to de�ne it yourself.

[Variable]extern int target_flags
This variable is declared in `options.h', which is included before any target-speci�c
headers.

[Variable]Target Hook int TARGET DEFAULT TARGET FLAGS
This variable speci�es the initial value of target_flags. Its default setting is 0.

[Target Hook]bool TARGET_HANDLE_OPTION (size t code, const char *arg, int
value)

This hook is called whenever the user speci�es one of the target-speci�c options
described by the `.opt' de�nition �les (see Chapter 7 [Options], page 51). It has the
opportunity to do some option-speci�c processing and should return true if the option
is valid. The default de�nition does nothing but return true.

code speci�es the OPT_name enumeration value associated with the selected option;
name is just a rendering of the option name in which non-alphanumeric characters are
replaced by underscores. arg speci�es the string argument and is null if no argument
was given. If the option is
agged as a UInteger (see Section 7.2 [Option properties],
page 51), value is the numeric value of the argument. Otherwise value is 1 if the
positive form of the option was used and 0 if the \no-" form was.

[Macro]TARGET_VERSION
This macro is a C statement to print on stderr a string describing the particular ma-
chine description choice. Every machine description should de�ne TARGET_VERSION.
For example:

#ifdef MOTOROLA
#define TARGET_VERSION \
fprintf (stderr, " (68k, Motorola syntax)");

#else
#define TARGET_VERSION \
fprintf (stderr, " (68k, MIT syntax)");

#endif

[Macro]OVERRIDE_OPTIONS
Sometimes certain combinations of command options do not make sense on a partic-
ular target machine. You can de�ne a macro OVERRIDE_OPTIONS to take account of
this. This macro, if de�ned, is executed once just after all the command options have
been parsed.

Chapter 15: Target Description Macros and Functions 303

Don't use this macro to turn on various extra optimizations for `-O'. That is what
OPTIMIZATION_OPTIONS is for.

[Macro]C_COMMON_OVERRIDE_OPTIONS
This is similar to OVERRIDE_OPTIONS but is only used in the C language frontends (C,
Objective-C, C++, Objective-C++) and so can be used to alter option
ag variables
which only exist in those frontends.

[Macro]OPTIMIZATION_OPTIONS (level, size)
Some machines may desire to change what optimizations are performed for various
optimization levels. This macro, if de�ned, is executed once just after the optimization
level is determined and before the remainder of the command options have been
parsed. Values set in this macro are used as the default values for the other command
line options.

level is the optimization level speci�ed; 2 if `-O2' is speci�ed, 1 if `-O' is speci�ed, and
0 if neither is speci�ed.

size is nonzero if `-Os' is speci�ed and zero otherwise.

You should not use this macro to change options that are not machine-speci�c. These
should uniformly selected by the same optimization level on all supported machines.
Use this macro to enable machine-speci�c optimizations.

Do not examine write_symbols in this macro! The debugging options are not sup-
posed to alter the generated code.

[Macro]CAN_DEBUG_WITHOUT_FP
De�ne this macro if debugging can be performed even without a frame pointer. If
this macro is de�ned, GCC will turn on the `-fomit-frame-pointer' option whenever
`-O' is speci�ed.

15.4 De�ning data structures for per-function information.

If the target needs to store information on a per-function basis, GCC provides a macro and
a couple of variables to allow this. Note, just using statics to store the information is a bad
idea, since GCC supports nested functions, so you can be halfway through encoding one
function when another one comes along.

GCC de�nes a data structure called struct function which contains all of the data
speci�c to an individual function. This structure contains a �eld called machine whose
type is struct machine_function *, which can be used by targets to point to their own
speci�c data.

If a target needs per-function speci�c data it should de�ne the type struct machine_

function and also the macro INIT_EXPANDERS. This macro should be used to initialize the
function pointer init_machine_status. This pointer is explained below.

One typical use of per-function, target speci�c data is to create an RTX to hold the
register containing the function's return address. This RTX can then be used to implement
the __builtin_return_address function, for level 0.

Note|earlier implementations of GCC used a single data area to hold all of the per-
function information. Thus when processing of a nested function began the old per-function

304 GNU Compiler Collection (GCC) Internals

data had to be pushed onto a stack, and when the processing was �nished, it had to be
popped o� the stack. GCC used to provide function pointers called save_machine_status

and restore_machine_status to handle the saving and restoring of the target speci�c
information. Since the single data area approach is no longer used, these pointers are no
longer supported.

[Macro]INIT_EXPANDERS
Macro called to initialize any target speci�c information. This macro is called once
per function, before generation of any RTL has begun. The intention of this macro
is to allow the initialization of the function pointer init_machine_status.

[Variable]void (*)(struct function *) init_machine_status
If this function pointer is non-NULL it will be called once per function, before function
compilation starts, in order to allow the target to perform any target speci�c initial-
ization of the struct function structure. It is intended that this would be used to
initialize the machine of that structure.

struct machine_function structures are expected to be freed by GC. Generally,
any memory that they reference must be allocated by using ggc_alloc, including the
structure itself.

15.5 Storage Layout

Note that the de�nitions of the macros in this table which are sizes or alignments measured
in bits do not need to be constant. They can be C expressions that refer to static variables,
such as the target_flags. See Section 15.3 [Run-time Target], page 301.

[Macro]BITS_BIG_ENDIAN
De�ne this macro to have the value 1 if the most signi�cant bit in a byte has the
lowest number; otherwise de�ne it to have the value zero. This means that bit-
�eld instructions count from the most signi�cant bit. If the machine has no bit-�eld
instructions, then this must still be de�ned, but it doesn't matter which value it is
de�ned to. This macro need not be a constant.

This macro does not a�ect the way structure �elds are packed into bytes or words;
that is controlled by BYTES_BIG_ENDIAN.

[Macro]BYTES_BIG_ENDIAN
De�ne this macro to have the value 1 if the most signi�cant byte in a word has the
lowest number. This macro need not be a constant.

[Macro]WORDS_BIG_ENDIAN
De�ne this macro to have the value 1 if, in a multiword object, the most signi�cant
word has the lowest number. This applies to both memory locations and registers;
GCC fundamentally assumes that the order of words in memory is the same as the
order in registers. This macro need not be a constant.

[Macro]LIBGCC2_WORDS_BIG_ENDIAN
De�ne this macro if WORDS_BIG_ENDIAN is not constant. This must be a constant
value with the same meaning as WORDS_BIG_ENDIAN, which will be used only when
compiling `libgcc2.c'. Typically the value will be set based on preprocessor de�nes.

Chapter 15: Target Description Macros and Functions 305

[Macro]FLOAT_WORDS_BIG_ENDIAN
De�ne this macro to have the value 1 if DFmode, XFmode or TFmode
oating point
numbers are stored in memory with the word containing the sign bit at the lowest
address; otherwise de�ne it to have the value 0. This macro need not be a constant.

You need not de�ne this macro if the ordering is the same as for multi-word integers.

[Macro]BITS_PER_UNIT
De�ne this macro to be the number of bits in an addressable storage unit (byte). If
you do not de�ne this macro the default is 8.

[Macro]BITS_PER_WORD
Number of bits in a word. If you do not de�ne this macro, the default is BITS_PER_
UNIT * UNITS_PER_WORD.

[Macro]MAX_BITS_PER_WORD
Maximum number of bits in a word. If this is unde�ned, the default is BITS_PER_
WORD. Otherwise, it is the constant value that is the largest value that BITS_PER_WORD
can have at run-time.

[Macro]UNITS_PER_WORD
Number of storage units in a word; normally the size of a general-purpose register, a
power of two from 1 or 8.

[Macro]MIN_UNITS_PER_WORD
Minimum number of units in a word. If this is unde�ned, the default is UNITS_PER_
WORD. Otherwise, it is the constant value that is the smallest value that UNITS_PER_
WORD can have at run-time.

[Macro]UNITS_PER_SIMD_WORD
Number of units in the vectors that the vectorizer can produce. The default is equal to
UNITS_PER_WORD, because the vectorizer can do some transformations even in absence
of specialized SIMD hardware.

[Macro]POINTER_SIZE
Width of a pointer, in bits. You must specify a value no wider than the width of
Pmode. If it is not equal to the width of Pmode, you must de�ne POINTERS_EXTEND_

UNSIGNED. If you do not specify a value the default is BITS_PER_WORD.

[Macro]POINTERS_EXTEND_UNSIGNED
A C expression whose value is greater than zero if pointers that need to be extended
from being POINTER_SIZE bits wide to Pmode are to be zero-extended and zero if
they are to be sign-extended. If the value is less then zero then there must be an
"ptr extend" instruction that extends a pointer from POINTER_SIZE to Pmode.

You need not de�ne this macro if the POINTER_SIZE is equal to the width of Pmode.

[Macro]PROMOTE_MODE (m, unsignedp, type)
A macro to update m and unsignedp when an object whose type is type and which
has the speci�ed mode and signedness is to be stored in a register. This macro is only
called when type is a scalar type.

306 GNU Compiler Collection (GCC) Internals

On most RISC machines, which only have operations that operate on a full register,
de�ne this macro to set m to word_mode if m is an integer mode narrower than
BITS_PER_WORD. In most cases, only integer modes should be widened because wider-
precision
oating-point operations are usually more expensive than their narrower
counterparts.

For most machines, the macro de�nition does not change unsignedp. However, some
machines, have instructions that preferentially handle either signed or unsigned quan-
tities of certain modes. For example, on the DEC Alpha, 32-bit loads from memory
and 32-bit add instructions sign-extend the result to 64 bits. On such machines, set
unsignedp according to which kind of extension is more e�cient.

Do not de�ne this macro if it would never modify m.

[Macro]PROMOTE_FUNCTION_MODE
Like PROMOTE_MODE, but is applied to outgoing function arguments or function re-
turn values, as speci�ed by TARGET_PROMOTE_FUNCTION_ARGS and TARGET_PROMOTE_

FUNCTION_RETURN, respectively.

The default is PROMOTE_MODE.

[Target Hook]bool TARGET_PROMOTE_FUNCTION_ARGS (tree fntype)
This target hook should return true if the promotion described by PROMOTE_

FUNCTION_MODE should be done for outgoing function arguments.

[Target Hook]bool TARGET_PROMOTE_FUNCTION_RETURN (tree fntype)
This target hook should return true if the promotion described by PROMOTE_

FUNCTION_MODE should be done for the return value of functions.

If this target hook returns true, TARGET_FUNCTION_VALUE must perform the same
promotions done by PROMOTE_FUNCTION_MODE.

[Macro]PARM_BOUNDARY
Normal alignment required for function parameters on the stack, in bits. All stack
parameters receive at least this much alignment regardless of data type. On most
machines, this is the same as the size of an integer.

[Macro]STACK_BOUNDARY
De�ne this macro to the minimum alignment enforced by hardware for the stack
pointer on this machine. The de�nition is a C expression for the desired alignment
(measured in bits). This value is used as a default if PREFERRED_STACK_BOUNDARY is
not de�ned. On most machines, this should be the same as PARM_BOUNDARY.

[Macro]PREFERRED_STACK_BOUNDARY
De�ne this macro if you wish to preserve a certain alignment for the stack pointer,
greater than what the hardware enforces. The de�nition is a C expression for the
desired alignment (measured in bits). This macro must evaluate to a value equal to
or larger than STACK_BOUNDARY.

[Macro]FUNCTION_BOUNDARY
Alignment required for a function entry point, in bits.

Chapter 15: Target Description Macros and Functions 307

[Macro]BIGGEST_ALIGNMENT
Biggest alignment that any data type can require on this machine, in bits.

[Macro]MINIMUM_ATOMIC_ALIGNMENT
If de�ned, the smallest alignment, in bits, that can be given to an object that can
be referenced in one operation, without disturbing any nearby object. Normally, this
is BITS_PER_UNIT, but may be larger on machines that don't have byte or half-word
store operations.

[Macro]BIGGEST_FIELD_ALIGNMENT
Biggest alignment that any structure or union �eld can require on this machine,
in bits. If de�ned, this overrides BIGGEST_ALIGNMENT for structure and union �elds
only, unless the �eld alignment has been set by the __attribute__ ((aligned (n)))

construct.

[Macro]ADJUST_FIELD_ALIGN (field, computed)
An expression for the alignment of a structure �eld �eld if the alignment computed
in the usual way (including applying of BIGGEST_ALIGNMENT and BIGGEST_FIELD_

ALIGNMENT to the alignment) is computed. It overrides alignment only if the �eld
alignment has not been set by the __attribute__ ((aligned (n))) construct.

[Macro]MAX_OFILE_ALIGNMENT
Biggest alignment supported by the object �le format of this machine. Use this macro
to limit the alignment which can be speci�ed using the __attribute__ ((aligned

(n))) construct. If not de�ned, the default value is BIGGEST_ALIGNMENT.

On systems that use ELF, the default (in `config/elfos.h') is the largest supported
32-bit ELF section alignment representable on a 32-bit host e.g. `(((unsigned
HOST_WIDEST_INT) 1 << 28) * 8)'. On 32-bit ELF the largest supported section
alignment in bits is `(0x80000000 * 8)', but this is not representable on 32-bit hosts.

[Macro]DATA_ALIGNMENT (type, basic-align)
If de�ned, a C expression to compute the alignment for a variable in the static store.
type is the data type, and basic-align is the alignment that the object would ordinarily
have. The value of this macro is used instead of that alignment to align the object.

If this macro is not de�ned, then basic-align is used.

This macro should never be used directly; use calculate_global_alignment instead.

One use of this macro is to increase alignment of medium-size data to make it all �t
in fewer cache lines. Another is to cause character arrays to be word-aligned so that
strcpy calls that copy constants to character arrays can be done inline.

[Macro]CONSTANT_ALIGNMENT (constant, basic-align)
If de�ned, a C expression to compute the alignment given to a constant that is being
placed in memory. constant is the constant and basic-align is the alignment that
the object would ordinarily have. The value of this macro is used instead of that
alignment to align the object.

If this macro is not de�ned, then basic-align is used.

The typical use of this macro is to increase alignment for string constants to be word
aligned so that strcpy calls that copy constants can be done inline.

308 GNU Compiler Collection (GCC) Internals

[Macro]LOCAL_ALIGNMENT (type, basic-align)
If de�ned, a C expression to compute the alignment for a variable in the local store.
type is the data type, and basic-align is the alignment that the object would ordinarily
have. The value of this macro is used instead of that alignment to align the object.

If this macro is not de�ned, then basic-align is used.

One use of this macro is to increase alignment of medium-size data to make it all �t
in fewer cache lines.

This macro should never be used directly; use calculate_local_alignment instead.

[Macro]EMPTY_FIELD_BOUNDARY
Alignment in bits to be given to a structure bit-�eld that follows an empty �eld such
as int : 0;.

If PCC_BITFIELD_TYPE_MATTERS is true, it overrides this macro.

[Macro]STRUCTURE_SIZE_BOUNDARY
Number of bits which any structure or union's size must be a multiple of. Each
structure or union's size is rounded up to a multiple of this.

If you do not de�ne this macro, the default is the same as BITS_PER_UNIT.

[Macro]STRICT_ALIGNMENT
De�ne this macro to be the value 1 if instructions will fail to work if given data not
on the nominal alignment. If instructions will merely go slower in that case, de�ne
this macro as 0.

[Macro]PCC_BITFIELD_TYPE_MATTERS
De�ne this if you wish to imitate the way many other C compilers handle alignment
of bit-�elds and the structures that contain them.

The behavior is that the type written for a named bit-�eld (int, short, or other
integer type) imposes an alignment for the entire structure, as if the structure really
did contain an ordinary �eld of that type. In addition, the bit-�eld is placed within
the structure so that it would �t within such a �eld, not crossing a boundary for it.

Thus, on most machines, a named bit-�eld whose type is written as int would not
cross a four-byte boundary, and would force four-byte alignment for the whole struc-
ture. (The alignment used may not be four bytes; it is controlled by the other align-
ment parameters.)

An unnamed bit-�eld will not a�ect the alignment of the containing structure.

If the macro is de�ned, its de�nition should be a C expression; a nonzero value for
the expression enables this behavior.

Note that if this macro is not de�ned, or its value is zero, some bit-�elds may cross
more than one alignment boundary. The compiler can support such references if there
are `insv', `extv', and `extzv' insns that can directly reference memory.

The other known way of making bit-�elds work is to de�ne STRUCTURE_SIZE_

BOUNDARY as large as BIGGEST_ALIGNMENT. Then every structure can be accessed
with fullwords.

Unless the machine has bit-�eld instructions or you de�ne STRUCTURE_SIZE_BOUNDARY
that way, you must de�ne PCC_BITFIELD_TYPE_MATTERS to have a nonzero value.

Chapter 15: Target Description Macros and Functions 309

If your aim is to make GCC use the same conventions for laying out bit-�elds as are
used by another compiler, here is how to investigate what the other compiler does.
Compile and run this program:

struct foo1
{
char x;
char :0;
char y;

};

struct foo2
{
char x;
int :0;
char y;

};

main ()
{
printf ("Size of foo1 is %d\n",

sizeof (struct foo1));
printf ("Size of foo2 is %d\n",

sizeof (struct foo2));
exit (0);

}

If this prints 2 and 5, then the compiler's behavior is what you would get from PCC_

BITFIELD_TYPE_MATTERS.

[Macro]BITFIELD_NBYTES_LIMITED
Like PCC_BITFIELD_TYPE_MATTERS except that its e�ect is limited to aligning a bit-
�eld within the structure.

[Target Hook]bool TARGET_ALIGN_ANON_BITFIELDS (void)
When PCC_BITFIELD_TYPE_MATTERS is true this hook will determine whether un-
named bit�elds a�ect the alignment of the containing structure. The hook should
return true if the structure should inherit the alignment requirements of an unnamed
bit�eld's type.

[Target Hook]bool TARGET_NARROW_VOLATILE_BITFIELDS (void)
This target hook should return true if accesses to volatile bit�elds should use the
narrowest mode possible. It should return false if these accesses should use the
bit�eld container type.

The default is !TARGET_STRICT_ALIGN.

[Macro]MEMBER_TYPE_FORCES_BLK (field, mode)
Return 1 if a structure or array containing �eld should be accessed using BLKMODE.

If �eld is the only �eld in the structure, mode is its mode, otherwise mode is VOID-
mode. mode is provided in the case where structures of one �eld would require the
structure's mode to retain the �eld's mode.

Normally, this is not needed. See the �le `c4x.h' for an example of how to use this
macro to prevent a structure having a
oating point �eld from being accessed in an
integer mode.

310 GNU Compiler Collection (GCC) Internals

[Macro]ROUND_TYPE_ALIGN (type, computed, specified)
De�ne this macro as an expression for the alignment of a type (given by type as a
tree node) if the alignment computed in the usual way is computed and the alignment
explicitly speci�ed was speci�ed.

The default is to use speci�ed if it is larger; otherwise, use the smaller of computed
and BIGGEST_ALIGNMENT

[Macro]MAX_FIXED_MODE_SIZE
An integer expression for the size in bits of the largest integer machine mode that
should actually be used. All integer machine modes of this size or smaller can be
used for structures and unions with the appropriate sizes. If this macro is unde�ned,
GET_MODE_BITSIZE (DImode) is assumed.

[Macro]STACK_SAVEAREA_MODE (save_level)
If de�ned, an expression of type enum machine_mode that speci�es the mode of the
save area operand of a save_stack_level named pattern (see Section 14.9 [Stan-
dard Names], page 236). save level is one of SAVE_BLOCK, SAVE_FUNCTION, or SAVE_
NONLOCAL and selects which of the three named patterns is having its mode speci�ed.

You need not de�ne this macro if it always returns Pmode. You would most commonly
de�ne this macro if the save_stack_level patterns need to support both a 32- and
a 64-bit mode.

[Macro]STACK_SIZE_MODE
If de�ned, an expression of type enum machine_mode that speci�es the mode of the size
increment operand of an allocate_stack named pattern (see Section 14.9 [Standard
Names], page 236).

You need not de�ne this macro if it always returns word_mode. You would most
commonly de�ne this macro if the allocate_stack pattern needs to support both a
32- and a 64-bit mode.

[Macro]TARGET_FLOAT_FORMAT
A code distinguishing the
oating point format of the target machine. There are four
de�ned values:

IEEE_FLOAT_FORMAT

This code indicates IEEE
oating point. It is the default; there is no need
to de�ne TARGET_FLOAT_FORMAT when the format is IEEE.

VAX_FLOAT_FORMAT

This code indicates the \F
oat" (for float) and \D
oat" or \G
oat"
formats (for double) used on the VAX and PDP-11.

IBM_FLOAT_FORMAT

This code indicates the format used on the IBM System/370.

C4X_FLOAT_FORMAT

This code indicates the format used on the TMS320C3x/C4x.

If your target uses a
oating point format other than these, you must de�ne a new
name FLOAT FORMAT code for it, and add support for it to `real.c'.

The ordering of the component words of
oating point values stored in memory is
controlled by FLOAT_WORDS_BIG_ENDIAN.

Chapter 15: Target Description Macros and Functions 311

[Macro]MODE_HAS_NANS (mode)
When de�ned, this macro should be true if mode has a NaN representation. The
compiler assumes that NaNs are not equal to anything (including themselves) and
that addition, subtraction, multiplication and division all return NaNs when one
operand is NaN.

By default, this macro is true if mode is a
oating-point mode and the target
oating-
point format is IEEE.

[Macro]MODE_HAS_INFINITIES (mode)
This macro should be true if mode can represent in�nity. At present, the compiler
uses this macro to decide whether `x - x' is always de�ned. By default, the macro is
true when mode is a
oating-point mode and the target format is IEEE.

[Macro]MODE_HAS_SIGNED_ZEROS (mode)
True if mode distinguishes between positive and negative zero. The rules are expected
to follow the IEEE standard:

� `x + x' has the same sign as `x'.

� If the sum of two values with opposite sign is zero, the result is positive for all
rounding modes expect towards �in�nity, for which it is negative.

� The sign of a product or quotient is negative when exactly one of the operands
is negative.

The default de�nition is true if mode is a
oating-point mode and the target format
is IEEE.

[Macro]MODE_HAS_SIGN_DEPENDENT_ROUNDING (mode)
If de�ned, this macro should be true for mode if it has at least one rounding mode
in which `x' and `-x' can be rounded to numbers of di�erent magnitude. Two such
modes are towards �in�nity and towards +in�nity.

The default de�nition of this macro is true if mode is a
oating-point mode and the
target format is IEEE.

[Macro]ROUND_TOWARDS_ZERO
If de�ned, this macro should be true if the prevailing rounding mode is towards zero.
A true value has the following e�ects:

� MODE_HAS_SIGN_DEPENDENT_ROUNDING will be false for all modes.

� `libgcc.a''s
oating-point emulator will round towards zero rather than towards
nearest.

� The compiler's
oating-point emulator will round towards zero after doing arith-
metic, and when converting from the internal
oat format to the target format.

The macro does not a�ect the parsing of string literals. When the primary rounding
mode is towards zero, library functions like strtod might still round towards nearest,
and the compiler's parser should behave like the target's strtod where possible.

Not de�ning this macro is equivalent to returning zero.

312 GNU Compiler Collection (GCC) Internals

[Macro]LARGEST_EXPONENT_IS_NORMAL (size)
This macro should return true if
oats with size bits do not have a NaN or in�nity
representation, but use the largest exponent for normal numbers instead.

De�ning this macro to true for size causes MODE_HAS_NANS and MODE_HAS_INFINITIES
to be false for size-bit modes. It also a�ects the way `libgcc.a' and `real.c' emulate

oating-point arithmetic.

The default de�nition of this macro returns false for all sizes.

[Target Hook]bool TARGET_VECTOR_OPAQUE_P (tree type)
This target hook should return true a vector is opaque. That is, if no cast is needed
when copying a vector value of type type into another vector lvalue of the same size.
Vector opaque types cannot be initialized. The default is that there are no such types.

[Target Hook]bool TARGET_MS_BITFIELD_LAYOUT_P (tree record_type)
This target hook returns true if bit-�elds in the given record type are to be laid out
following the rules of Microsoft Visual C/C++, namely: (i) a bit-�eld won't share the
same storage unit with the previous bit-�eld if their underlying types have di�erent
sizes, and the bit-�eld will be aligned to the highest alignment of the underlying types
of itself and of the previous bit-�eld; (ii) a zero-sized bit-�eld will a�ect the alignment
of the whole enclosing structure, even if it is unnamed; except that (iii) a zero-sized
bit-�eld will be disregarded unless it follows another bit-�eld of nonzero size. If this
hook returns true, other macros that control bit-�eld layout are ignored.

When a bit-�eld is inserted into a packed record, the whole size of the underlying type
is used by one or more same-size adjacent bit-�elds (that is, if its long:3, 32 bits is used
in the record, and any additional adjacent long bit-�elds are packed into the same
chunk of 32 bits. However, if the size changes, a new �eld of that size is allocated).
In an unpacked record, this is the same as using alignment, but not equivalent when
packing.

If both MS bit-�elds and `__attribute__((packed))' are used, the latter will take
precedence. If `__attribute__((packed))' is used on a single �eld when MS bit-
�elds are in use, it will take precedence for that �eld, but the alignment of the rest
of the structure may a�ect its placement.

[Target Hook]bool TARGET_DECIMAL_FLOAT_SUPPORTED_P (void)
Returns true if the target supports decimal
oating point.

[Target Hook]const char * TARGET_MANGLE_FUNDAMENTAL_TYPE (tree type)
If your target de�nes any fundamental types, de�ne this hook to return the appro-
priate encoding for these types as part of a C++ mangled name. The type argument
is the tree structure representing the type to be mangled. The hook may be applied
to trees which are not target-speci�c fundamental types; it should return NULL for
all such types, as well as arguments it does not recognize. If the return value is not
NULL, it must point to a statically-allocated string constant.

Target-speci�c fundamental types might be new fundamental types or quali�ed ver-
sions of ordinary fundamental types. Encode new fundamental types as `u n name ',
where name is the name used for the type in source code, and n is the length of name
in decimal. Encode quali�ed versions of ordinary types as `U n name code ', where

Chapter 15: Target Description Macros and Functions 313

name is the name used for the type quali�er in source code, n is the length of name
as above, and code is the code used to represent the unquali�ed version of this type.
(See write_builtin_type in `cp/mangle.c' for the list of codes.) In both cases the
spaces are for clarity; do not include any spaces in your string.

The default version of this hook always returns NULL, which is appropriate for a target
that does not de�ne any new fundamental types.

15.6 Layout of Source Language Data Types

These macros de�ne the sizes and other characteristics of the standard basic data types
used in programs being compiled. Unlike the macros in the previous section, these apply to
speci�c features of C and related languages, rather than to fundamental aspects of storage
layout.

[Macro]INT_TYPE_SIZE
A C expression for the size in bits of the type int on the target machine. If you don't
de�ne this, the default is one word.

[Macro]SHORT_TYPE_SIZE
A C expression for the size in bits of the type short on the target machine. If you
don't de�ne this, the default is half a word. (If this would be less than one storage
unit, it is rounded up to one unit.)

[Macro]LONG_TYPE_SIZE
A C expression for the size in bits of the type long on the target machine. If you
don't de�ne this, the default is one word.

[Macro]ADA_LONG_TYPE_SIZE
On some machines, the size used for the Ada equivalent of the type long by a native
Ada compiler di�ers from that used by C. In that situation, de�ne this macro to be a
C expression to be used for the size of that type. If you don't de�ne this, the default
is the value of LONG_TYPE_SIZE.

[Macro]LONG_LONG_TYPE_SIZE
A C expression for the size in bits of the type long long on the target machine. If
you don't de�ne this, the default is two words. If you want to support GNU Ada on
your machine, the value of this macro must be at least 64.

[Macro]CHAR_TYPE_SIZE
A C expression for the size in bits of the type char on the target machine. If you
don't de�ne this, the default is BITS_PER_UNIT.

[Macro]BOOL_TYPE_SIZE
A C expression for the size in bits of the C++ type bool and C99 type _Bool on the
target machine. If you don't de�ne this, and you probably shouldn't, the default is
CHAR_TYPE_SIZE.

[Macro]FLOAT_TYPE_SIZE
A C expression for the size in bits of the type float on the target machine. If you
don't de�ne this, the default is one word.

314 GNU Compiler Collection (GCC) Internals

[Macro]DOUBLE_TYPE_SIZE
A C expression for the size in bits of the type double on the target machine. If you
don't de�ne this, the default is two words.

[Macro]LONG_DOUBLE_TYPE_SIZE
A C expression for the size in bits of the type long double on the target machine. If
you don't de�ne this, the default is two words.

[Macro]LIBGCC2_LONG_DOUBLE_TYPE_SIZE
De�ne this macro if LONG_DOUBLE_TYPE_SIZE is not constant or if you want routines
in `libgcc2.a' for a size other than LONG_DOUBLE_TYPE_SIZE. If you don't de�ne
this, the default is LONG_DOUBLE_TYPE_SIZE.

[Macro]LIBGCC2_HAS_DF_MODE
De�ne this macro if neither LIBGCC2_DOUBLE_TYPE_SIZE nor LIBGCC2_LONG_DOUBLE_
TYPE_SIZE is DFmode but you want DFmode routines in `libgcc2.a' anyway. If you
don't de�ne this and either LIBGCC2_DOUBLE_TYPE_SIZE or LIBGCC2_LONG_DOUBLE_
TYPE_SIZE is 64 then the default is 1, otherwise it is 0.

[Macro]LIBGCC2_HAS_XF_MODE
De�ne this macro if LIBGCC2_LONG_DOUBLE_TYPE_SIZE is not XFmode but you want
XFmode routines in `libgcc2.a' anyway. If you don't de�ne this and LIBGCC2_LONG_

DOUBLE_TYPE_SIZE is 80 then the default is 1, otherwise it is 0.

[Macro]LIBGCC2_HAS_TF_MODE
De�ne this macro if LIBGCC2_LONG_DOUBLE_TYPE_SIZE is not TFmode but you want
TFmode routines in `libgcc2.a' anyway. If you don't de�ne this and LIBGCC2_LONG_

DOUBLE_TYPE_SIZE is 128 then the default is 1, otherwise it is 0.

[Macro]SF_SIZE
[Macro]DF_SIZE
[Macro]XF_SIZE
[Macro]TF_SIZE

De�ne these macros to be the size in bits of the mantissa of SFmode, DFmode, XFmode
and TFmode values, if the defaults in `libgcc2.h' are inappropriate. By default, FLT_
MANT_DIG is used for SF_SIZE, LDBL_MANT_DIG for XF_SIZE and TF_SIZE, and DBL_

MANT_DIG or LDBL_MANT_DIG for DF_SIZE according to whether LIBGCC2_DOUBLE_

TYPE_SIZE or LIBGCC2_LONG_DOUBLE_TYPE_SIZE is 64.

[Macro]TARGET_FLT_EVAL_METHOD
A C expression for the value for FLT_EVAL_METHOD in `float.h', assuming, if appli-
cable, that the
oating-point control word is in its default state. If you do not de�ne
this macro the value of FLT_EVAL_METHOD will be zero.

[Macro]WIDEST_HARDWARE_FP_SIZE
A C expression for the size in bits of the widest
oating-point format supported by
the hardware. If you de�ne this macro, you must specify a value less than or equal
to the value of LONG_DOUBLE_TYPE_SIZE. If you do not de�ne this macro, the value
of LONG_DOUBLE_TYPE_SIZE is the default.

Chapter 15: Target Description Macros and Functions 315

[Macro]DEFAULT_SIGNED_CHAR
An expression whose value is 1 or 0, according to whether the type char should be
signed or unsigned by default. The user can always override this default with the
options `-fsigned-char' and `-funsigned-char'.

[Target Hook]bool TARGET_DEFAULT_SHORT_ENUMS (void)
This target hook should return true if the compiler should give an enum type only
as many bytes as it takes to represent the range of possible values of that type. It
should return false if all enum types should be allocated like int.

The default is to return false.

[Macro]SIZE_TYPE
A C expression for a string describing the name of the data type to use for size values.
The typedef name size_t is de�ned using the contents of the string.

The string can contain more than one keyword. If so, separate them with spaces,
and write �rst any length keyword, then unsigned if appropriate, and �nally int.
The string must exactly match one of the data type names de�ned in the function
init_decl_processing in the �le `c-decl.c'. You may not omit int or change the
order|that would cause the compiler to crash on startup.

If you don't de�ne this macro, the default is "long unsigned int".

[Macro]PTRDIFF_TYPE
A C expression for a string describing the name of the data type to use for the result of
subtracting two pointers. The typedef name ptrdiff_t is de�ned using the contents
of the string. See SIZE_TYPE above for more information.

If you don't de�ne this macro, the default is "long int".

[Macro]WCHAR_TYPE
A C expression for a string describing the name of the data type to use for wide
characters. The typedef name wchar_t is de�ned using the contents of the string.
See SIZE_TYPE above for more information.

If you don't de�ne this macro, the default is "int".

[Macro]WCHAR_TYPE_SIZE
A C expression for the size in bits of the data type for wide characters. This is used
in cpp, which cannot make use of WCHAR_TYPE.

[Macro]WINT_TYPE
A C expression for a string describing the name of the data type to use for wide
characters passed to printf and returned from getwc. The typedef name wint_t is
de�ned using the contents of the string. See SIZE_TYPE above for more information.

If you don't de�ne this macro, the default is "unsigned int".

[Macro]INTMAX_TYPE
A C expression for a string describing the name of the data type that can represent any
value of any standard or extended signed integer type. The typedef name intmax_t is
de�ned using the contents of the string. See SIZE_TYPE above for more information.

If you don't de�ne this macro, the default is the �rst of "int", "long int", or "long
long int" that has as much precision as long long int.

316 GNU Compiler Collection (GCC) Internals

[Macro]UINTMAX_TYPE
A C expression for a string describing the name of the data type that can represent
any value of any standard or extended unsigned integer type. The typedef name
uintmax_t is de�ned using the contents of the string. See SIZE_TYPE above for more
information.

If you don't de�ne this macro, the default is the �rst of "unsigned int", "long
unsigned int", or "long long unsigned int" that has as much precision as long

long unsigned int.

[Macro]TARGET_PTRMEMFUNC_VBIT_LOCATION
The C++ compiler represents a pointer-to-member-function with a struct that looks
like:

struct {
union {
void (*fn)();
ptrdiff_t vtable_index;

};
ptrdiff_t delta;

};

The C++ compiler must use one bit to indicate whether the function that will be
called through a pointer-to-member-function is virtual. Normally, we assume that
the low-order bit of a function pointer must always be zero. Then, by ensuring that
the vtable index is odd, we can distinguish which variant of the union is in use. But,
on some platforms function pointers can be odd, and so this doesn't work. In that
case, we use the low-order bit of the delta �eld, and shift the remainder of the delta
�eld to the left.

GCC will automatically make the right selection about where to store this bit using
the FUNCTION_BOUNDARY setting for your platform. However, some platforms such as
ARM/Thumb have FUNCTION_BOUNDARY set such that functions always start at even
addresses, but the lowest bit of pointers to functions indicate whether the function at
that address is in ARM or Thumb mode. If this is the case of your architecture, you
should de�ne this macro to ptrmemfunc_vbit_in_delta.

In general, you should not have to de�ne this macro. On architectures in which
function addresses are always even, according to FUNCTION_BOUNDARY, GCC will au-
tomatically de�ne this macro to ptrmemfunc_vbit_in_pfn.

[Macro]TARGET_VTABLE_USES_DESCRIPTORS
Normally, the C++ compiler uses function pointers in vtables. This macro allows the
target to change to use \function descriptors" instead. Function descriptors are found
on targets for whom a function pointer is actually a small data structure. Normally
the data structure consists of the actual code address plus a data pointer to which
the function's data is relative.

If vtables are used, the value of this macro should be the number of words that the
function descriptor occupies.

[Macro]TARGET_VTABLE_ENTRY_ALIGN
By default, the vtable entries are void pointers, the so the alignment is the same as
pointer alignment. The value of this macro speci�es the alignment of the vtable entry
in bits. It should be de�ned only when special alignment is necessary. */

Chapter 15: Target Description Macros and Functions 317

[Macro]TARGET_VTABLE_DATA_ENTRY_DISTANCE
There are a few non-descriptor entries in the vtable at o�sets below zero. If these
entries must be padded (say, to preserve the alignment speci�ed by TARGET_VTABLE_

ENTRY_ALIGN), set this to the number of words in each data entry.

15.7 Register Usage

This section explains how to describe what registers the target machine has, and how (in
general) they can be used.

The description of which registers a speci�c instruction can use is done with register
classes; see Section 15.8 [Register Classes], page 323. For information on using registers to
access a stack frame, see Section 15.10.4 [Frame Registers], page 340. For passing values
in registers, see Section 15.10.7 [Register Arguments], page 345. For returning values in
registers, see Section 15.10.8 [Scalar Return], page 350.

15.7.1 Basic Characteristics of Registers

Registers have various characteristics.

[Macro]FIRST_PSEUDO_REGISTER
Number of hardware registers known to the compiler. They receive numbers 0 through
FIRST_PSEUDO_REGISTER-1; thus, the �rst pseudo register's number really is assigned
the number FIRST_PSEUDO_REGISTER.

[Macro]FIXED_REGISTERS
An initializer that says which registers are used for �xed purposes all throughout the
compiled code and are therefore not available for general allocation. These would
include the stack pointer, the frame pointer (except on machines where that can be
used as a general register when no frame pointer is needed), the program counter
on machines where that is considered one of the addressable registers, and any other
numbered register with a standard use.

This information is expressed as a sequence of numbers, separated by commas and
surrounded by braces. The nth number is 1 if register n is �xed, 0 otherwise.

The table initialized from this macro, and the table initialized by the following
one, may be overridden at run time either automatically, by the actions of the
macro CONDITIONAL_REGISTER_USAGE, or by the user with the command options
`-ffixed-reg ', `-fcall-used-reg ' and `-fcall-saved-reg '.

[Macro]CALL_USED_REGISTERS
Like FIXED_REGISTERS but has 1 for each register that is clobbered (in general) by
function calls as well as for �xed registers. This macro therefore identi�es the registers
that are not available for general allocation of values that must live across function
calls.

If a register has 0 in CALL_USED_REGISTERS, the compiler automatically saves it on
function entry and restores it on function exit, if the register is used within the
function.

318 GNU Compiler Collection (GCC) Internals

[Macro]CALL_REALLY_USED_REGISTERS
Like CALL_USED_REGISTERS except this macro doesn't require that the entire set of
FIXED_REGISTERS be included. (CALL_USED_REGISTERS must be a superset of FIXED_
REGISTERS). This macro is optional. If not speci�ed, it defaults to the value of
CALL_USED_REGISTERS.

[Macro]HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)
A C expression that is nonzero if it is not permissible to store a value of mode mode
in hard register number regno across a call without some part of it being clobbered.
For most machines this macro need not be de�ned. It is only required for machines
that do not preserve the entire contents of a register across a call.

[Macro]CONDITIONAL_REGISTER_USAGE
Zero or more C statements that may conditionally modify �ve variables fixed_regs,
call_used_regs, global_regs, reg_names, and reg_class_contents, to take into
account any dependence of these register sets on target
ags. The �rst three of
these are of type char [] (interpreted as Boolean vectors). global_regs is a const

char *[], and reg_class_contents is a HARD_REG_SET. Before the macro is called,
fixed_regs, call_used_regs, reg_class_contents, and reg_names have been
initialized from FIXED_REGISTERS, CALL_USED_REGISTERS, REG_CLASS_CONTENTS,
and REGISTER_NAMES, respectively. global_regs has been cleared, and any
`-ffixed-reg ', `-fcall-used-reg ' and `-fcall-saved-reg ' command options
have been applied.

You need not de�ne this macro if it has no work to do.

If the usage of an entire class of registers depends on the target
ags, you may indicate
this to GCC by using this macro to modify fixed_regs and call_used_regs to 1 for
each of the registers in the classes which should not be used by GCC. Also de�ne the
macro REG_CLASS_FROM_LETTER / REG_CLASS_FROM_CONSTRAINT to return NO_REGS

if it is called with a letter for a class that shouldn't be used.

(However, if this class is not included in GENERAL_REGS and all of the insn patterns
whose constraints permit this class are controlled by target switches, then GCC will
automatically avoid using these registers when the target switches are opposed to
them.)

[Macro]INCOMING_REGNO (out)
De�ne this macro if the target machine has register windows. This C expression
returns the register number as seen by the called function corresponding to the register
number out as seen by the calling function. Return out if register number out is not
an outbound register.

[Macro]OUTGOING_REGNO (in)
De�ne this macro if the target machine has register windows. This C expression
returns the register number as seen by the calling function corresponding to the
register number in as seen by the called function. Return in if register number in is
not an inbound register.

[Macro]LOCAL_REGNO (regno)
De�ne this macro if the target machine has register windows. This C expression
returns true if the register is call-saved but is in the register window. Unlike most

Chapter 15: Target Description Macros and Functions 319

call-saved registers, such registers need not be explicitly restored on function exit or
during non-local gotos.

[Macro]PC_REGNUM
If the program counter has a register number, de�ne this as that register number.
Otherwise, do not de�ne it.

15.7.2 Order of Allocation of Registers

Registers are allocated in order.

[Macro]REG_ALLOC_ORDER
If de�ned, an initializer for a vector of integers, containing the numbers of hard
registers in the order in which GCC should prefer to use them (from most preferred
to least).

If this macro is not de�ned, registers are used lowest numbered �rst (all else being
equal).

One use of this macro is on machines where the highest numbered registers must
always be saved and the save-multiple-registers instruction supports only sequences of
consecutive registers. On such machines, de�ne REG_ALLOC_ORDER to be an initializer
that lists the highest numbered allocable register �rst.

[Target Hook]void TARGET_ADJUST_REG_ALLOC_ORDER (int *order)
If REG_ALLOC_ORDER has been de�ned, this hook is called after all command-line
options have been processed. It enables adjustment of the allocation order based on
target-speci�c
ags. Any such adjustment should be performed by the hook directly
on the elements of the array order. On entry to the hook this array is an unmodi�ed
copy of REG_ALLOC_ORDER.

[Macro]ORDER_REGS_FOR_LOCAL_ALLOC
A C statement (sans semicolon) to choose the order in which to allocate hard registers
for pseudo-registers local to a basic block.

Store the desired register order in the array reg_alloc_order. Element 0 should be
the register to allocate �rst; element 1, the next register; and so on.

The macro body should not assume anything about the contents of reg_alloc_order
before execution of the macro.

On most machines, it is not necessary to de�ne this macro.

15.7.3 How Values Fit in Registers

This section discusses the macros that describe which kinds of values (speci�cally, which
machine modes) each register can hold, and how many consecutive registers are needed for
a given mode.

[Macro]HARD_REGNO_NREGS (regno, mode)
A C expression for the number of consecutive hard registers, starting at register
number regno, required to hold a value of mode mode.

On a machine where all registers are exactly one word, a suitable de�nition of this
macro is

320 GNU Compiler Collection (GCC) Internals

#define HARD_REGNO_NREGS(REGNO, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
/ UNITS_PER_WORD)

[Macro]HARD_REGNO_NREGS_HAS_PADDING (regno, mode)
A C expression that is nonzero if a value of mode mode, stored in memory, ends with
padding that causes it to take up more space than in registers starting at register
number regno (as determined by multiplying GCC's notion of the size of the register
when containing this mode by the number of registers returned by HARD_REGNO_

NREGS). By default this is zero.

For example, if a
oating-point value is stored in three 32-bit registers but takes up
128 bits in memory, then this would be nonzero.

This macros only needs to be de�ned if there are cases where subreg_get_info would
otherwise wrongly determine that a subreg can be represented by an o�set to the
register number, when in fact such a subreg would contain some of the padding not
stored in registers and so not be representable.

[Macro]HARD_REGNO_NREGS_WITH_PADDING (regno, mode)
For values of regno and mode for which HARD_REGNO_NREGS_HAS_PADDING returns
nonzero, a C expression returning the greater number of registers required to hold
the value including any padding. In the example above, the value would be four.

[Macro]REGMODE_NATURAL_SIZE (mode)
De�ne this macro if the natural size of registers that hold values of mode mode is
not the word size. It is a C expression that should give the natural size in bytes for
the speci�ed mode. It is used by the register allocator to try to optimize its results.
This happens for example on SPARC 64-bit where the natural size of
oating-point
registers is still 32-bit.

[Macro]HARD_REGNO_MODE_OK (regno, mode)
A C expression that is nonzero if it is permissible to store a value of mode mode in
hard register number regno (or in several registers starting with that one). For a
machine where all registers are equivalent, a suitable de�nition is

#define HARD_REGNO_MODE_OK(REGNO, MODE) 1

You need not include code to check for the numbers of �xed registers, because the
allocation mechanism considers them to be always occupied.

On some machines, double-precision values must be kept in even/odd register pairs.
You can implement that by de�ning this macro to reject odd register numbers for
such modes.

The minimum requirement for a mode to be OK in a register is that the `movmode '
instruction pattern support moves between the register and other hard register in the
same class and that moving a value into the register and back out not alter it.

Since the same instruction used to move word_mode will work for all narrower integer
modes, it is not necessary on any machine for HARD_REGNO_MODE_OK to distinguish
between these modes, provided you de�ne patterns `movhi', etc., to take advantage
of this. This is useful because of the interaction between HARD_REGNO_MODE_OK and
MODES_TIEABLE_P; it is very desirable for all integer modes to be tieable.

Chapter 15: Target Description Macros and Functions 321

Many machines have special registers for
oating point arithmetic. Often people
assume that
oating point machine modes are allowed only in
oating point registers.
This is not true. Any registers that can hold integers can safely hold a
oating point
machine mode, whether or not
oating arithmetic can be done on it in those registers.
Integer move instructions can be used to move the values.

On some machines, though, the converse is true: �xed-point machine modes may
not go in
oating registers. This is true if the
oating registers normalize any value
stored in them, because storing a non-
oating value there would garble it. In this case,
HARD_REGNO_MODE_OK should reject �xed-point machine modes in
oating registers.
But if the
oating registers do not automatically normalize, if you can store any bit
pattern in one and retrieve it unchanged without a trap, then any machine mode may
go in a
oating register, so you can de�ne this macro to say so.

The primary signi�cance of special
oating registers is rather that they are the reg-
isters acceptable in
oating point arithmetic instructions. However, this is of no
concern to HARD_REGNO_MODE_OK. You handle it by writing the proper constraints for
those instructions.

On some machines, the
oating registers are especially slow to access, so that it
is better to store a value in a stack frame than in such a register if
oating point
arithmetic is not being done. As long as the
oating registers are not in class GENERAL_
REGS, they will not be used unless some pattern's constraint asks for one.

[Macro]HARD_REGNO_RENAME_OK (from, to)
A C expression that is nonzero if it is OK to rename a hard register from to another
hard register to.

One common use of this macro is to prevent renaming of a register to another register
that is not saved by a prologue in an interrupt handler.

The default is always nonzero.

[Macro]MODES_TIEABLE_P (mode1, mode2)
A C expression that is nonzero if a value of mode mode1 is accessible in mode mode2
without copying.

If HARD_REGNO_MODE_OK (r, mode1) and HARD_REGNO_MODE_OK (r, mode2) are al-
ways the same for any r, then MODES_TIEABLE_P (mode1, mode2) should be nonzero.
If they di�er for any r, you should de�ne this macro to return zero unless some other
mechanism ensures the accessibility of the value in a narrower mode.

You should de�ne this macro to return nonzero in as many cases as possible since
doing so will allow GCC to perform better register allocation.

[Macro]AVOID_CCMODE_COPIES
De�ne this macro if the compiler should avoid copies to/from CCmode registers. You
should only de�ne this macro if support for copying to/from CCmode is incomplete.

15.7.4 Handling Leaf Functions

On some machines, a leaf function (i.e., one which makes no calls) can run more e�ciently
if it does not make its own register window. Often this means it is required to receive its

322 GNU Compiler Collection (GCC) Internals

arguments in the registers where they are passed by the caller, instead of the registers where
they would normally arrive.

The special treatment for leaf functions generally applies only when other conditions
are met; for example, often they may use only those registers for its own variables and
temporaries. We use the term \leaf function" to mean a function that is suitable for this
special handling, so that functions with no calls are not necessarily \leaf functions".

GCC assigns register numbers before it knows whether the function is suitable for leaf
function treatment. So it needs to renumber the registers in order to output a leaf function.
The following macros accomplish this.

[Macro]LEAF_REGISTERS
Name of a char vector, indexed by hard register number, which contains 1 for a
register that is allowable in a candidate for leaf function treatment.

If leaf function treatment involves renumbering the registers, then the registers marked
here should be the ones before renumbering|those that GCC would ordinarily allo-
cate. The registers which will actually be used in the assembler code, after renum-
bering, should not be marked with 1 in this vector.

De�ne this macro only if the target machine o�ers a way to optimize the treatment
of leaf functions.

[Macro]LEAF_REG_REMAP (regno)
A C expression whose value is the register number to which regno should be renum-
bered, when a function is treated as a leaf function.

If regno is a register number which should not appear in a leaf function before renum-
bering, then the expression should yield �1, which will cause the compiler to abort.

De�ne this macro only if the target machine o�ers a way to optimize the treatment
of leaf functions, and registers need to be renumbered to do this.

TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE must usually
treat leaf functions specially. They can test the C variable current_function_is_leaf

which is nonzero for leaf functions. current_function_is_leaf is set prior to local
register allocation and is valid for the remaining compiler passes. They can also test the
C variable current_function_uses_only_leaf_regs which is nonzero for leaf functions
which only use leaf registers. current_function_uses_only_leaf_regs is valid after all
passes that modify the instructions have been run and is only useful if LEAF_REGISTERS is
de�ned.

15.7.5 Registers That Form a Stack

There are special features to handle computers where some of the \registers" form a stack.
Stack registers are normally written by pushing onto the stack, and are numbered relative
to the top of the stack.

Currently, GCC can only handle one group of stack-like registers, and they must be
consecutively numbered. Furthermore, the existing support for stack-like registers is speci�c
to the 80387
oating point coprocessor. If you have a new architecture that uses stack-like
registers, you will need to do substantial work on `reg-stack.c' and write your machine
description to cooperate with it, as well as de�ning these macros.

Chapter 15: Target Description Macros and Functions 323

[Macro]STACK_REGS
De�ne this if the machine has any stack-like registers.

[Macro]FIRST_STACK_REG
The number of the �rst stack-like register. This one is the top of the stack.

[Macro]LAST_STACK_REG
The number of the last stack-like register. This one is the bottom of the stack.

15.8 Register Classes

On many machines, the numbered registers are not all equivalent. For example, certain
registers may not be allowed for indexed addressing; certain registers may not be allowed in
some instructions. These machine restrictions are described to the compiler using register
classes.

You de�ne a number of register classes, giving each one a name and saying which of the
registers belong to it. Then you can specify register classes that are allowed as operands to
particular instruction patterns.

In general, each register will belong to several classes. In fact, one class must be named
ALL_REGS and contain all the registers. Another class must be named NO_REGS and contain
no registers. Often the union of two classes will be another class; however, this is not
required.

One of the classes must be named GENERAL_REGS. There is nothing terribly special about
the name, but the operand constraint letters `r' and `g' specify this class. If GENERAL_REGS
is the same as ALL_REGS, just de�ne it as a macro which expands to ALL_REGS.

Order the classes so that if class x is contained in class y then x has a lower class number
than y.

The way classes other than GENERAL_REGS are speci�ed in operand constraints is through
machine-dependent operand constraint letters. You can de�ne such letters to correspond
to various classes, then use them in operand constraints.

You should de�ne a class for the union of two classes whenever some instruction allows
both classes. For example, if an instruction allows either a
oating point (coprocessor)
register or a general register for a certain operand, you should de�ne a class FLOAT_OR_

GENERAL_REGS which includes both of them. Otherwise you will get suboptimal code.

You must also specify certain redundant information about the register classes: for each
class, which classes contain it and which ones are contained in it; for each pair of classes,
the largest class contained in their union.

When a value occupying several consecutive registers is expected in a certain class, all
the registers used must belong to that class. Therefore, register classes cannot be used to
enforce a requirement for a register pair to start with an even-numbered register. The way
to specify this requirement is with HARD_REGNO_MODE_OK.

Register classes used for input-operands of bitwise-and or shift instructions have a special
requirement: each such class must have, for each �xed-point machine mode, a subclass whose
registers can transfer that mode to or from memory. For example, on some machines, the
operations for single-byte values (QImode) are limited to certain registers. When this is so,
each register class that is used in a bitwise-and or shift instruction must have a subclass

324 GNU Compiler Collection (GCC) Internals

consisting of registers from which single-byte values can be loaded or stored. This is so that
PREFERRED_RELOAD_CLASS can always have a possible value to return.

[Data type]enum reg_class
An enumerated type that must be de�ned with all the register class names as enu-
merated values. NO_REGS must be �rst. ALL_REGS must be the last register class,
followed by one more enumerated value, LIM_REG_CLASSES, which is not a register
class but rather tells how many classes there are.

Each register class has a number, which is the value of casting the class name to type
int. The number serves as an index in many of the tables described below.

[Macro]N_REG_CLASSES
The number of distinct register classes, de�ned as follows:

#define N_REG_CLASSES (int) LIM_REG_CLASSES

[Macro]REG_CLASS_NAMES
An initializer containing the names of the register classes as C string constants. These
names are used in writing some of the debugging dumps.

[Macro]REG_CLASS_CONTENTS
An initializer containing the contents of the register classes, as integers which are bit
masks. The nth integer speci�es the contents of class n. The way the integer mask is
interpreted is that register r is in the class if mask & (1 << r) is 1.

When the machine has more than 32 registers, an integer does not su�ce. Then the
integers are replaced by sub-initializers, braced groupings containing several integers.
Each sub-initializer must be suitable as an initializer for the type HARD_REG_SET

which is de�ned in `hard-reg-set.h'. In this situation, the �rst integer in each sub-
initializer corresponds to registers 0 through 31, the second integer to registers 32
through 63, and so on.

[Macro]REGNO_REG_CLASS (regno)
A C expression whose value is a register class containing hard register regno. In
general there is more than one such class; choose a class which is minimal, meaning
that no smaller class also contains the register.

[Macro]BASE_REG_CLASS
A macro whose de�nition is the name of the class to which a valid base register must
belong. A base register is one used in an address which is the register value plus a
displacement.

[Macro]MODE_BASE_REG_CLASS (mode)
This is a variation of the BASE_REG_CLASS macro which allows the selection of a base
register in a mode dependent manner. If mode is VOIDmode then it should return
the same value as BASE_REG_CLASS.

[Macro]MODE_BASE_REG_REG_CLASS (mode)
A C expression whose value is the register class to which a valid base register must
belong in order to be used in a base plus index register address. You should de�ne
this macro if base plus index addresses have di�erent requirements than other base
register uses.

Chapter 15: Target Description Macros and Functions 325

[Macro]MODE_CODE_BASE_REG_CLASS (mode, outer_code, index_code)
A C expression whose value is the register class to which a valid base register must
belong. outer code and index code de�ne the context in which the base register
occurs. outer code is the code of the immediately enclosing expression (MEM for the
top level of an address, ADDRESS for something that occurs in an address_operand).
index code is the code of the corresponding index expression if outer code is PLUS;
SCRATCH otherwise.

[Macro]INDEX_REG_CLASS
A macro whose de�nition is the name of the class to which a valid index register must
belong. An index register is one used in an address where its value is either multiplied
by a scale factor or added to another register (as well as added to a displacement).

[Macro]MODE_INDEX_REG_CLASS (mode)
This is a variation of the INDEX_REG_CLASS macro which allows the selection of an
index register in a mode dependent manner. It can return NO_REGS for modes that do
not support any form of index register. If mode is VOIDmode then the macro should
return a class of registers that is suitable for all addresses in which an index register
of some form is allowed.

[Macro]REGNO_OK_FOR_BASE_P (num)
A C expression which is nonzero if register number num is suitable for use as a base
register in operand addresses. It may be either a suitable hard register or a pseudo
register that has been allocated such a hard register.

[Macro]REGNO_MODE_OK_FOR_BASE_P (num, mode)
A C expression that is just like REGNO_OK_FOR_BASE_P, except that that expression
may examine the mode of the memory reference in mode. You should de�ne this
macro if the mode of the memory reference a�ects whether a register may be used as
a base register. If you de�ne this macro, the compiler will use it instead of REGNO_OK_
FOR_BASE_P. The mode may be VOIDmode for addresses that appear outside a MEM,
i.e. as an address_operand.

[Macro]REGNO_MODE_OK_FOR_REG_BASE_P (num, mode)
A C expression which is nonzero if register number num is suitable for use as a base
register in base plus index operand addresses, accessing memory in mode mode. It
may be either a suitable hard register or a pseudo register that has been allocated
such a hard register. You should de�ne this macro if base plus index addresses have
di�erent requirements than other base register uses.

Use of this macro is deprecated; please use the more general REGNO_MODE_CODE_OK_
FOR_BASE_P.

[Macro]REGNO_MODE_CODE_OK_FOR_BASE_P (num, mode, outer_code,
index_code)

A C expression that is just like REGNO_MODE_OK_FOR_BASE_P, except that that expres-
sion may examine the context in which the register appears in the memory reference.
outer code is the code of the immediately enclosing expression (MEM if at the top
level of the address, ADDRESS for something that occurs in an address_operand).
index code is the code of the corresponding index expression if outer code is PLUS;

326 GNU Compiler Collection (GCC) Internals

SCRATCH otherwise. The mode may be VOIDmode for addresses that appear outside a
MEM, i.e. as an address_operand.

[Macro]REGNO_OK_FOR_INDEX_P (num)
A C expression which is nonzero if register number num is suitable for use as an index
register in operand addresses. It may be either a suitable hard register or a pseudo
register that has been allocated such a hard register.

The di�erence between an index register and a base register is that the index register
may be scaled. If an address involves the sum of two registers, neither one of them
scaled, then either one may be labeled the \base" and the other the \index"; but
whichever labeling is used must �t the machine's constraints of which registers may
serve in each capacity. The compiler will try both labelings, looking for one that is
valid, and will reload one or both registers only if neither labeling works.

[Macro]REGNO_MODE_OK_FOR_INDEX_P (num, mode)
A C expression that is just like REGNO_OK_FOR_INDEX_P, except that the expression
may examine the mode of the memory reference in mode. If mode is VOIDmode, the
macro should return true if x is suitable for all modes in which some form of index
register is allowed.

[Macro]PREFERRED_RELOAD_CLASS (x, class)
A C expression that places additional restrictions on the register class to use when it
is necessary to copy value x into a register in class class. The value is a register class;
perhaps class, or perhaps another, smaller class. On many machines, the following
de�nition is safe:

#define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS

Sometimes returning a more restrictive class makes better code. For example, on the
68000, when x is an integer constant that is in range for a `moveq' instruction, the
value of this macro is always DATA_REGS as long as class includes the data registers.
Requiring a data register guarantees that a `moveq' will be used.

One case where PREFERRED_RELOAD_CLASS must not return class is if x is a legitimate
constant which cannot be loaded into some register class. By returning NO_REGS

you can force x into a memory location. For example, rs6000 can load immediate
values into general-purpose registers, but does not have an instruction for loading an
immediate value into a
oating-point register, so PREFERRED_RELOAD_CLASS returns
NO_REGS when x is a
oating-point constant. If the constant can't be loaded into any
kind of register, code generation will be better if LEGITIMATE_CONSTANT_P makes the
constant illegitimate instead of using PREFERRED_RELOAD_CLASS.

If an insn has pseudos in it after register allocation, reload will go through the alter-
natives and call repeatedly PREFERRED_RELOAD_CLASS to �nd the best one. Returning
NO_REGS, in this case, makes reload add a ! in front of the constraint: the x86 back-
end uses this feature to discourage usage of 387 registers when math is done in the
SSE registers (and vice versa).

[Macro]PREFERRED_OUTPUT_RELOAD_CLASS (x, class)
Like PREFERRED_RELOAD_CLASS, but for output reloads instead of input reloads. If
you don't de�ne this macro, the default is to use class, unchanged.

Chapter 15: Target Description Macros and Functions 327

You can also use PREFERRED_OUTPUT_RELOAD_CLASS to discourage reload from using
some alternatives, like PREFERRED_RELOAD_CLASS.

[Macro]LIMIT_RELOAD_CLASS (mode, class)
A C expression that places additional restrictions on the register class to use when it
is necessary to be able to hold a value of mode mode in a reload register for which
class class would ordinarily be used.

Unlike PREFERRED_RELOAD_CLASS, this macro should be used when there are certain
modes that simply can't go in certain reload classes.

The value is a register class; perhaps class, or perhaps another, smaller class.

Don't de�ne this macro unless the target machine has limitations which require the
macro to do something nontrivial.

[Target Hook]enum reg_class TARGET SECONDARY RELOAD (bool in_p, rtx
x, enum reg class reload_class, enum machine mode reload_mode,
secondary reload info *sri)

Many machines have some registers that cannot be copied directly to or from memory
or even from other types of registers. An example is the `MQ' register, which on most
machines, can only be copied to or from general registers, but not memory. Below,
we shall be using the term 'intermediate register' when a move operation cannot be
performed directly, but has to be done by copying the source into the intermediate
register �rst, and then copying the intermediate register to the destination. An in-
termediate register always has the same mode as source and destination. Since it
holds the actual value being copied, reload might apply optimizations to re-use an
intermediate register and eliding the copy from the source when it can determine that
the intermediate register still holds the required value.

Another kind of secondary reload is required on some machines which allow copying
all registers to and from memory, but require a scratch register for stores to some
memory locations (e.g., those with symbolic address on the RT, and those with certain
symbolic address on the SPARC when compiling PIC). Scratch registers need not have
the same mode as the value being copied, and usually hold a di�erent value that that
being copied. Special patterns in the md �le are needed to describe how the copy
is performed with the help of the scratch register; these patterns also describe the
number, register class(es) and mode(s) of the scratch register(s).

In some cases, both an intermediate and a scratch register are required.

For input reloads, this target hook is called with nonzero in p, and x is an rtx that
needs to be copied to a register in of class reload class in reload mode. For output
reloads, this target hook is called with zero in p, and a register of class reload mode
needs to be copied to rtx x in reload mode.

If copying a register of reload class from/to x requires an intermediate register, the
hook secondary_reload should return the register class required for this intermediate
register. If no intermediate register is required, it should return NO REGS. If more
than one intermediate register is required, describe the one that is closest in the copy
chain to the reload register.

If scratch registers are needed, you also have to describe how to perform the copy
from/to the reload register to/from this closest intermediate register. Or if no inter-

328 GNU Compiler Collection (GCC) Internals

mediate register is required, but still a scratch register is needed, describe the copy
from/to the reload register to/from the reload operand x.

You do this by setting sri->icode to the instruction code of a pattern in the md
�le which performs the move. Operands 0 and 1 are the output and input of this
copy, respectively. Operands from operand 2 onward are for scratch operands. These
scratch operands must have a mode, and a single-register-class output constraint.

When an intermediate register is used, the secondary_reload hook will be called
again to determine how to copy the intermediate register to/from the reload operand
x, so your hook must also have code to handle the register class of the intermediate
operand.

x might be a pseudo-register or a subreg of a pseudo-register, which could either be
in a hard register or in memory. Use true_regnum to �nd out; it will return �1 if
the pseudo is in memory and the hard register number if it is in a register.

Scratch operands in memory (constraint "=m" / "=&m") are currently not supported.
For the time being, you will have to continue to use SECONDARY_MEMORY_NEEDED for
that purpose.

copy_cost also uses this target hook to �nd out how values are copied. If you want
it to include some extra cost for the need to allocate (a) scratch register(s), set sri-
>extra_cost to the additional cost. Or if two dependent moves are supposed to have a
lower cost than the sum of the individual moves due to expected fortuitous scheduling
and/or special forwarding logic, you can set sri->extra_cost to a negative amount.

[Macro]SECONDARY_RELOAD_CLASS (class, mode, x)
[Macro]SECONDARY_INPUT_RELOAD_CLASS (class, mode, x)
[Macro]SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x)

These macros are obsolete, new ports should use the target hook TARGET_SECONDARY_

RELOAD instead.

These are obsolete macros, replaced by the TARGET_SECONDARY_RELOAD target hook.
Older ports still de�ne these macros to indicate to the reload phase that it may need
to allocate at least one register for a reload in addition to the register to contain the
data. Speci�cally, if copying x to a register class in mode requires an intermediate
register, you were supposed to de�ne SECONDARY_INPUT_RELOAD_CLASS to return the
largest register class all of whose registers can be used as intermediate registers or
scratch registers.

If copying a register class in mode to x requires an intermediate or scratch register,
SECONDARY_OUTPUT_RELOAD_CLASS was supposed to be de�ned be de�ned to return
the largest register class required. If the requirements for input and output reloads
were the same, the macro SECONDARY_RELOAD_CLASS should have been used instead
of de�ning both macros identically.

The values returned by these macros are often GENERAL_REGS. Return NO_REGS if no
spare register is needed; i.e., if x can be directly copied to or from a register of class
in mode without requiring a scratch register. Do not de�ne this macro if it would
always return NO_REGS.

If a scratch register is required (either with or without an intermediate register), you
were supposed to de�ne patterns for `reload_inm ' or `reload_outm ', as required

Chapter 15: Target Description Macros and Functions 329

(see Section 14.9 [Standard Names], page 236. These patterns, which were normally
implemented with a define_expand, should be similar to the `movm ' patterns, except
that operand 2 is the scratch register.

These patterns need constraints for the reload register and scratch register that con-
tain a single register class. If the original reload register (whose class is class) can
meet the constraint given in the pattern, the value returned by these macros is used
for the class of the scratch register. Otherwise, two additional reload registers are
required. Their classes are obtained from the constraints in the insn pattern.

x might be a pseudo-register or a subreg of a pseudo-register, which could either be
in a hard register or in memory. Use true_regnum to �nd out; it will return �1 if
the pseudo is in memory and the hard register number if it is in a register.

These macros should not be used in the case where a particular class of registers
can only be copied to memory and not to another class of registers. In that case,
secondary reload registers are not needed and would not be helpful. Instead, a stack
location must be used to perform the copy and the movm pattern should use memory
as an intermediate storage. This case often occurs between
oating-point and general
registers.

[Macro]SECONDARY_MEMORY_NEEDED (class1, class2, m)
Certain machines have the property that some registers cannot be copied to some
other registers without using memory. De�ne this macro on those machines to be
a C expression that is nonzero if objects of mode m in registers of class1 can only
be copied to registers of class class2 by storing a register of class1 into memory and
loading that memory location into a register of class2.

Do not de�ne this macro if its value would always be zero.

[Macro]SECONDARY_MEMORY_NEEDED_RTX (mode)
Normally when SECONDARY_MEMORY_NEEDED is de�ned, the compiler allocates a stack
slot for a memory location needed for register copies. If this macro is de�ned, the
compiler instead uses the memory location de�ned by this macro.

Do not de�ne this macro if you do not de�ne SECONDARY_MEMORY_NEEDED.

[Macro]SECONDARY_MEMORY_NEEDED_MODE (mode)
When the compiler needs a secondary memory location to copy between two registers
of mode mode, it normally allocates su�cient memory to hold a quantity of BITS_
PER_WORD bits and performs the store and load operations in a mode that many bits
wide and whose class is the same as that of mode.

This is right thing to do on most machines because it ensures that all bits of the
register are copied and prevents accesses to the registers in a narrower mode, which
some machines prohibit for
oating-point registers.

However, this default behavior is not correct on some machines, such as the DEC
Alpha, that store short integers in
oating-point registers di�erently than in integer
registers. On those machines, the default widening will not work correctly and you
must de�ne this macro to suppress that widening in some cases. See the �le `alpha.h'
for details.

Do not de�ne this macro if you do not de�ne SECONDARY_MEMORY_NEEDED or if widen-
ing mode to a mode that is BITS_PER_WORD bits wide is correct for your machine.

330 GNU Compiler Collection (GCC) Internals

[Macro]SMALL_REGISTER_CLASSES
On some machines, it is risky to let hard registers live across arbitrary insns. Typically,
these machines have instructions that require values to be in speci�c registers (like
an accumulator), and reload will fail if the required hard register is used for another
purpose across such an insn.

De�ne SMALL_REGISTER_CLASSES to be an expression with a nonzero value on these
machines. When this macro has a nonzero value, the compiler will try to minimize
the lifetime of hard registers.

It is always safe to de�ne this macro with a nonzero value, but if you unnecessarily
de�ne it, you will reduce the amount of optimizations that can be performed in some
cases. If you do not de�ne this macro with a nonzero value when it is required, the
compiler will run out of spill registers and print a fatal error message. For most
machines, you should not de�ne this macro at all.

[Macro]CLASS_LIKELY_SPILLED_P (class)
A C expression whose value is nonzero if pseudos that have been assigned to registers
of class class would likely be spilled because registers of class are needed for spill
registers.

The default value of this macro returns 1 if class has exactly one register and zero
otherwise. On most machines, this default should be used. Only de�ne this macro
to some other expression if pseudos allocated by `local-alloc.c' end up in memory
because their hard registers were needed for spill registers. If this macro returns
nonzero for those classes, those pseudos will only be allocated by `global.c', which
knows how to reallocate the pseudo to another register. If there would not be another
register available for reallocation, you should not change the de�nition of this macro
since the only e�ect of such a de�nition would be to slow down register allocation.

[Macro]CLASS_MAX_NREGS (class, mode)
A C expression for the maximum number of consecutive registers of class class needed
to hold a value of mode mode.

This is closely related to the macro HARD_REGNO_NREGS. In fact, the value of the
macro CLASS_MAX_NREGS (class, mode) should be the maximum value of HARD_

REGNO_NREGS (regno, mode) for all regno values in the class class.

This macro helps control the handling of multiple-word values in the reload pass.

[Macro]CANNOT_CHANGE_MODE_CLASS (from, to, class)
If de�ned, a C expression that returns nonzero for a class for which a change from
mode from to mode to is invalid.

For the example, loading 32-bit integer or
oating-point objects into
oating-point
registers on the Alpha extends them to 64 bits. Therefore loading a 64-bit object and
then storing it as a 32-bit object does not store the low-order 32 bits, as would be the
case for a normal register. Therefore, `alpha.h' de�nes CANNOT_CHANGE_MODE_CLASS
as below:

#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
(GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)

Chapter 15: Target Description Macros and Functions 331

15.9 Obsolete Macros for De�ning Constraints

Machine-speci�c constraints can be de�ned with these macros instead of the machine de-
scription constructs described in Section 14.8.6 [De�ne Constraints], page 233. This mech-
anism is obsolete. New ports should not use it; old ports should convert to the new mech-
anism.

[Macro]CONSTRAINT_LEN (char, str)
For the constraint at the start of str, which starts with the letter c, return the
length. This allows you to have register class / constant / extra constraints that
are longer than a single letter; you don't need to de�ne this macro if you can do
with single-letter constraints only. The de�nition of this macro should use DE-
FAULT CONSTRAINT LEN for all the characters that you don't want to handle
specially. There are some sanity checks in genoutput.c that check the constraint
lengths for the md �le, so you can also use this macro to help you while you are
transitioning from a byzantine single-letter-constraint scheme: when you return a
negative length for a constraint you want to re-use, genoutput will complain about
every instance where it is used in the md �le.

[Macro]REG_CLASS_FROM_LETTER (char)
A C expression which de�nes the machine-dependent operand constraint letters for
register classes. If char is such a letter, the value should be the register class cor-
responding to it. Otherwise, the value should be NO_REGS. The register letter `r',
corresponding to class GENERAL_REGS, will not be passed to this macro; you do not
need to handle it.

[Macro]REG_CLASS_FROM_CONSTRAINT (char, str)
Like REG_CLASS_FROM_LETTER, but you also get the constraint string passed in str,
so that you can use su�xes to distinguish between di�erent variants.

[Macro]CONST_OK_FOR_LETTER_P (value, c)
A C expression that de�nes the machine-dependent operand constraint letters (`I',
`J', `K', . . . `P') that specify particular ranges of integer values. If c is one of those
letters, the expression should check that value, an integer, is in the appropriate range
and return 1 if so, 0 otherwise. If c is not one of those letters, the value should be 0
regardless of value.

[Macro]CONST_OK_FOR_CONSTRAINT_P (value, c, str)
Like CONST_OK_FOR_LETTER_P, but you also get the constraint string passed in str,
so that you can use su�xes to distinguish between di�erent variants.

[Macro]CONST_DOUBLE_OK_FOR_LETTER_P (value, c)
A C expression that de�nes the machine-dependent operand constraint letters that
specify particular ranges of const_double values (`G' or `H').

If c is one of those letters, the expression should check that value, an RTX of code
const_double, is in the appropriate range and return 1 if so, 0 otherwise. If c is not
one of those letters, the value should be 0 regardless of value.

const_double is used for all
oating-point constants and for DImode �xed-point con-
stants. A given letter can accept either or both kinds of values. It can use GET_MODE
to distinguish between these kinds.

332 GNU Compiler Collection (GCC) Internals

[Macro]CONST_DOUBLE_OK_FOR_CONSTRAINT_P (value, c, str)
Like CONST_DOUBLE_OK_FOR_LETTER_P, but you also get the constraint string passed
in str, so that you can use su�xes to distinguish between di�erent variants.

[Macro]EXTRA_CONSTRAINT (value, c)
A C expression that de�nes the optional machine-dependent constraint letters that
can be used to segregate speci�c types of operands, usually memory references, for
the target machine. Any letter that is not elsewhere de�ned and not matched by
REG_CLASS_FROM_LETTER / REG_CLASS_FROM_CONSTRAINT may be used. Normally
this macro will not be de�ned.

If it is required for a particular target machine, it should return 1 if value corresponds
to the operand type represented by the constraint letter c. If c is not de�ned as an
extra constraint, the value returned should be 0 regardless of value.

For example, on the ROMP, load instructions cannot have their output in r0 if the
memory reference contains a symbolic address. Constraint letter `Q' is de�ned as
representing a memory address that does not contain a symbolic address. An alter-
native is speci�ed with a `Q' constraint on the input and `r' on the output. The next
alternative speci�es `m' on the input and a register class that does not include r0 on
the output.

[Macro]EXTRA_CONSTRAINT_STR (value, c, str)
Like EXTRA_CONSTRAINT, but you also get the constraint string passed in str, so that
you can use su�xes to distinguish between di�erent variants.

[Macro]EXTRA_MEMORY_CONSTRAINT (c, str)
A C expression that de�nes the optional machine-dependent constraint letters,
amongst those accepted by EXTRA_CONSTRAINT, that should be treated like memory
constraints by the reload pass.

It should return 1 if the operand type represented by the constraint at the start of
str, the �rst letter of which is the letter c, comprises a subset of all memory references
including all those whose address is simply a base register. This allows the reload
pass to reload an operand, if it does not directly correspond to the operand type of
c, by copying its address into a base register.

For example, on the S/390, some instructions do not accept arbitrary memory refer-
ences, but only those that do not make use of an index register. The constraint letter
`Q' is de�ned via EXTRA_CONSTRAINT as representing a memory address of this type.
If the letter `Q' is marked as EXTRA_MEMORY_CONSTRAINT, a `Q' constraint can handle
any memory operand, because the reload pass knows it can be reloaded by copying
the memory address into a base register if required. This is analogous to the way a
`o' constraint can handle any memory operand.

[Macro]EXTRA_ADDRESS_CONSTRAINT (c, str)
A C expression that de�nes the optional machine-dependent constraint letters,
amongst those accepted by EXTRA_CONSTRAINT / EXTRA_CONSTRAINT_STR, that
should be treated like address constraints by the reload pass.

It should return 1 if the operand type represented by the constraint at the start of str,
which starts with the letter c, comprises a subset of all memory addresses including

Chapter 15: Target Description Macros and Functions 333

all those that consist of just a base register. This allows the reload pass to reload an
operand, if it does not directly correspond to the operand type of str, by copying it
into a base register.

Any constraint marked as EXTRA_ADDRESS_CONSTRAINT can only be used with the
address_operand predicate. It is treated analogously to the `p' constraint.

15.10 Stack Layout and Calling Conventions

This describes the stack layout and calling conventions.

15.10.1 Basic Stack Layout

Here is the basic stack layout.

[Macro]STACK_GROWS_DOWNWARD
De�ne this macro if pushing a word onto the stack moves the stack pointer to a
smaller address.

When we say, \de�ne this macro if . . . ", it means that the compiler checks this macro
only with #ifdef so the precise de�nition used does not matter.

[Macro]STACK_PUSH_CODE
This macro de�nes the operation used when something is pushed on the stack. In
RTL, a push operation will be (set (mem (STACK_PUSH_CODE (reg sp))) ...)

The choices are PRE_DEC, POST_DEC, PRE_INC, and POST_INC. Which of these is
correct depends on the stack direction and on whether the stack pointer points to the
last item on the stack or whether it points to the space for the next item on the stack.

The default is PRE_DEC when STACK_GROWS_DOWNWARD is de�ned, which is almost
always right, and PRE_INC otherwise, which is often wrong.

[Macro]FRAME_GROWS_DOWNWARD
De�ne this macro to nonzero value if the addresses of local variable slots are at
negative o�sets from the frame pointer.

[Macro]ARGS_GROW_DOWNWARD
De�ne this macro if successive arguments to a function occupy decreasing addresses
on the stack.

[Macro]STARTING_FRAME_OFFSET
O�set from the frame pointer to the �rst local variable slot to be allocated.

If FRAME_GROWS_DOWNWARD, �nd the next slot's o�set by subtracting the �rst slot's
length from STARTING_FRAME_OFFSET. Otherwise, it is found by adding the length of
the �rst slot to the value STARTING_FRAME_OFFSET.

[Macro]STACK_ALIGNMENT_NEEDED
De�ne to zero to disable �nal alignment of the stack during reload. The nonzero
default for this macro is suitable for most ports.

On ports where STARTING_FRAME_OFFSET is nonzero or where there is a register save
block following the local block that doesn't require alignment to STACK_BOUNDARY, it
may be bene�cial to disable stack alignment and do it in the backend.

334 GNU Compiler Collection (GCC) Internals

[Macro]STACK_POINTER_OFFSET
O�set from the stack pointer register to the �rst location at which outgoing arguments
are placed. If not speci�ed, the default value of zero is used. This is the proper value
for most machines.

If ARGS_GROW_DOWNWARD, this is the o�set to the location above the �rst location at
which outgoing arguments are placed.

[Macro]FIRST_PARM_OFFSET (fundecl)
O�set from the argument pointer register to the �rst argument's address. On some
machines it may depend on the data type of the function.

If ARGS_GROW_DOWNWARD, this is the o�set to the location above the �rst argument's
address.

[Macro]STACK_DYNAMIC_OFFSET (fundecl)
O�set from the stack pointer register to an item dynamically allocated on the stack,
e.g., by alloca.

The default value for this macro is STACK_POINTER_OFFSET plus the length of the
outgoing arguments. The default is correct for most machines. See `function.c' for
details.

[Macro]INITIAL_FRAME_ADDRESS_RTX
A C expression whose value is RTL representing the address of the initial stack frame.
This address is passed to RETURN_ADDR_RTX and DYNAMIC_CHAIN_ADDRESS. If you
don't de�ne this macro, a reasonable default value will be used. De�ne this macro in
order to make frame pointer elimination work in the presence of __builtin_frame_
address (count) and __builtin_return_address (count) for count not equal to
zero.

[Macro]DYNAMIC_CHAIN_ADDRESS (frameaddr)
A C expression whose value is RTL representing the address in a stack frame where the
pointer to the caller's frame is stored. Assume that frameaddr is an RTL expression
for the address of the stack frame itself.

If you don't de�ne this macro, the default is to return the value of frameaddr|that
is, the stack frame address is also the address of the stack word that points to the
previous frame.

[Macro]SETUP_FRAME_ADDRESSES
If de�ned, a C expression that produces the machine-speci�c code to setup the stack
so that arbitrary frames can be accessed. For example, on the SPARC, we must
ush
all of the register windows to the stack before we can access arbitrary stack frames.
You will seldom need to de�ne this macro.

[Target Hook]bool TARGET_BUILTIN_SETJMP_FRAME_VALUE ()
This target hook should return an rtx that is used to store the address of the current
frame into the built in setjmp bu�er. The default value, virtual_stack_vars_rtx,
is correct for most machines. One reason you may need to de�ne this target hook is
if hard_frame_pointer_rtx is the appropriate value on your machine.

Chapter 15: Target Description Macros and Functions 335

[Macro]FRAME_ADDR_RTX (frameaddr)
A C expression whose value is RTL representing the value of the frame address for
the current frame. frameaddr is the frame pointer of the current frame. This is used
for builtin frame address. You need only de�ne this macro if the frame address is
not the same as the frame pointer. Most machines do not need to de�ne it.

[Macro]RETURN_ADDR_RTX (count, frameaddr)
A C expression whose value is RTL representing the value of the return address for
the frame count steps up from the current frame, after the prologue. frameaddr is
the frame pointer of the count frame, or the frame pointer of the count � 1 frame if
RETURN_ADDR_IN_PREVIOUS_FRAME is de�ned.

The value of the expression must always be the correct address when count is zero,
but may be NULL_RTX if there is not way to determine the return address of other
frames.

[Macro]RETURN_ADDR_IN_PREVIOUS_FRAME
De�ne this if the return address of a particular stack frame is accessed from the frame
pointer of the previous stack frame.

[Macro]INCOMING_RETURN_ADDR_RTX
A C expression whose value is RTL representing the location of the incoming return
address at the beginning of any function, before the prologue. This RTL is either a
REG, indicating that the return value is saved in `REG', or a MEM representing a location
in the stack.

You only need to de�ne this macro if you want to support call frame debugging
information like that provided by DWARF 2.

If this RTL is a REG, you should also de�ne DWARF_FRAME_RETURN_COLUMN to DWARF_

FRAME_REGNUM (REGNO).

[Macro]DWARF_ALT_FRAME_RETURN_COLUMN
A C expression whose value is an integer giving a DWARF 2 column number that
may be used as an alternative return column. The column must not correspond to
any gcc hard register (that is, it must not be in the range of DWARF_FRAME_REGNUM).

This macro can be useful if DWARF_FRAME_RETURN_COLUMN is set to a general register,
but an alternative column needs to be used for signal frames. Some targets have also
used di�erent frame return columns over time.

[Macro]DWARF_ZERO_REG
A C expression whose value is an integer giving a DWARF 2 register number that is
considered to always have the value zero. This should only be de�ned if the target
has an architected zero register, and someone decided it was a good idea to use that
register number to terminate the stack backtrace. New ports should avoid this.

[Target Hook]void TARGET_DWARF_HANDLE_FRAME_UNSPEC (const char *label,
rtx pattern, int index)

This target hook allows the backend to emit frame-related insns that contain UN-
SPECs or UNSPEC VOLATILEs. The DWARF 2 call frame debugging info engine
will invoke it on insns of the form

336 GNU Compiler Collection (GCC) Internals

(set (reg) (unspec [...] UNSPEC_INDEX))

and

(set (reg) (unspec_volatile [...] UNSPECV_INDEX)).

to let the backend emit the call frame instructions. label is the CFI label attached to
the insn, pattern is the pattern of the insn and index is UNSPEC_INDEX or UNSPECV_
INDEX.

[Macro]INCOMING_FRAME_SP_OFFSET
A C expression whose value is an integer giving the o�set, in bytes, from the value
of the stack pointer register to the top of the stack frame at the beginning of any
function, before the prologue. The top of the frame is de�ned to be the value of the
stack pointer in the previous frame, just before the call instruction.

You only need to de�ne this macro if you want to support call frame debugging
information like that provided by DWARF 2.

[Macro]ARG_POINTER_CFA_OFFSET (fundecl)
A C expression whose value is an integer giving the o�set, in bytes, from the argument
pointer to the canonical frame address (cfa). The �nal value should coincide with that
calculated by INCOMING_FRAME_SP_OFFSET. Which is unfortunately not usable during
virtual register instantiation.

The default value for this macro is FIRST_PARM_OFFSET (fundecl), which is correct
for most machines; in general, the arguments are found immediately before the stack
frame. Note that this is not the case on some targets that save registers into the
caller's frame, such as SPARC and rs6000, and so such targets need to de�ne this
macro.

You only need to de�ne this macro if the default is incorrect, and you want to support
call frame debugging information like that provided by DWARF 2.

[Macro]FRAME_POINTER_CFA_OFFSET (fundecl)
If de�ned, a C expression whose value is an integer giving the o�set in bytes from the
frame pointer to the canonical frame address (cfa). The �nal value should coincide
with that calculated by INCOMING_FRAME_SP_OFFSET.

Normally the CFA is calculated as an o�set from the argument pointer, via ARG_

POINTER_CFA_OFFSET, but if the argument pointer is variable due to the ABI, this
may not be possible. If this macro is de�ned, it implies that the virtual register
instantiation should be based on the frame pointer instead of the argument pointer.
Only one of FRAME_POINTER_CFA_OFFSET and ARG_POINTER_CFA_OFFSET should be
de�ned.

[Macro]CFA_FRAME_BASE_OFFSET (fundecl)
If de�ned, a C expression whose value is an integer giving the o�set in bytes from the
canonical frame address (cfa) to the frame base used in DWARF 2 debug information.
The default is zero. A di�erent value may reduce the size of debug information on
some ports.

Chapter 15: Target Description Macros and Functions 337

15.10.2 Exception Handling Support

[Macro]EH_RETURN_DATA_REGNO (N)
A C expression whose value is the Nth register number used for data by exception
handlers, or INVALID_REGNUM if fewer than N registers are usable.

The exception handling library routines communicate with the exception handlers via
a set of agreed upon registers. Ideally these registers should be call-clobbered; it is
possible to use call-saved registers, but may negatively impact code size. The target
must support at least 2 data registers, but should de�ne 4 if there are enough free
registers.

You must de�ne this macro if you want to support call frame exception handling like
that provided by DWARF 2.

[Macro]EH_RETURN_STACKADJ_RTX
A C expression whose value is RTL representing a location in which to store a stack
adjustment to be applied before function return. This is used to unwind the stack to
an exception handler's call frame. It will be assigned zero on code paths that return
normally.

Typically this is a call-clobbered hard register that is otherwise untouched by the
epilogue, but could also be a stack slot.

Do not de�ne this macro if the stack pointer is saved and restored by the regular
prolog and epilog code in the call frame itself; in this case, the exception handling
library routines will update the stack location to be restored in place. Otherwise, you
must de�ne this macro if you want to support call frame exception handling like that
provided by DWARF 2.

[Macro]EH_RETURN_HANDLER_RTX
A C expression whose value is RTL representing a location in which to store the
address of an exception handler to which we should return. It will not be assigned on
code paths that return normally.

Typically this is the location in the call frame at which the normal return address is
stored. For targets that return by popping an address o� the stack, this might be a
memory address just below the target call frame rather than inside the current call
frame. If de�ned, EH_RETURN_STACKADJ_RTX will have already been assigned, so it
may be used to calculate the location of the target call frame.

Some targets have more complex requirements than storing to an address calculable
during initial code generation. In that case the eh_return instruction pattern should
be used instead.

If you want to support call frame exception handling, you must de�ne either this
macro or the eh_return instruction pattern.

[Macro]RETURN_ADDR_OFFSET
If de�ned, an integer-valued C expression for which rtl will be generated to add it to
the exception handler address before it is searched in the exception handling tables,
and to subtract it again from the address before using it to return to the exception
handler.

338 GNU Compiler Collection (GCC) Internals

[Macro]ASM_PREFERRED_EH_DATA_FORMAT (code, global)
This macro chooses the encoding of pointers embedded in the exception handling
sections. If at all possible, this should be de�ned such that the exception handling
section will not require dynamic relocations, and so may be read-only.

code is 0 for data, 1 for code labels, 2 for function pointers. global is true if the symbol
may be a�ected by dynamic relocations. The macro should return a combination of
the DW_EH_PE_* de�nes as found in `dwarf2.h'.

If this macro is not de�ned, pointers will not be encoded but represented directly.

[Macro]ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX (file, encoding, size, addr,
done)

This macro allows the target to emit whatever special magic is required to represent
the encoding chosen by ASM_PREFERRED_EH_DATA_FORMAT. Generic code takes care of
pc-relative and indirect encodings; this must be de�ned if the target uses text-relative
or data-relative encodings.

This is a C statement that branches to done if the format was handled. encoding is
the format chosen, size is the number of bytes that the format occupies, addr is the
SYMBOL_REF to be emitted.

[Macro]MD_UNWIND_SUPPORT
A string specifying a �le to be #include'd in unwind-dw2.c. The �le so included
typically de�nes MD_FALLBACK_FRAME_STATE_FOR.

[Macro]MD_FALLBACK_FRAME_STATE_FOR (context, fs)
This macro allows the target to add cpu and operating system speci�c code to the call-
frame unwinder for use when there is no unwind data available. The most common
reason to implement this macro is to unwind through signal frames.

This macro is called from uw_frame_state_for in `unwind-dw2.c' and
`unwind-ia64.c'. context is an _Unwind_Context; fs is an _Unwind_FrameState.
Examine context->ra for the address of the code being executed and context->cfa

for the stack pointer value. If the frame can be decoded, the register save addresses
should be updated in fs and the macro should evaluate to _URC_NO_REASON. If the
frame cannot be decoded, the macro should evaluate to _URC_END_OF_STACK.

For proper signal handling in Java this macro is accompanied by MAKE_THROW_FRAME,
de�ned in `libjava/include/*-signal.h' headers.

[Macro]MD_HANDLE_UNWABI (context, fs)
This macro allows the target to add operating system speci�c code to the call-frame
unwinder to handle the IA-64 .unwabi unwinding directive, usually used for signal
or interrupt frames.

This macro is called from uw_update_context in `unwind-ia64.c'. context is an
_Unwind_Context; fs is an _Unwind_FrameState. Examine fs->unwabi for the abi
and context in the .unwabi directive. If the .unwabi directive can be handled, the
register save addresses should be updated in fs.

[Macro]TARGET_USES_WEAK_UNWIND_INFO
A C expression that evaluates to true if the target requires unwind info to be given
comdat linkage. De�ne it to be 1 if comdat linkage is necessary. The default is 0.

Chapter 15: Target Description Macros and Functions 339

15.10.3 Specifying How Stack Checking is Done

GCC will check that stack references are within the boundaries of the stack, if the
`-fstack-check' is speci�ed, in one of three ways:

1. If the value of the STACK_CHECK_BUILTIN macro is nonzero, GCC will assume that
you have arranged for stack checking to be done at appropriate places in the con�gu-
ration �les, e.g., in TARGET_ASM_FUNCTION_PROLOGUE. GCC will do not other special
processing.

2. If STACK_CHECK_BUILTIN is zero and you de�ned a named pattern called check_stack

in your `md' �le, GCC will call that pattern with one argument which is the address to
compare the stack value against. You must arrange for this pattern to report an error
if the stack pointer is out of range.

3. If neither of the above are true, GCC will generate code to periodically \probe" the
stack pointer using the values of the macros de�ned below.

Normally, you will use the default values of these macros, so GCC will use the third
approach.

[Macro]STACK_CHECK_BUILTIN
A nonzero value if stack checking is done by the con�guration �les in a machine-
dependent manner. You should de�ne this macro if stack checking is require by the
ABI of your machine or if you would like to have to stack checking in some more
e�cient way than GCC's portable approach. The default value of this macro is zero.

[Macro]STACK_CHECK_PROBE_INTERVAL
An integer representing the interval at which GCC must generate stack probe in-
structions. You will normally de�ne this macro to be no larger than the size of the
\guard pages" at the end of a stack area. The default value of 4096 is suitable for
most systems.

[Macro]STACK_CHECK_PROBE_LOAD
A integer which is nonzero if GCC should perform the stack probe as a load instruction
and zero if GCC should use a store instruction. The default is zero, which is the most
e�cient choice on most systems.

[Macro]STACK_CHECK_PROTECT
The number of bytes of stack needed to recover from a stack over
ow, for languages
where such a recovery is supported. The default value of 75 words should be adequate
for most machines.

[Macro]STACK_CHECK_MAX_FRAME_SIZE
The maximum size of a stack frame, in bytes. GCC will generate probe instructions
in non-leaf functions to ensure at least this many bytes of stack are available. If a
stack frame is larger than this size, stack checking will not be reliable and GCC will
issue a warning. The default is chosen so that GCC only generates one instruction
on most systems. You should normally not change the default value of this macro.

[Macro]STACK_CHECK_FIXED_FRAME_SIZE
GCC uses this value to generate the above warning message. It represents the amount
of �xed frame used by a function, not including space for any callee-saved registers,

340 GNU Compiler Collection (GCC) Internals

temporaries and user variables. You need only specify an upper bound for this amount
and will normally use the default of four words.

[Macro]STACK_CHECK_MAX_VAR_SIZE
The maximum size, in bytes, of an object that GCC will place in the �xed area of
the stack frame when the user speci�es `-fstack-check'. GCC computed the default
from the values of the above macros and you will normally not need to override that
default.

15.10.4 Registers That Address the Stack Frame

This discusses registers that address the stack frame.

[Macro]STACK_POINTER_REGNUM
The register number of the stack pointer register, which must also be a �xed register
according to FIXED_REGISTERS. On most machines, the hardware determines which
register this is.

[Macro]FRAME_POINTER_REGNUM
The register number of the frame pointer register, which is used to access automatic
variables in the stack frame. On some machines, the hardware determines which
register this is. On other machines, you can choose any register you wish for this
purpose.

[Macro]HARD_FRAME_POINTER_REGNUM
On some machines the o�set between the frame pointer and starting o�set of the
automatic variables is not known until after register allocation has been done (for
example, because the saved registers are between these two locations). On those
machines, de�ne FRAME_POINTER_REGNUM the number of a special, �xed register to be
used internally until the o�set is known, and de�ne HARD_FRAME_POINTER_REGNUM to
be the actual hard register number used for the frame pointer.

You should de�ne this macro only in the very rare circumstances when it is not possi-
ble to calculate the o�set between the frame pointer and the automatic variables until
after register allocation has been completed. When this macro is de�ned, you must
also indicate in your de�nition of ELIMINABLE_REGS how to eliminate FRAME_POINTER_
REGNUM into either HARD_FRAME_POINTER_REGNUM or STACK_POINTER_REGNUM.

Do not de�ne this macro if it would be the same as FRAME_POINTER_REGNUM.

[Macro]ARG_POINTER_REGNUM
The register number of the arg pointer register, which is used to access the function's
argument list. On some machines, this is the same as the frame pointer register. On
some machines, the hardware determines which register this is. On other machines,
you can choose any register you wish for this purpose. If this is not the same register
as the frame pointer register, then you must mark it as a �xed register according to
FIXED_REGISTERS, or arrange to be able to eliminate it (see Section 15.10.5 [Elimi-
nation], page 342).

[Macro]RETURN_ADDRESS_POINTER_REGNUM
The register number of the return address pointer register, which is used to access
the current function's return address from the stack. On some machines, the return

Chapter 15: Target Description Macros and Functions 341

address is not at a �xed o�set from the frame pointer or stack pointer or argument
pointer. This register can be de�ned to point to the return address on the stack, and
then be converted by ELIMINABLE_REGS into either the frame pointer or stack pointer.

Do not de�ne this macro unless there is no other way to get the return address from
the stack.

[Macro]STATIC_CHAIN_REGNUM
[Macro]STATIC_CHAIN_INCOMING_REGNUM

Register numbers used for passing a function's static chain pointer. If register
windows are used, the register number as seen by the called function is
STATIC_CHAIN_INCOMING_REGNUM, while the register number as seen by the
calling function is STATIC_CHAIN_REGNUM. If these registers are the same,
STATIC_CHAIN_INCOMING_REGNUM need not be de�ned.

The static chain register need not be a �xed register.

If the static chain is passed in memory, these macros should not be de�ned; instead,
the next two macros should be de�ned.

[Macro]STATIC_CHAIN
[Macro]STATIC_CHAIN_INCOMING

If the static chain is passed in memory, these macros provide rtx giving mem expressions
that denote where they are stored. STATIC_CHAIN and STATIC_CHAIN_INCOMING give
the locations as seen by the calling and called functions, respectively. Often the former
will be at an o�set from the stack pointer and the latter at an o�set from the frame
pointer.

The variables stack_pointer_rtx, frame_pointer_rtx, and arg_pointer_rtx will
have been initialized prior to the use of these macros and should be used to refer to
those items.

If the static chain is passed in a register, the two previous macros should be de�ned
instead.

[Macro]DWARF_FRAME_REGISTERS
This macro speci�es the maximum number of hard registers that can be saved in a
call frame. This is used to size data structures used in DWARF2 exception handling.

Prior to GCC 3.0, this macro was needed in order to establish a stable exception
handling ABI in the face of adding new hard registers for ISA extensions. In GCC
3.0 and later, the EH ABI is insulated from changes in the number of hard registers.
Nevertheless, this macro can still be used to reduce the runtime memory requirements
of the exception handling routines, which can be substantial if the ISA contains a lot
of registers that are not call-saved.

If this macro is not de�ned, it defaults to FIRST_PSEUDO_REGISTER.

[Macro]PRE_GCC3_DWARF_FRAME_REGISTERS
This macro is similar to DWARF_FRAME_REGISTERS, but is provided for backward com-
patibility in pre GCC 3.0 compiled code.

If this macro is not de�ned, it defaults to DWARF_FRAME_REGISTERS.

342 GNU Compiler Collection (GCC) Internals

[Macro]DWARF_REG_TO_UNWIND_COLUMN (regno)
De�ne this macro if the target's representation for dwarf registers is di�erent than
the internal representation for unwind column. Given a dwarf register, this macro
should return the internal unwind column number to use instead.

See the PowerPC's SPE target for an example.

[Macro]DWARF_FRAME_REGNUM (regno)
De�ne this macro if the target's representation for dwarf registers used in .eh frame
or .debug frame is di�erent from that used in other debug info sections. Given a GCC
hard register number, this macro should return the .eh frame register number. The
default is DBX_REGISTER_NUMBER (regno).

[Macro]DWARF2_FRAME_REG_OUT (regno, for_eh)
De�ne this macro to map register numbers held in the call frame info that GCC has
collected using DWARF_FRAME_REGNUM to those that should be output in .debug frame
(for_eh is zero) and .eh frame (for_eh is nonzero). The default is to return regno .

15.10.5 Eliminating Frame Pointer and Arg Pointer

This is about eliminating the frame pointer and arg pointer.

[Macro]FRAME_POINTER_REQUIRED
A C expression which is nonzero if a function must have and use a frame pointer.
This expression is evaluated in the reload pass. If its value is nonzero the function
will have a frame pointer.

The expression can in principle examine the current function and decide according to
the facts, but on most machines the constant 0 or the constant 1 su�ces. Use 0 when
the machine allows code to be generated with no frame pointer, and doing so saves
some time or space. Use 1 when there is no possible advantage to avoiding a frame
pointer.

In certain cases, the compiler does not know how to produce valid code without
a frame pointer. The compiler recognizes those cases and automatically gives the
function a frame pointer regardless of what FRAME_POINTER_REQUIRED says. You
don't need to worry about them.

In a function that does not require a frame pointer, the frame pointer register can
be allocated for ordinary usage, unless you mark it as a �xed register. See FIXED_

REGISTERS for more information.

[Macro]INITIAL_FRAME_POINTER_OFFSET (depth-var)
A C statement to store in the variable depth-var the di�erence between the frame
pointer and the stack pointer values immediately after the function prologue. The
value would be computed from information such as the result of get_frame_size ()

and the tables of registers regs_ever_live and call_used_regs.

If ELIMINABLE_REGS is de�ned, this macro will be not be used and need not be de�ned.
Otherwise, it must be de�ned even if FRAME_POINTER_REQUIRED is de�ned to always
be true; in that case, you may set depth-var to anything.

Chapter 15: Target Description Macros and Functions 343

[Macro]ELIMINABLE_REGS
If de�ned, this macro speci�es a table of register pairs used to eliminate unneeded
registers that point into the stack frame. If it is not de�ned, the only elimination
attempted by the compiler is to replace references to the frame pointer with references
to the stack pointer.

The de�nition of this macro is a list of structure initializations, each of which speci�es
an original and replacement register.

On some machines, the position of the argument pointer is not known until the
compilation is completed. In such a case, a separate hard register must be used for
the argument pointer. This register can be eliminated by replacing it with either
the frame pointer or the argument pointer, depending on whether or not the frame
pointer has been eliminated.

In this case, you might specify:

#define ELIMINABLE_REGS \
{{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}

Note that the elimination of the argument pointer with the stack pointer is speci�ed
�rst since that is the preferred elimination.

[Macro]CAN_ELIMINATE (from-reg, to-reg)
A C expression that returns nonzero if the compiler is allowed to try to replace
register number from-reg with register number to-reg. This macro need only be
de�ned if ELIMINABLE_REGS is de�ned, and will usually be the constant 1, since most
of the cases preventing register elimination are things that the compiler already knows
about.

[Macro]INITIAL_ELIMINATION_OFFSET (from-reg, to-reg, offset-var)
This macro is similar to INITIAL_FRAME_POINTER_OFFSET. It speci�es the initial
di�erence between the speci�ed pair of registers. This macro must be de�ned if
ELIMINABLE_REGS is de�ned.

15.10.6 Passing Function Arguments on the Stack

The macros in this section control how arguments are passed on the stack. See the following
section for other macros that control passing certain arguments in registers.

[Target Hook]bool TARGET_PROMOTE_PROTOTYPES (tree fntype)
This target hook returns true if an argument declared in a prototype as an integral
type smaller than int should actually be passed as an int. In addition to avoiding
errors in certain cases of mismatch, it also makes for better code on certain machines.
The default is to not promote prototypes.

[Macro]PUSH_ARGS
A C expression. If nonzero, push insns will be used to pass outgoing arguments. If
the target machine does not have a push instruction, set it to zero. That directs GCC
to use an alternate strategy: to allocate the entire argument block and then store the
arguments into it. When PUSH_ARGS is nonzero, PUSH_ROUNDING must be de�ned too.

344 GNU Compiler Collection (GCC) Internals

[Macro]PUSH_ARGS_REVERSED
A C expression. If nonzero, function arguments will be evaluated from last to �rst,
rather than from �rst to last. If this macro is not de�ned, it defaults to PUSH_ARGS

on targets where the stack and args grow in opposite directions, and 0 otherwise.

[Macro]PUSH_ROUNDING (npushed)
A C expression that is the number of bytes actually pushed onto the stack when an
instruction attempts to push npushed bytes.

On some machines, the de�nition
#define PUSH_ROUNDING(BYTES) (BYTES)

will su�ce. But on other machines, instructions that appear to push one byte actually
push two bytes in an attempt to maintain alignment. Then the de�nition should be

#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)

[Macro]ACCUMULATE_OUTGOING_ARGS
A C expression. If nonzero, the maximum amount of space required for outgoing argu-
ments will be computed and placed into the variable current_function_outgoing_
args_size. No space will be pushed onto the stack for each call; instead, the function
prologue should increase the stack frame size by this amount.

Setting both PUSH_ARGS and ACCUMULATE_OUTGOING_ARGS is not proper.

[Macro]REG_PARM_STACK_SPACE (fndecl)
De�ne this macro if functions should assume that stack space has been allocated for
arguments even when their values are passed in registers.

The value of this macro is the size, in bytes, of the area reserved for arguments passed
in registers for the function represented by fndecl, which can be zero if GCC is calling
a library function.

This space can be allocated by the caller, or be a part of the machine-dependent stack
frame: OUTGOING_REG_PARM_STACK_SPACE says which.

[Macro]OUTGOING_REG_PARM_STACK_SPACE
De�ne this if it is the responsibility of the caller to allocate the area reserved for
arguments passed in registers.

If ACCUMULATE_OUTGOING_ARGS is de�ned, this macro controls whether the space for
these arguments counts in the value of current_function_outgoing_args_size.

[Macro]STACK_PARMS_IN_REG_PARM_AREA
De�ne this macro if REG_PARM_STACK_SPACE is de�ned, but the stack parameters
don't skip the area speci�ed by it.

Normally, when a parameter is not passed in registers, it is placed on the stack beyond
the REG_PARM_STACK_SPACE area. De�ning this macro suppresses this behavior and
causes the parameter to be passed on the stack in its natural location.

[Macro]RETURN_POPS_ARGS (fundecl, funtype, stack-size)
A C expression that should indicate the number of bytes of its own arguments that
a function pops on returning, or 0 if the function pops no arguments and the caller
must therefore pop them all after the function returns.

Chapter 15: Target Description Macros and Functions 345

fundecl is a C variable whose value is a tree node that describes the function in
question. Normally it is a node of type FUNCTION_DECL that describes the declaration
of the function. From this you can obtain the DECL_ATTRIBUTES of the function.

funtype is a C variable whose value is a tree node that describes the function in
question. Normally it is a node of type FUNCTION_TYPE that describes the data type
of the function. From this it is possible to obtain the data types of the value and
arguments (if known).

When a call to a library function is being considered, fundecl will contain an identi�er
node for the library function. Thus, if you need to distinguish among various library
functions, you can do so by their names. Note that \library function" in this context
means a function used to perform arithmetic, whose name is known specially in the
compiler and was not mentioned in the C code being compiled.

stack-size is the number of bytes of arguments passed on the stack. If a variable
number of bytes is passed, it is zero, and argument popping will always be the re-
sponsibility of the calling function.

On the VAX, all functions always pop their arguments, so the de�nition of this macro
is stack-size. On the 68000, using the standard calling convention, no functions pop
their arguments, so the value of the macro is always 0 in this case. But an alternative
calling convention is available in which functions that take a �xed number of argu-
ments pop them but other functions (such as printf) pop nothing (the caller pops
all). When this convention is in use, funtype is examined to determine whether a
function takes a �xed number of arguments.

[Macro]CALL_POPS_ARGS (cum)
A C expression that should indicate the number of bytes a call sequence pops o� the
stack. It is added to the value of RETURN_POPS_ARGS when compiling a function call.

cum is the variable in which all arguments to the called function have been accumu-
lated.

On certain architectures, such as the SH5, a call trampoline is used that pops certain
registers o� the stack, depending on the arguments that have been passed to the
function. Since this is a property of the call site, not of the called function, RETURN_
POPS_ARGS is not appropriate.

15.10.7 Passing Arguments in Registers

This section describes the macros which let you control how various types of arguments are
passed in registers or how they are arranged in the stack.

[Macro]FUNCTION_ARG (cum, mode, type, named)
A C expression that controls whether a function argument is passed in a register, and
which register.

The arguments are cum, which summarizes all the previous arguments; mode, the
machine mode of the argument; type, the data type of the argument as a tree node or
0 if that is not known (which happens for C support library functions); and named,
which is 1 for an ordinary argument and 0 for nameless arguments that correspond to
`...' in the called function's prototype. type can be an incomplete type if a syntax
error has previously occurred.

346 GNU Compiler Collection (GCC) Internals

The value of the expression is usually either a reg RTX for the hard register in which
to pass the argument, or zero to pass the argument on the stack.

For machines like the VAX and 68000, where normally all arguments are pushed, zero
su�ces as a de�nition.

The value of the expression can also be a parallel RTX. This is used when an
argument is passed in multiple locations. The mode of the parallel should be the
mode of the entire argument. The parallel holds any number of expr_list pairs;
each one describes where part of the argument is passed. In each expr_list the
�rst operand must be a reg RTX for the hard register in which to pass this part
of the argument, and the mode of the register RTX indicates how large this part of
the argument is. The second operand of the expr_list is a const_int which gives
the o�set in bytes into the entire argument of where this part starts. As a special
exception the �rst expr_list in the parallel RTX may have a �rst operand of zero.
This indicates that the entire argument is also stored on the stack.

The last time this macro is called, it is called with MODE == VOIDmode, and its result
is passed to the call or call_value pattern as operands 2 and 3 respectively.

The usual way to make the ISO library `stdarg.h' work on a machine where some
arguments are usually passed in registers, is to cause nameless arguments to be passed
on the stack instead. This is done by making FUNCTION_ARG return 0 whenever named
is 0.

You may use the hook targetm.calls.must_pass_in_stack in the de�nition of this
macro to determine if this argument is of a type that must be passed in the stack. If
REG_PARM_STACK_SPACE is not de�ned and FUNCTION_ARG returns nonzero for such an
argument, the compiler will abort. If REG_PARM_STACK_SPACE is de�ned, the argument
will be computed in the stack and then loaded into a register.

[Target Hook]bool TARGET_MUST_PASS_IN_STACK (enum machine mode mode,
tree type)

This target hook should return true if we should not pass type solely in registers.
The �le `expr.h' de�nes a de�nition that is usually appropriate, refer to `expr.h' for
additional documentation.

[Macro]FUNCTION_INCOMING_ARG (cum, mode, type, named)
De�ne this macro if the target machine has \register windows", so that the register
in which a function sees an arguments is not necessarily the same as the one in which
the caller passed the argument.

For such machines, FUNCTION_ARG computes the register in which the caller passes
the value, and FUNCTION_INCOMING_ARG should be de�ned in a similar fashion to tell
the function being called where the arguments will arrive.

If FUNCTION_INCOMING_ARG is not de�ned, FUNCTION_ARG serves both purposes.

[Target Hook]int TARGET_ARG_PARTIAL_BYTES (CUMULATIVE ARGS *cum,
enum machine mode mode, tree type, bool named)

This target hook returns the number of bytes at the beginning of an argument that
must be put in registers. The value must be zero for arguments that are passed
entirely in registers or that are entirely pushed on the stack.

Chapter 15: Target Description Macros and Functions 347

On some machines, certain arguments must be passed partially in registers and par-
tially in memory. On these machines, typically the �rst few words of arguments are
passed in registers, and the rest on the stack. If a multi-word argument (a double

or a structure) crosses that boundary, its �rst few words must be passed in registers
and the rest must be pushed. This macro tells the compiler when this occurs, and
how many bytes should go in registers.

FUNCTION_ARG for these arguments should return the �rst register to be used by the
caller for this argument; likewise FUNCTION_INCOMING_ARG, for the called function.

[Target Hook]bool TARGET_PASS_BY_REFERENCE (CUMULATIVE ARGS *cum,
enum machine mode mode, tree type, bool named)

This target hook should return true if an argument at the position indicated by cum
should be passed by reference. This predicate is queried after target independent
reasons for being passed by reference, such as TREE_ADDRESSABLE (type).

If the hook returns true, a copy of that argument is made in memory and a pointer
to the argument is passed instead of the argument itself. The pointer is passed in
whatever way is appropriate for passing a pointer to that type.

[Target Hook]bool TARGET_CALLEE_COPIES (CUMULATIVE ARGS *cum, enum
machine mode mode, tree type, bool named)

The function argument described by the parameters to this hook is known to be
passed by reference. The hook should return true if the function argument should be
copied by the callee instead of copied by the caller.

For any argument for which the hook returns true, if it can be determined that the
argument is not modi�ed, then a copy need not be generated.

The default version of this hook always returns false.

[Macro]CUMULATIVE_ARGS
A C type for declaring a variable that is used as the �rst argument of FUNCTION_ARG
and other related values. For some target machines, the type int su�ces and can
hold the number of bytes of argument so far.

There is no need to record in CUMULATIVE_ARGS anything about the arguments that
have been passed on the stack. The compiler has other variables to keep track of that.
For target machines on which all arguments are passed on the stack, there is no need
to store anything in CUMULATIVE_ARGS; however, the data structure must exist and
should not be empty, so use int.

[Macro]INIT_CUMULATIVE_ARGS (cum, fntype, libname, fndecl,
n_named_args)

A C statement (sans semicolon) for initializing the variable cum for the state at the
beginning of the argument list. The variable has type CUMULATIVE_ARGS. The value
of fntype is the tree node for the data type of the function which will receive the args,
or 0 if the args are to a compiler support library function. For direct calls that are not
libcalls, fndecl contain the declaration node of the function. fndecl is also set when
INIT_CUMULATIVE_ARGS is used to �nd arguments for the function being compiled.
n named args is set to the number of named arguments, including a structure return

348 GNU Compiler Collection (GCC) Internals

address if it is passed as a parameter, when making a call. When processing incoming
arguments, n named args is set to �1.

When processing a call to a compiler support library function, libname identi�es
which one. It is a symbol_ref rtx which contains the name of the function, as a
string. libname is 0 when an ordinary C function call is being processed. Thus, each
time this macro is called, either libname or fntype is nonzero, but never both of them
at once.

[Macro]INIT_CUMULATIVE_LIBCALL_ARGS (cum, mode, libname)
Like INIT_CUMULATIVE_ARGS but only used for outgoing libcalls, it gets a MODE argu-
ment instead of fntype, that would be NULL. indirect would always be zero, too. If
this macro is not de�ned, INIT_CUMULATIVE_ARGS (cum, NULL_RTX, libname, 0) is
used instead.

[Macro]INIT_CUMULATIVE_INCOMING_ARGS (cum, fntype, libname)
Like INIT_CUMULATIVE_ARGS but overrides it for the purposes of �nding the argu-
ments for the function being compiled. If this macro is unde�ned, INIT_CUMULATIVE_
ARGS is used instead.

The value passed for libname is always 0, since library routines with special calling
conventions are never compiled with GCC. The argument libname exists for symme-
try with INIT_CUMULATIVE_ARGS.

[Macro]FUNCTION_ARG_ADVANCE (cum, mode, type, named)
A C statement (sans semicolon) to update the summarizer variable cum to advance
past an argument in the argument list. The values mode, type and named describe
that argument. Once this is done, the variable cum is suitable for analyzing the
following argument with FUNCTION_ARG, etc.

This macro need not do anything if the argument in question was passed on the
stack. The compiler knows how to track the amount of stack space used for arguments
without any special help.

[Macro]FUNCTION_ARG_PADDING (mode, type)
If de�ned, a C expression which determines whether, and in which direction, to pad
out an argument with extra space. The value should be of type enum direction:
either upward to pad above the argument, downward to pad below, or none to inhibit
padding.

The amount of padding is always just enough to reach the next multiple of FUNCTION_
ARG_BOUNDARY; this macro does not control it.

This macro has a default de�nition which is right for most systems. For little-endian
machines, the default is to pad upward. For big-endian machines, the default is to
pad downward for an argument of constant size shorter than an int, and upward
otherwise.

[Macro]PAD_VARARGS_DOWN
If de�ned, a C expression which determines whether the default implementation of
va arg will attempt to pad down before reading the next argument, if that argument
is smaller than its aligned space as controlled by PARM_BOUNDARY. If this macro is not
de�ned, all such arguments are padded down if BYTES_BIG_ENDIAN is true.

Chapter 15: Target Description Macros and Functions 349

[Macro]BLOCK_REG_PADDING (mode, type, first)
Specify padding for the last element of a block move between registers and memory.
�rst is nonzero if this is the only element. De�ning this macro allows better control of
register function parameters on big-endian machines, without using PARALLEL rtl. In
particular, MUST_PASS_IN_STACK need not test padding and mode of types in registers,
as there is no longer a "wrong" part of a register; For example, a three byte aggregate
may be passed in the high part of a register if so required.

[Macro]FUNCTION_ARG_BOUNDARY (mode, type)
If de�ned, a C expression that gives the alignment boundary, in bits, of an argument
with the speci�ed mode and type. If it is not de�ned, PARM_BOUNDARY is used for all
arguments.

[Macro]FUNCTION_ARG_REGNO_P (regno)
A C expression that is nonzero if regno is the number of a hard register in which
function arguments are sometimes passed. This does not include implicit arguments
such as the static chain and the structure-value address. On many machines, no
registers can be used for this purpose since all function arguments are pushed on the
stack.

[Target Hook]bool TARGET_SPLIT_COMPLEX_ARG (tree type)
This hook should return true if parameter of type type are passed as two scalar
parameters. By default, GCC will attempt to pack complex arguments into the
target's word size. Some ABIs require complex arguments to be split and treated
as their individual components. For example, on AIX64, complex
oats should be
passed in a pair of
oating point registers, even though a complex
oat would �t in
one 64-bit
oating point register.

The default value of this hook is NULL, which is treated as always false.

[Target Hook]tree TARGET_BUILD_BUILTIN_VA_LIST (void)
This hook returns a type node for va_list for the target. The default version of the
hook returns void*.

[Target Hook]tree TARGET_GIMPLIFY_VA_ARG_EXPR (tree valist, tree type, tree
*pre_p, tree *post_p)

This hook performs target-speci�c gimpli�cation of VA_ARG_EXPR. The �rst two
parameters correspond to the arguments to va_arg; the latter two are as in
gimplify.c:gimplify_expr.

[Target Hook]bool TARGET_VALID_POINTER_MODE (enum machine mode mode)
De�ne this to return nonzero if the port can handle pointers with machine mode
mode. The default version of this hook returns true for both ptr_mode and Pmode.

[Target Hook]bool TARGET_SCALAR_MODE_SUPPORTED_P (enum machine mode
mode)

De�ne this to return nonzero if the port is prepared to handle insns involving scalar
mode mode. For a scalar mode to be considered supported, all the basic arithmetic
and comparisons must work.

350 GNU Compiler Collection (GCC) Internals

The default version of this hook returns true for any mode required to handle the
basic C types (as de�ned by the port). Included here are the double-word arithmetic
supported by the code in `optabs.c'.

[Target Hook]bool TARGET_VECTOR_MODE_SUPPORTED_P (enum machine mode
mode)

De�ne this to return nonzero if the port is prepared to handle insns involving vector
mode mode. At the very least, it must have move patterns for this mode.

15.10.8 How Scalar Function Values Are Returned

This section discusses the macros that control returning scalars as values|values that can
�t in registers.

[Target Hook]rtx TARGET_FUNCTION_VALUE (tree ret_type, tree
fn_decl_or_type, bool outgoing)

De�ne this to return an RTX representing the place where a function returns or
receives a value of data type ret type, a tree node node representing a data type.
fn decl or type is a tree node representing FUNCTION_DECL or FUNCTION_TYPE of a
function being called. If outgoing is false, the hook should compute the register in
which the caller will see the return value. Otherwise, the hook should return an RTX
representing the place where a function returns a value.

On many machines, only TYPE_MODE (ret_type) is relevant. (Actually, on most
machines, scalar values are returned in the same place regardless of mode.) The value
of the expression is usually a reg RTX for the hard register where the return value
is stored. The value can also be a parallel RTX, if the return value is in multiple
places. See FUNCTION_ARG for an explanation of the parallel form. Note that the
callee will populate every location speci�ed in the parallel, but if the �rst element
of the parallel contains the whole return value, callers will use that element as the
canonical location and ignore the others. The m68k port uses this type of parallel
to return pointers in both `%a0' (the canonical location) and `%d0'.

If TARGET_PROMOTE_FUNCTION_RETURN returns true, you must apply the same promo-
tion rules speci�ed in PROMOTE_MODE if valtype is a scalar type.

If the precise function being called is known, func is a tree node (FUNCTION_DECL)
for it; otherwise, func is a null pointer. This makes it possible to use a di�erent
value-returning convention for speci�c functions when all their calls are known.

Some target machines have \register windows" so that the register in which a function
returns its value is not the same as the one in which the caller sees the value. For
such machines, you should return di�erent RTX depending on outgoing.

TARGET_FUNCTION_VALUE is not used for return values with aggregate data types, be-
cause these are returned in another way. See TARGET_STRUCT_VALUE_RTX and related
macros, below.

[Macro]FUNCTION_VALUE (valtype, func)
This macro has been deprecated. Use TARGET_FUNCTION_VALUE for a new target
instead.

Chapter 15: Target Description Macros and Functions 351

[Macro]FUNCTION_OUTGOING_VALUE (valtype, func)
This macro has been deprecated. Use TARGET_FUNCTION_VALUE for a new target
instead.

[Macro]LIBCALL_VALUE (mode)
A C expression to create an RTX representing the place where a library function
returns a value of mode mode. If the precise function being called is known, func is
a tree node (FUNCTION_DECL) for it; otherwise, func is a null pointer. This makes it
possible to use a di�erent value-returning convention for speci�c functions when all
their calls are known.

Note that \library function" in this context means a compiler support routine, used
to perform arithmetic, whose name is known specially by the compiler and was not
mentioned in the C code being compiled.

The de�nition of LIBRARY_VALUE need not be concerned aggregate data types, because
none of the library functions returns such types.

[Macro]FUNCTION_VALUE_REGNO_P (regno)
A C expression that is nonzero if regno is the number of a hard register in which the
values of called function may come back.

A register whose use for returning values is limited to serving as the second of a pair
(for a value of type double, say) need not be recognized by this macro. So for most
machines, this de�nition su�ces:

#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)

If the machine has register windows, so that the caller and the called function use
di�erent registers for the return value, this macro should recognize only the caller's
register numbers.

[Macro]APPLY_RESULT_SIZE
De�ne this macro if `untyped_call' and `untyped_return' need more space than
is implied by FUNCTION_VALUE_REGNO_P for saving and restoring an arbitrary return
value.

[Target Hook]bool TARGET_RETURN_IN_MSB (tree type)
This hook should return true if values of type type are returned at the most signi�cant
end of a register (in other words, if they are padded at the least signi�cant end). You
can assume that type is returned in a register; the caller is required to check this.

Note that the register provided by TARGET_FUNCTION_VALUE must be able to hold the
complete return value. For example, if a 1-, 2- or 3-byte structure is returned at the
most signi�cant end of a 4-byte register, TARGET_FUNCTION_VALUE should provide an
SImode rtx.

15.10.9 How Large Values Are Returned

When a function value's mode is BLKmode (and in some other cases), the value is not returned
according to TARGET_FUNCTION_VALUE (see Section 15.10.8 [Scalar Return], page 350). In-
stead, the caller passes the address of a block of memory in which the value should be
stored. This address is called the structure value address.

This section describes how to control returning structure values in memory.

352 GNU Compiler Collection (GCC) Internals

[Target Hook]bool TARGET_RETURN_IN_MEMORY (tree type, tree fntype)
This target hook should return a nonzero value to say to return the function value
in memory, just as large structures are always returned. Here type will be the data
type of the value, and fntype will be the type of the function doing the returning, or
NULL for libcalls.

Note that values of mode BLKmode must be explicitly handled by this function. Also,
the option `-fpcc-struct-return' takes e�ect regardless of this macro. On most
systems, it is possible to leave the hook unde�ned; this causes a default de�nition to
be used, whose value is the constant 1 for BLKmode values, and 0 otherwise.

Do not use this hook to indicate that structures and unions should always be returned
in memory. You should instead use DEFAULT_PCC_STRUCT_RETURN to indicate this.

[Macro]DEFAULT_PCC_STRUCT_RETURN
De�ne this macro to be 1 if all structure and union return values must be in memory.
Since this results in slower code, this should be de�ned only if needed for compatibility
with other compilers or with an ABI. If you de�ne this macro to be 0, then the
conventions used for structure and union return values are decided by the TARGET_

RETURN_IN_MEMORY target hook.

If not de�ned, this defaults to the value 1.

[Target Hook]rtx TARGET_STRUCT_VALUE_RTX (tree fndecl, int incoming)
This target hook should return the location of the structure value address (normally
a mem or reg), or 0 if the address is passed as an \invisible" �rst argument. Note that
fndecl may be NULL, for libcalls. You do not need to de�ne this target hook if the
address is always passed as an \invisible" �rst argument.

On some architectures the place where the structure value address is found by the
called function is not the same place that the caller put it. This can be due to register
windows, or it could be because the function prologue moves it to a di�erent place.
incoming is 1 or 2 when the location is needed in the context of the called function,
and 0 in the context of the caller.

If incoming is nonzero and the address is to be found on the stack, return a mem which
refers to the frame pointer. If incoming is 2, the result is being used to fetch the
structure value address at the beginning of a function. If you need to emit adjusting
code, you should do it at this point.

[Macro]PCC_STATIC_STRUCT_RETURN
De�ne this macro if the usual system convention on the target machine for returning
structures and unions is for the called function to return the address of a static variable
containing the value.

Do not de�ne this if the usual system convention is for the caller to pass an address
to the subroutine.

This macro has e�ect in `-fpcc-struct-return' mode, but it does nothing when you
use `-freg-struct-return' mode.

Chapter 15: Target Description Macros and Functions 353

15.10.10 Caller-Saves Register Allocation

If you enable it, GCC can save registers around function calls. This makes it possible to
use call-clobbered registers to hold variables that must live across calls.

[Macro]CALLER_SAVE_PROFITABLE (refs, calls)
A C expression to determine whether it is worthwhile to consider placing a pseudo-
register in a call-clobbered hard register and saving and restoring it around each
function call. The expression should be 1 when this is worth doing, and 0 otherwise.

If you don't de�ne this macro, a default is used which is good on most machines: 4
* calls < refs .

[Macro]HARD_REGNO_CALLER_SAVE_MODE (regno, nregs)
A C expression specifying which mode is required for saving nregs of a pseudo-register
in call-clobbered hard register regno. If regno is unsuitable for caller save, VOIDmode
should be returned. For most machines this macro need not be de�ned since GCC
will select the smallest suitable mode.

15.10.11 Function Entry and Exit

This section describes the macros that output function entry (prologue) and exit (epilogue)
code.

[Target Hook]void TARGET_ASM_FUNCTION_PROLOGUE (FILE *file,
HOST WIDE INT size)

If de�ned, a function that outputs the assembler code for entry to a function. The
prologue is responsible for setting up the stack frame, initializing the frame pointer
register, saving registers that must be saved, and allocating size additional bytes of
storage for the local variables. size is an integer. �le is a stdio stream to which the
assembler code should be output.

The label for the beginning of the function need not be output by this macro. That
has already been done when the macro is run.

To determine which registers to save, the macro can refer to the array regs_ever_

live: element r is nonzero if hard register r is used anywhere within the function.
This implies the function prologue should save register r, provided it is not one of the
call-used registers. (TARGET_ASM_FUNCTION_EPILOGUE must likewise use regs_ever_
live.)

On machines that have \register windows", the function entry code does not save
on the stack the registers that are in the windows, even if they are supposed to be
preserved by function calls; instead it takes appropriate steps to \push" the register
stack, if any non-call-used registers are used in the function.

On machines where functions may or may not have frame-pointers, the function entry
code must vary accordingly; it must set up the frame pointer if one is wanted, and not
otherwise. To determine whether a frame pointer is in wanted, the macro can refer
to the variable frame_pointer_needed. The variable's value will be 1 at run time in
a function that needs a frame pointer. See Section 15.10.5 [Elimination], page 342.

The function entry code is responsible for allocating any stack space required for the
function. This stack space consists of the regions listed below. In most cases, these

354 GNU Compiler Collection (GCC) Internals

regions are allocated in the order listed, with the last listed region closest to the top
of the stack (the lowest address if STACK_GROWS_DOWNWARD is de�ned, and the highest
address if it is not de�ned). You can use a di�erent order for a machine if doing so is
more convenient or required for compatibility reasons. Except in cases where required
by standard or by a debugger, there is no reason why the stack layout used by GCC
need agree with that used by other compilers for a machine.

[Target Hook]void TARGET_ASM_FUNCTION_END_PROLOGUE (FILE *file)
If de�ned, a function that outputs assembler code at the end of a prologue. This
should be used when the function prologue is being emitted as RTL, and you have
some extra assembler that needs to be emitted. See [prologue instruction pattern],
page 254.

[Target Hook]void TARGET_ASM_FUNCTION_BEGIN_EPILOGUE (FILE *file)
If de�ned, a function that outputs assembler code at the start of an epilogue. This
should be used when the function epilogue is being emitted as RTL, and you have
some extra assembler that needs to be emitted. See [epilogue instruction pattern],
page 254.

[Target Hook]void TARGET_ASM_FUNCTION_EPILOGUE (FILE *file,
HOST WIDE INT size)

If de�ned, a function that outputs the assembler code for exit from a function. The
epilogue is responsible for restoring the saved registers and stack pointer to their
values when the function was called, and returning control to the caller. This macro
takes the same arguments as the macro TARGET_ASM_FUNCTION_PROLOGUE, and the
registers to restore are determined from regs_ever_live and CALL_USED_REGISTERS

in the same way.

On some machines, there is a single instruction that does all the work of returning
from the function. On these machines, give that instruction the name `return' and
do not de�ne the macro TARGET_ASM_FUNCTION_EPILOGUE at all.

Do not de�ne a pattern named `return' if you want the TARGET_ASM_FUNCTION_

EPILOGUE to be used. If you want the target switches to control whether return
instructions or epilogues are used, de�ne a `return' pattern with a validity condi-
tion that tests the target switches appropriately. If the `return' pattern's validity
condition is false, epilogues will be used.

On machines where functions may or may not have frame-pointers, the function exit
code must vary accordingly. Sometimes the code for these two cases is completely
di�erent. To determine whether a frame pointer is wanted, the macro can refer to
the variable frame_pointer_needed. The variable's value will be 1 when compiling
a function that needs a frame pointer.

Normally, TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE

must treat leaf functions specially. The C variable current_function_is_leaf is
nonzero for such a function. See Section 15.7.4 [Leaf Functions], page 321.

On some machines, some functions pop their arguments on exit while others leave
that for the caller to do. For example, the 68020 when given `-mrtd' pops arguments
in functions that take a �xed number of arguments.

Chapter 15: Target Description Macros and Functions 355

Your de�nition of the macro RETURN_POPS_ARGS decides which functions pop their
own arguments. TARGET_ASM_FUNCTION_EPILOGUE needs to know what was decided.
The variable that is called current_function_pops_args is the number of bytes
of its arguments that a function should pop. See Section 15.10.8 [Scalar Return],
page 350.

� A region of current_function_pretend_args_size bytes of uninitialized space just
underneath the �rst argument arriving on the stack. (This may not be at the very
start of the allocated stack region if the calling sequence has pushed anything else since
pushing the stack arguments. But usually, on such machines, nothing else has been
pushed yet, because the function prologue itself does all the pushing.) This region is
used on machines where an argument may be passed partly in registers and partly in
memory, and, in some cases to support the features in <stdarg.h>.

� An area of memory used to save certain registers used by the function. The size of this
area, which may also include space for such things as the return address and pointers
to previous stack frames, is machine-speci�c and usually depends on which registers
have been used in the function. Machines with register windows often do not require a
save area.

� A region of at least size bytes, possibly rounded up to an allocation boundary, to
contain the local variables of the function. On some machines, this region and the save
area may occur in the opposite order, with the save area closer to the top of the stack.

� Optionally, when ACCUMULATE_OUTGOING_ARGS is de�ned, a region of current_

function_outgoing_args_size bytes to be used for outgoing argument lists of the
function. See Section 15.10.6 [Stack Arguments], page 343.

[Macro]EXIT_IGNORE_STACK
De�ne this macro as a C expression that is nonzero if the return instruction or the
function epilogue ignores the value of the stack pointer; in other words, if it is safe
to delete an instruction to adjust the stack pointer before a return from the function.
The default is 0.

Note that this macro's value is relevant only for functions for which frame pointers
are maintained. It is never safe to delete a �nal stack adjustment in a function that
has no frame pointer, and the compiler knows this regardless of EXIT_IGNORE_STACK.

[Macro]EPILOGUE_USES (regno)
De�ne this macro as a C expression that is nonzero for registers that are used by the
epilogue or the `return' pattern. The stack and frame pointer registers are already
assumed to be used as needed.

[Macro]EH_USES (regno)
De�ne this macro as a C expression that is nonzero for registers that are used by
the exception handling mechanism, and so should be considered live on entry to an
exception edge.

[Macro]DELAY_SLOTS_FOR_EPILOGUE
De�ne this macro if the function epilogue contains delay slots to which instructions
from the rest of the function can be \moved". The de�nition should be a C expression
whose value is an integer representing the number of delay slots there.

356 GNU Compiler Collection (GCC) Internals

[Macro]ELIGIBLE_FOR_EPILOGUE_DELAY (insn, n)
A C expression that returns 1 if insn can be placed in delay slot number n of the
epilogue.

The argument n is an integer which identi�es the delay slot now being considered
(since di�erent slots may have di�erent rules of eligibility). It is never negative
and is always less than the number of epilogue delay slots (what DELAY_SLOTS_FOR_
EPILOGUE returns). If you reject a particular insn for a given delay slot, in principle,
it may be reconsidered for a subsequent delay slot. Also, other insns may (at least in
principle) be considered for the so far un�lled delay slot.

The insns accepted to �ll the epilogue delay slots are put in an RTL list made with
insn_list objects, stored in the variable current_function_epilogue_delay_list.
The insn for the �rst delay slot comes �rst in the list. Your de�nition of the macro
TARGET_ASM_FUNCTION_EPILOGUE should �ll the delay slots by outputting the insns
in this list, usually by calling final_scan_insn.

You need not de�ne this macro if you did not de�ne DELAY_SLOTS_FOR_EPILOGUE.

[Target Hook]void TARGET_ASM_OUTPUT_MI_THUNK (FILE *file, tree
thunk_fndecl, HOST WIDE INT delta, HOST WIDE INT
vcall_offset, tree function)

A function that outputs the assembler code for a thunk function, used to implement
C++ virtual function calls with multiple inheritance. The thunk acts as a wrapper
around a virtual function, adjusting the implicit object parameter before handing
control o� to the real function.

First, emit code to add the integer delta to the location that contains the incoming
�rst argument. Assume that this argument contains a pointer, and is the one used
to pass the this pointer in C++. This is the incoming argument before the function
prologue, e.g. `%o0' on a sparc. The addition must preserve the values of all other
incoming arguments.

Then, if vcall o�set is nonzero, an additional adjustment should be made after adding
delta. In particular, if p is the adjusted pointer, the following adjustment should be
made:

p += (*((ptrdiff_t **)p))[vcall_offset/sizeof(ptrdiff_t)]

After the additions, emit code to jump to function, which is a FUNCTION_DECL. This is
a direct pure jump, not a call, and does not touch the return address. Hence returning
from FUNCTION will return to whoever called the current `thunk'.

The e�ect must be as if function had been called directly with the adjusted �rst ar-
gument. This macro is responsible for emitting all of the code for a thunk function;
TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE are not in-
voked.

The thunk fndecl is redundant. (delta and function have already been extracted from
it.) It might possibly be useful on some targets, but probably not.

If you do not de�ne this macro, the target-independent code in the C++ front end will
generate a less e�cient heavyweight thunk that calls function instead of jumping to
it. The generic approach does not support varargs.

Chapter 15: Target Description Macros and Functions 357

[Target Hook]bool TARGET_ASM_CAN_OUTPUT_MI_THUNK (tree thunk_fndecl,
HOST WIDE INT delta, HOST WIDE INT vcall_offset, tree
function)

A function that returns true if TARGET ASM OUTPUT MI THUNK would be able
to output the assembler code for the thunk function speci�ed by the arguments it is
passed, and false otherwise. In the latter case, the generic approach will be used by
the C++ front end, with the limitations previously exposed.

15.10.12 Generating Code for Pro�ling

These macros will help you generate code for pro�ling.

[Macro]FUNCTION_PROFILER (file, labelno)
A C statement or compound statement to output to �le some assembler code to call
the pro�ling subroutine mcount.

The details of how mcount expects to be called are determined by your operating
system environment, not by GCC. To �gure them out, compile a small program for
pro�ling using the system's installed C compiler and look at the assembler code that
results.

Older implementations of mcount expect the address of a counter variable to be loaded
into some register. The name of this variable is `LP' followed by the number labelno,
so you would generate the name using `LP%d' in a fprintf.

[Macro]PROFILE_HOOK
A C statement or compound statement to output to �le some assembly code to call
the pro�ling subroutine mcount even the target does not support pro�ling.

[Macro]NO_PROFILE_COUNTERS
De�ne this macro to be an expression with a nonzero value if the mcount subroutine
on your system does not need a counter variable allocated for each function. This is
true for almost all modern implementations. If you de�ne this macro, you must not
use the labelno argument to FUNCTION_PROFILER.

[Macro]PROFILE_BEFORE_PROLOGUE
De�ne this macro if the code for function pro�ling should come before the function
prologue. Normally, the pro�ling code comes after.

15.10.13 Permitting tail calls

[Target Hook]bool TARGET_FUNCTION_OK_FOR_SIBCALL (tree decl, tree exp)
True if it is ok to do sibling call optimization for the speci�ed call expression exp.
decl will be the called function, or NULL if this is an indirect call.

It is not uncommon for limitations of calling conventions to prevent tail calls to
functions outside the current unit of translation, or during PIC compilation. The
hook is used to enforce these restrictions, as the sibcall md pattern can not fail, or
fall over to a \normal" call. The criteria for successful sibling call optimization may
vary greatly between di�erent architectures.

358 GNU Compiler Collection (GCC) Internals

[Target Hook]void TARGET_EXTRA_LIVE_ON_ENTRY (bitmap *regs)
Add any hard registers to regs that are live on entry to the function. This
hook only needs to be de�ned to provide registers that cannot be found
by examination of FUNCTION ARG REGNO P, the callee saved registers,
STATIC CHAIN INCOMING REGNUM, STATIC CHAIN REGNUM, TAR-
GET STRUCT VALUE RTX, FRAME POINTER REGNUM, EH USES,
FRAME POINTER REGNUM, ARG POINTER REGNUM, and the
PIC OFFSET TABLE REGNUM.

15.10.14 Stack smashing protection

[Target Hook]tree TARGET_STACK_PROTECT_GUARD (void)
This hook returns a DECL node for the external variable to use for the stack protection
guard. This variable is initialized by the runtime to some random value and is used
to initialize the guard value that is placed at the top of the local stack frame. The
type of this variable must be ptr_type_node.

The default version of this hook creates a variable called `__stack_chk_guard', which
is normally de�ned in `libgcc2.c'.

[Target Hook]tree TARGET_STACK_PROTECT_FAIL (void)
This hook returns a tree expression that alerts the runtime that the stack protect
guard variable has been modi�ed. This expression should involve a call to a noreturn
function.

The default version of this hook invokes a function called `__stack_chk_fail', taking
no arguments. This function is normally de�ned in `libgcc2.c'.

15.11 Implementing the Varargs Macros

GCC comes with an implementation of <varargs.h> and <stdarg.h> that work without
change on machines that pass arguments on the stack. Other machines require their own
implementations of varargs, and the two machine independent header �les must have con-
ditionals to include it.

ISO <stdarg.h> di�ers from traditional <varargs.h>mainly in the calling convention for
va_start. The traditional implementation takes just one argument, which is the variable
in which to store the argument pointer. The ISO implementation of va_start takes an
additional second argument. The user is supposed to write the last named argument of the
function here.

However, va_start should not use this argument. The way to �nd the end of the named
arguments is with the built-in functions described below.

[Macro]__builtin_saveregs ()
Use this built-in function to save the argument registers in memory so that the varargs
mechanism can access them. Both ISO and traditional versions of va_start must use
__builtin_saveregs, unless you use TARGET_SETUP_INCOMING_VARARGS (see below)
instead.

On some machines, __builtin_saveregs is open-coded under the control of the tar-
get hook TARGET_EXPAND_BUILTIN_SAVEREGS. On other machines, it calls a routine
written in assembler language, found in `libgcc2.c'.

Chapter 15: Target Description Macros and Functions 359

Code generated for the call to __builtin_saveregs appears at the beginning of the
function, as opposed to where the call to __builtin_saveregs is written, regardless
of what the code is. This is because the registers must be saved before the function
starts to use them for its own purposes.

[Macro]__builtin_args_info (category)
Use this built-in function to �nd the �rst anonymous arguments in registers.

In general, a machine may have several categories of registers used for arguments, each
for a particular category of data types. (For example, on some machines,
oating-
point registers are used for
oating-point arguments while other arguments are passed
in the general registers.) To make non-varargs functions use the proper calling conven-
tion, you have de�ned the CUMULATIVE_ARGS data type to record how many registers
in each category have been used so far

__builtin_args_info accesses the same data structure of type CUMULATIVE_ARGS

after the ordinary argument layout is �nished with it, with category specifying which
word to access. Thus, the value indicates the �rst unused register in a given category.

Normally, you would use __builtin_args_info in the implementation of va_start,
accessing each category just once and storing the value in the va_list object. This
is because va_list will have to update the values, and there is no way to alter the
values accessed by __builtin_args_info.

[Macro]__builtin_next_arg (lastarg)
This is the equivalent of __builtin_args_info, for stack arguments. It returns
the address of the �rst anonymous stack argument, as type void *. If ARGS_GROW_
DOWNWARD, it returns the address of the location above the �rst anonymous stack
argument. Use it in va_start to initialize the pointer for fetching arguments from
the stack. Also use it in va_start to verify that the second parameter lastarg is the
last named argument of the current function.

[Macro]__builtin_classify_type (object)
Since each machine has its own conventions for which data types are passed in which
kind of register, your implementation of va_arg has to embody these conventions.
The easiest way to categorize the speci�ed data type is to use __builtin_classify_
type together with sizeof and __alignof__.

__builtin_classify_type ignores the value of object, considering only its data type.
It returns an integer describing what kind of type that is|integer,
oating, pointer,
structure, and so on.

The �le `typeclass.h' de�nes an enumeration that you can use to interpret the values
of __builtin_classify_type.

These machine description macros help implement varargs:

[Target Hook]rtx TARGET_EXPAND_BUILTIN_SAVEREGS (void)
If de�ned, this hook produces the machine-speci�c code for a call to __builtin_

saveregs. This code will be moved to the very beginning of the function, before any
parameter access are made. The return value of this function should be an RTX that
contains the value to use as the return of __builtin_saveregs.

360 GNU Compiler Collection (GCC) Internals

[Target Hook]void TARGET_SETUP_INCOMING_VARARGS (CUMULATIVE ARGS
*args_so_far, enum machine mode mode, tree type, int
*pretend_args_size, int second_time)

This target hook o�ers an alternative to using __builtin_saveregs and de�ning the
hook TARGET_EXPAND_BUILTIN_SAVEREGS. Use it to store the anonymous register
arguments into the stack so that all the arguments appear to have been passed con-
secutively on the stack. Once this is done, you can use the standard implementation
of varargs that works for machines that pass all their arguments on the stack.

The argument args so far points to the CUMULATIVE_ARGS data structure, containing
the values that are obtained after processing the named arguments. The arguments
mode and type describe the last named argument|its machine mode and its data
type as a tree node.

The target hook should do two things: �rst, push onto the stack all the argument
registers not used for the named arguments, and second, store the size of the data
thus pushed into the int-valued variable pointed to by pretend args size. The value
that you store here will serve as additional o�set for setting up the stack frame.

Because you must generate code to push the anonymous arguments at compile time
without knowing their data types, TARGET_SETUP_INCOMING_VARARGS is only useful
on machines that have just a single category of argument register and use it uniformly
for all data types.

If the argument second time is nonzero, it means that the arguments of the function
are being analyzed for the second time. This happens for an inline function, which
is not actually compiled until the end of the source �le. The hook TARGET_SETUP_

INCOMING_VARARGS should not generate any instructions in this case.

[Target Hook]bool TARGET_STRICT_ARGUMENT_NAMING (CUMULATIVE ARGS
*ca)

De�ne this hook to return true if the location where a function argument is passed
depends on whether or not it is a named argument.

This hook controls how the named argument to FUNCTION_ARG is set for varargs and
stdarg functions. If this hook returns true, the named argument is always true for
named arguments, and false for unnamed arguments. If it returns false, but TARGET_
PRETEND_OUTGOING_VARARGS_NAMED returns true, then all arguments are treated as
named. Otherwise, all named arguments except the last are treated as named.

You need not de�ne this hook if it always returns zero.

[Target Hook]bool TARGET_PRETEND_OUTGOING_VARARGS_NAMED
If you need to conditionally change ABIs so that one works with TARGET_SETUP_

INCOMING_VARARGS, but the other works like neither TARGET_SETUP_INCOMING_

VARARGS nor TARGET_STRICT_ARGUMENT_NAMING was de�ned, then de�ne this hook
to return true if TARGET_SETUP_INCOMING_VARARGS is used, false otherwise.
Otherwise, you should not de�ne this hook.

15.12 Trampolines for Nested Functions

A trampoline is a small piece of code that is created at run time when the address of
a nested function is taken. It normally resides on the stack, in the stack frame of the

Chapter 15: Target Description Macros and Functions 361

containing function. These macros tell GCC how to generate code to allocate and initialize
a trampoline.

The instructions in the trampoline must do two things: load a constant address into
the static chain register, and jump to the real address of the nested function. On CISC
machines such as the m68k, this requires two instructions, a move immediate and a jump.
Then the two addresses exist in the trampoline as word-long immediate operands. On RISC
machines, it is often necessary to load each address into a register in two parts. Then pieces
of each address form separate immediate operands.

The code generated to initialize the trampoline must store the variable parts|the static
chain value and the function address|into the immediate operands of the instructions. On
a CISC machine, this is simply a matter of copying each address to a memory reference at
the proper o�set from the start of the trampoline. On a RISC machine, it may be necessary
to take out pieces of the address and store them separately.

[Macro]TRAMPOLINE_TEMPLATE (file)
A C statement to output, on the stream �le, assembler code for a block of data that
contains the constant parts of a trampoline. This code should not include a label|the
label is taken care of automatically.

If you do not de�ne this macro, it means no template is needed for the target. Do
not de�ne this macro on systems where the block move code to copy the trampoline
into place would be larger than the code to generate it on the spot.

[Macro]TRAMPOLINE_SECTION
Return the section into which the trampoline template is to be placed (see Sec-
tion 15.19 [Sections], page 381). The default value is readonly_data_section.

[Macro]TRAMPOLINE_SIZE
A C expression for the size in bytes of the trampoline, as an integer.

[Macro]TRAMPOLINE_ALIGNMENT
Alignment required for trampolines, in bits.

If you don't de�ne this macro, the value of BIGGEST_ALIGNMENT is used for aligning
trampolines.

[Macro]INITIALIZE_TRAMPOLINE (addr, fnaddr, static_chain)
A C statement to initialize the variable parts of a trampoline. addr is an RTX for the
address of the trampoline; fnaddr is an RTX for the address of the nested function;
static chain is an RTX for the static chain value that should be passed to the function
when it is called.

[Macro]TRAMPOLINE_ADJUST_ADDRESS (addr)
A C statement that should perform any machine-speci�c adjustment in the address of
the trampoline. Its argument contains the address that was passed to INITIALIZE_

TRAMPOLINE. In case the address to be used for a function call should be di�erent
from the address in which the template was stored, the di�erent address should be
assigned to addr. If this macro is not de�ned, addr will be used for function calls.

If this macro is not de�ned, by default the trampoline is allocated as a stack slot.
This default is right for most machines. The exceptions are machines where it is

362 GNU Compiler Collection (GCC) Internals

impossible to execute instructions in the stack area. On such machines, you may
have to implement a separate stack, using this macro in conjunction with TARGET_

ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE.

fp points to a data structure, a struct function, which describes the compilation
status of the immediate containing function of the function which the trampoline
is for. The stack slot for the trampoline is in the stack frame of this containing
function. Other allocation strategies probably must do something analogous with
this information.

Implementing trampolines is di�cult on many machines because they have separate in-
struction and data caches. Writing into a stack location fails to clear the memory in the
instruction cache, so when the program jumps to that location, it executes the old contents.

Here are two possible solutions. One is to clear the relevant parts of the instruction cache
whenever a trampoline is set up. The other is to make all trampolines identical, by having
them jump to a standard subroutine. The former technique makes trampoline execution
faster; the latter makes initialization faster.

To clear the instruction cache when a trampoline is initialized, de�ne the following macro.

[Macro]CLEAR_INSN_CACHE (beg, end)
If de�ned, expands to a C expression clearing the instruction cache in the speci�ed
interval. The de�nition of this macro would typically be a series of asm statements.
Both beg and end are both pointer expressions.

The operating system may also require the stack to be made executable before calling
the trampoline. To implement this requirement, de�ne the following macro.

[Macro]ENABLE_EXECUTE_STACK
De�ne this macro if certain operations must be performed before executing code
located on the stack. The macro should expand to a series of C �le-scope constructs
(e.g. functions) and provide a unique entry point named __enable_execute_stack.
The target is responsible for emitting calls to the entry point in the code, for example
from the INITIALIZE_TRAMPOLINE macro.

To use a standard subroutine, de�ne the following macro. In addition, you must make
sure that the instructions in a trampoline �ll an entire cache line with identical instructions,
or else ensure that the beginning of the trampoline code is always aligned at the same point
in its cache line. Look in `m68k.h' as a guide.

[Macro]TRANSFER_FROM_TRAMPOLINE
De�ne this macro if trampolines need a special subroutine to do their work. The
macro should expand to a series of asm statements which will be compiled with GCC.
They go in a library function named __transfer_from_trampoline.

If you need to avoid executing the ordinary prologue code of a compiled C function
when you jump to the subroutine, you can do so by placing a special label of your
own in the assembler code. Use one asm statement to generate an assembler label,
and another to make the label global. Then trampolines can use that label to jump
directly to your special assembler code.

Chapter 15: Target Description Macros and Functions 363

15.13 Implicit Calls to Library Routines

Here is an explanation of implicit calls to library routines.

[Macro]DECLARE_LIBRARY_RENAMES
This macro, if de�ned, should expand to a piece of C code that will get expanded
when compiling functions for libgcc.a. It can be used to provide alternate names for
GCC's internal library functions if there are ABI-mandated names that the compiler
should provide.

[Target Hook]void TARGET_INIT_LIBFUNCS (void)
This hook should declare additional library routines or rename existing ones, using the
functions set_optab_libfunc and init_one_libfunc de�ned in `optabs.c'. init_
optabs calls this macro after initializing all the normal library routines.

The default is to do nothing. Most ports don't need to de�ne this hook.

[Macro]FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
This macro should return true if the library routine that implements the
oating
point comparison operator comparison in mode mode will return a boolean, and false
if it will return a tristate.

GCC's own
oating point libraries return tristates from the comparison operators, so
the default returns false always. Most ports don't need to de�ne this macro.

[Macro]TARGET_LIB_INT_CMP_BIASED
This macro should evaluate to true if the integer comparison functions (like __

cmpdi2) return 0 to indicate that the �rst operand is smaller than the second, 1
to indicate that they are equal, and 2 to indicate that the �rst operand is greater
than the second. If this macro evaluates to false the comparison functions return
�1, 0, and 1 instead of 0, 1, and 2. If the target uses the routines in `libgcc.a', you
do not need to de�ne this macro.

[Macro]US_SOFTWARE_GOFAST
De�ne this macro if your system C library uses the US Software GOFAST library to
provide
oating point emulation.

In addition to de�ning this macro, your architecture must set TARGET_INIT_LIBFUNCS
to gofast_maybe_init_libfuncs, or else call that function from its version of that
hook. It is de�ned in `config/gofast.h', which must be included by your architec-
ture's `cpu.c' �le. See `sparc/sparc.c' for an example.

If this macro is de�ned, the TARGET_FLOAT_LIB_COMPARE_RETURNS_BOOL target hook
must return false for SFmode and DFmode comparisons.

[Macro]TARGET_EDOM
The value of EDOM on the target machine, as a C integer constant expression. If you
don't de�ne this macro, GCC does not attempt to deposit the value of EDOM into
errno directly. Look in `/usr/include/errno.h' to �nd the value of EDOM on your
system.

If you do not de�ne TARGET_EDOM, then compiled code reports domain errors by
calling the library function and letting it report the error. If mathematical functions
on your system use matherr when there is an error, then you should leave TARGET_

EDOM unde�ned so that matherr is used normally.

364 GNU Compiler Collection (GCC) Internals

[Macro]GEN_ERRNO_RTX
De�ne this macro as a C expression to create an rtl expression that refers to the
global \variable" errno. (On certain systems, errno may not actually be a variable.)
If you don't de�ne this macro, a reasonable default is used.

[Macro]TARGET_C99_FUNCTIONS
When this macro is nonzero, GCC will implicitly optimize sin calls into sinf and
similarly for other functions de�ned by C99 standard. The default is nonzero that
should be proper value for most modern systems, however number of existing sys-
tems lacks support for these functions in the runtime so they needs this macro to be
rede�ned to 0.

[Macro]NEXT_OBJC_RUNTIME
De�ne this macro to generate code for Objective-C message sending using the calling
convention of the NeXT system. This calling convention involves passing the object,
the selector and the method arguments all at once to the method-lookup library
function.

The default calling convention passes just the object and the selector to the lookup
function, which returns a pointer to the method.

15.14 Addressing Modes

This is about addressing modes.

[Macro]HAVE_PRE_INCREMENT
[Macro]HAVE_PRE_DECREMENT
[Macro]HAVE_POST_INCREMENT
[Macro]HAVE_POST_DECREMENT

A C expression that is nonzero if the machine supports pre-increment, pre-decrement,
post-increment, or post-decrement addressing respectively.

[Macro]HAVE_PRE_MODIFY_DISP
[Macro]HAVE_POST_MODIFY_DISP

A C expression that is nonzero if the machine supports pre- or post-address side-e�ect
generation involving constants other than the size of the memory operand.

[Macro]HAVE_PRE_MODIFY_REG
[Macro]HAVE_POST_MODIFY_REG

A C expression that is nonzero if the machine supports pre- or post-address side-e�ect
generation involving a register displacement.

[Macro]CONSTANT_ADDRESS_P (x)
A C expression that is 1 if the RTX x is a constant which is a valid address. On
most machines, this can be de�ned as CONSTANT_P (x), but a few machines are more
restrictive in which constant addresses are supported.

[Macro]CONSTANT_P (x)
CONSTANT_P, which is de�ned by target-independent code, accepts integer-values ex-
pressions whose values are not explicitly known, such as symbol_ref, label_ref,
and high expressions and const arithmetic expressions, in addition to const_int

and const_double expressions.

Chapter 15: Target Description Macros and Functions 365

[Macro]MAX_REGS_PER_ADDRESS
A number, the maximum number of registers that can appear in a valid memory
address. Note that it is up to you to specify a value equal to the maximum number
that GO_IF_LEGITIMATE_ADDRESS would ever accept.

[Macro]GO_IF_LEGITIMATE_ADDRESS (mode, x, label)
A C compound statement with a conditional goto label; executed if x (an RTX) is
a legitimate memory address on the target machine for a memory operand of mode
mode.

It usually pays to de�ne several simpler macros to serve as subroutines for this one.
Otherwise it may be too complicated to understand.

This macro must exist in two variants: a strict variant and a non-strict one. The strict
variant is used in the reload pass. It must be de�ned so that any pseudo-register that
has not been allocated a hard register is considered a memory reference. In contexts
where some kind of register is required, a pseudo-register with no hard register must
be rejected.

The non-strict variant is used in other passes. It must be de�ned to accept all pseudo-
registers in every context where some kind of register is required.

Compiler source �les that want to use the strict variant of this macro de�ne the macro
REG_OK_STRICT. You should use an #ifdef REG_OK_STRICT conditional to de�ne the
strict variant in that case and the non-strict variant otherwise.

Subroutines to check for acceptable registers for various purposes (one for base regis-
ters, one for index registers, and so on) are typically among the subroutines used to
de�ne GO_IF_LEGITIMATE_ADDRESS. Then only these subroutine macros need have
two variants; the higher levels of macros may be the same whether strict or not.

Normally, constant addresses which are the sum of a symbol_ref and an integer are
stored inside a const RTX to mark them as constant. Therefore, there is no need to
recognize such sums speci�cally as legitimate addresses. Normally you would simply
recognize any const as legitimate.

Usually PRINT_OPERAND_ADDRESS is not prepared to handle constant sums that are
not marked with const. It assumes that a naked plus indicates indexing. If so, then
you must reject such naked constant sums as illegitimate addresses, so that none of
them will be given to PRINT_OPERAND_ADDRESS.

On some machines, whether a symbolic address is legitimate depends on the section
that the address refers to. On these machines, de�ne the target hook TARGET_ENCODE_
SECTION_INFO to store the information into the symbol_ref, and then check for it
here. When you see a const, you will have to look inside it to �nd the symbol_ref

in order to determine the section. See Section 15.21 [Assembler Format], page 386.

[Macro]FIND_BASE_TERM (x)
A C expression to determine the base term of address x. This macro is used in only
one place: `�nd base term' in alias.c.

It is always safe for this macro to not be de�ned. It exists so that alias analysis can
understand machine-dependent addresses.

The typical use of this macro is to handle addresses containing a label ref or sym-
bol ref within an UNSPEC.

366 GNU Compiler Collection (GCC) Internals

[Macro]LEGITIMIZE_ADDRESS (x, oldx, mode, win)
A C compound statement that attempts to replace x with a valid memory address
for an operand of mode mode. win will be a C statement label elsewhere in the code;
the macro de�nition may use

GO_IF_LEGITIMATE_ADDRESS (mode, x, win);

to avoid further processing if the address has become legitimate.

x will always be the result of a call to break_out_memory_refs, and oldx will be the
operand that was given to that function to produce x.

The code generated by this macro should not alter the substructure of x. If it trans-
forms x into a more legitimate form, it should assign x (which will always be a C
variable) a new value.

It is not necessary for this macro to come up with a legitimate address. The compiler
has standard ways of doing so in all cases. In fact, it is safe to omit this macro. But
often a machine-dependent strategy can generate better code.

[Macro]LEGITIMIZE_RELOAD_ADDRESS (x, mode, opnum, type, ind_levels, win)
A C compound statement that attempts to replace x, which is an address that needs
reloading, with a valid memory address for an operand of mode mode. win will be a
C statement label elsewhere in the code. It is not necessary to de�ne this macro, but
it might be useful for performance reasons.

For example, on the i386, it is sometimes possible to use a single reload register instead
of two by reloading a sum of two pseudo registers into a register. On the other hand,
for number of RISC processors o�sets are limited so that often an intermediate address
needs to be generated in order to address a stack slot. By de�ning LEGITIMIZE_

RELOAD_ADDRESS appropriately, the intermediate addresses generated for adjacent
some stack slots can be made identical, and thus be shared.

Note: This macro should be used with caution. It is necessary to know something
of how reload works in order to e�ectively use this, and it is quite easy to produce
macros that build in too much knowledge of reload internals.

Note: This macro must be able to reload an address created by a previous invocation
of this macro. If it fails to handle such addresses then the compiler may generate
incorrect code or abort.

The macro de�nition should use push_reload to indicate parts that need reloading;
opnum, type and ind levels are usually suitable to be passed unaltered to push_

reload.

The code generated by this macro must not alter the substructure of x. If it transforms
x into a more legitimate form, it should assign x (which will always be a C variable)
a new value. This also applies to parts that you change indirectly by calling push_

reload.

The macro de�nition may use strict_memory_address_p to test if the address has
become legitimate.

If you want to change only a part of x, one standard way of doing this is to use
copy_rtx. Note, however, that is unshares only a single level of rtl. Thus, if the
part to be changed is not at the top level, you'll need to replace �rst the top level.

Chapter 15: Target Description Macros and Functions 367

It is not necessary for this macro to come up with a legitimate address; but often a
machine-dependent strategy can generate better code.

[Macro]GO_IF_MODE_DEPENDENT_ADDRESS (addr, label)
A C statement or compound statement with a conditional goto label; executed if
memory address x (an RTX) can have di�erent meanings depending on the machine
mode of the memory reference it is used for or if the address is valid for some modes
but not others.

Autoincrement and autodecrement addresses typically have mode-dependent e�ects
because the amount of the increment or decrement is the size of the operand be-
ing addressed. Some machines have other mode-dependent addresses. Many RISC
machines have no mode-dependent addresses.

You may assume that addr is a valid address for the machine.

[Macro]LEGITIMATE_CONSTANT_P (x)
A C expression that is nonzero if x is a legitimate constant for an immediate operand
on the target machine. You can assume that x satis�es CONSTANT_P, so you need
not check this. In fact, `1' is a suitable de�nition for this macro on machines where
anything CONSTANT_P is valid.

[Target Hook]rtx TARGET_DELEGITIMIZE_ADDRESS (rtx x)
This hook is used to undo the possibly obfuscating e�ects of the LEGITIMIZE_ADDRESS
and LEGITIMIZE_RELOAD_ADDRESS target macros. Some backend implementations
of these macros wrap symbol references inside an UNSPEC rtx to represent PIC or
similar addressing modes. This target hook allows GCC's optimizers to understand
the semantics of these opaque UNSPECs by converting them back into their original
form.

[Target Hook]bool TARGET_CANNOT_FORCE_CONST_MEM (rtx x)
This hook should return true if x is of a form that cannot (or should not) be spilled
to the constant pool. The default version of this hook returns false.

The primary reason to de�ne this hook is to prevent reload from deciding that a
non-legitimate constant would be better reloaded from the constant pool instead of
spilling and reloading a register holding the constant. This restriction is often true of
addresses of TLS symbols for various targets.

[Target Hook]bool TARGET_USE_BLOCKS_FOR_CONSTANT_P (enum machine mode
mode, rtx x)

This hook should return true if pool entries for constant x can be placed in an object_

block structure. mode is the mode of x.

The default version returns false for all constants.

[Target Hook]tree TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD (void)
This hook should return the DECL of a function f that given an address addr as an
argument returns a mask m that can be used to extract from two vectors the relevant
data that resides in addr in case addr is not properly aligned.

The autovectrizer, when vectorizing a load operation from an address addr that may
be unaligned, will generate two vector loads from the two aligned addresses around

368 GNU Compiler Collection (GCC) Internals

addr. It then generates a REALIGN_LOAD operation to extract the relevant data from
the two loaded vectors. The �rst two arguments to REALIGN_LOAD, v1 and v2, are
the two vectors, each of size VS, and the third argument, OFF, de�nes how the data
will be extracted from these two vectors: if OFF is 0, then the returned vector is
v2; otherwise, the returned vector is composed from the last VS-OFF elements of v1
concatenated to the �rst OFF elements of v2.

If this hook is de�ned, the autovectorizer will generate a call to f (using the DECL
tree that this hook returns) and will use the return value of f as the argument OFF
to REALIGN_LOAD. Therefore, the mask m returned by f should comply with the
semantics expected by REALIGN_LOAD described above. If this hook is not de�ned,
then addr will be used as the argument OFF to REALIGN_LOAD, in which case the low
log2(VS)-1 bits of addr will be considered.

15.15 Anchored Addresses

GCC usually addresses every static object as a separate entity. For example, if we have:
static int a, b, c;
int foo (void) { return a + b + c; }

the code for foo will usually calculate three separate symbolic addresses: those of a, b
and c. On some targets, it would be better to calculate just one symbolic address and access
the three variables relative to it. The equivalent pseudocode would be something like:

int foo (void)
{
register int *xr = &x;
return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];

}

(which isn't valid C). We refer to shared addresses like x as \section anchors". Their use
is controlled by `-fsection-anchors'.

The hooks below describe the target properties that GCC needs to know in order to
make e�ective use of section anchors. It won't use section anchors at all unless either
TARGET_MIN_ANCHOR_OFFSET or TARGET_MAX_ANCHOR_OFFSET is set to a nonzero value.

[Variable]Target Hook HOST_WIDE_INT TARGET MIN ANCHOR OFFSET
The minimum o�set that should be applied to a section anchor. On most targets, it
should be the smallest o�set that can be applied to a base register while still giving
a legitimate address for every mode. The default value is 0.

[Variable]Target Hook HOST_WIDE_INT TARGET MAX ANCHOR OFFSET
Like TARGET_MIN_ANCHOR_OFFSET, but the maximum (inclusive) o�set that should be
applied to section anchors. The default value is 0.

[Target Hook]void TARGET_ASM_OUTPUT_ANCHOR (rtx x)
Write the assembly code to de�ne section anchor x, which is a SYMBOL_REF for which
`SYMBOL_REF_ANCHOR_P (x)' is true. The hook is called with the assembly output
position set to the beginning of SYMBOL_REF_BLOCK (x).

If ASM_OUTPUT_DEF is available, the hook's default de�nition uses it to de�ne the sym-
bol as `. + SYMBOL_REF_BLOCK_OFFSET (x)'. If ASM_OUTPUT_DEF is not available, the
hook's default de�nition is NULL, which disables the use of section anchors altogether.

Chapter 15: Target Description Macros and Functions 369

[Target Hook]bool TARGET_USE_ANCHORS_FOR_SYMBOL_P (rtx x)
Return true if GCC should attempt to use anchors to access SYMBOL_REF x. You can
assume `SYMBOL_REF_HAS_BLOCK_INFO_P (x)' and `!SYMBOL_REF_ANCHOR_P (x)'.

The default version is correct for most targets, but you might need to intercept this
hook to handle things like target-speci�c attributes or target-speci�c sections.

15.16 Condition Code Status

This describes the condition code status.

The �le `conditions.h' de�nes a variable cc_status to describe how the condition code
was computed (in case the interpretation of the condition code depends on the instruction
that it was set by). This variable contains the RTL expressions on which the condition code
is currently based, and several standard
ags.

Sometimes additional machine-speci�c
ags must be de�ned in the machine description
header �le. It can also add additional machine-speci�c information by de�ning CC_STATUS_
MDEP.

[Macro]CC_STATUS_MDEP
C code for a data type which is used for declaring the mdep component of cc_status.
It defaults to int.

This macro is not used on machines that do not use cc0.

[Macro]CC_STATUS_MDEP_INIT
A C expression to initialize the mdep �eld to \empty". The default de�nition does
nothing, since most machines don't use the �eld anyway. If you want to use the �eld,
you should probably de�ne this macro to initialize it.

This macro is not used on machines that do not use cc0.

[Macro]NOTICE_UPDATE_CC (exp, insn)
A C compound statement to set the components of cc_status appropriately for an
insn insn whose body is exp. It is this macro's responsibility to recognize insns that
set the condition code as a byproduct of other activity as well as those that explicitly
set (cc0).

This macro is not used on machines that do not use cc0.

If there are insns that do not set the condition code but do alter other machine
registers, this macro must check to see whether they invalidate the expressions that
the condition code is recorded as re
ecting. For example, on the 68000, insns that
store in address registers do not set the condition code, which means that usually
NOTICE_UPDATE_CC can leave cc_status unaltered for such insns. But suppose that
the previous insn set the condition code based on location `a4@(102)' and the current
insn stores a new value in `a4'. Although the condition code is not changed by this, it
will no longer be true that it re
ects the contents of `a4@(102)'. Therefore, NOTICE_
UPDATE_CC must alter cc_status in this case to say that nothing is known about the
condition code value.

The de�nition of NOTICE_UPDATE_CC must be prepared to deal with the results of
peephole optimization: insns whose patterns are parallel RTXs containing various

370 GNU Compiler Collection (GCC) Internals

reg, mem or constants which are just the operands. The RTL structure of these insns
is not su�cient to indicate what the insns actually do. What NOTICE_UPDATE_CC

should do when it sees one is just to run CC_STATUS_INIT.

A possible de�nition of NOTICE_UPDATE_CC is to call a function that looks at an
attribute (see Section 14.19 [Insn Attributes], page 274) named, for example, `cc'.
This avoids having detailed information about patterns in two places, the `md' �le
and in NOTICE_UPDATE_CC.

[Macro]SELECT_CC_MODE (op, x, y)
Returns a mode from class MODE_CC to be used when comparison operation code op
is applied to rtx x and y. For example, on the SPARC, SELECT_CC_MODE is de�ned
as (see see Section 14.12 [Jump Patterns], page 259 for a description of the reason for
this de�nition)

#define SELECT_CC_MODE(OP,X,Y) \
(GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
: ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \

|| GET_CODE (X) == NEG) \
? CC_NOOVmode : CCmode))

You should de�ne this macro if and only if you de�ne extra CC modes in
`machine-modes.def'.

[Macro]CANONICALIZE_COMPARISON (code, op0, op1)
On some machines not all possible comparisons are de�ned, but you can convert an
invalid comparison into a valid one. For example, the Alpha does not have a GT

comparison, but you can use an LT comparison instead and swap the order of the
operands.

On such machines, de�ne this macro to be a C statement to do any required con-
versions. code is the initial comparison code and op0 and op1 are the left and right
operands of the comparison, respectively. You should modify code, op0, and op1 as
required.

GCC will not assume that the comparison resulting from this macro is valid but will
see if the resulting insn matches a pattern in the `md' �le.

You need not de�ne this macro if it would never change the comparison code or
operands.

[Macro]REVERSIBLE_CC_MODE (mode)
A C expression whose value is one if it is always safe to reverse a comparison whose
mode ismode. If SELECT_CC_MODE can ever returnmode for a
oating-point inequality
comparison, then REVERSIBLE_CC_MODE (mode) must be zero.

You need not de�ne this macro if it would always returns zero or if the
oating-
point format is anything other than IEEE_FLOAT_FORMAT. For example, here is the
de�nition used on the SPARC, where
oating-point inequality comparisons are always
given CCFPEmode:

#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode)

[Macro]REVERSE_CONDITION (code, mode)
A C expression whose value is reversed condition code of the code for comparison
done in CC MODE mode. The macro is used only in case REVERSIBLE_CC_MODE

Chapter 15: Target Description Macros and Functions 371

(mode) is nonzero. De�ne this macro in case machine has some non-standard way
how to reverse certain conditionals. For instance in case all
oating point conditions
are non-trapping, compiler may freely convert unordered compares to ordered one.
Then de�nition may look like:

#define REVERSE_CONDITION(CODE, MODE) \
((MODE) != CCFPmode ? reverse_condition (CODE) \
: reverse_condition_maybe_unordered (CODE))

[Macro]REVERSE_CONDEXEC_PREDICATES_P (op1, op2)
A C expression that returns true if the conditional execution predicate op1, a com-
parison operation, is the inverse of op2 and vice versa. De�ne this to return 0 if the
target has conditional execution predicates that cannot be reversed safely. There is
no need to validate that the arguments of op1 and op2 are the same, this is done
separately. If no expansion is speci�ed, this macro is de�ned as follows:

#define REVERSE_CONDEXEC_PREDICATES_P (x, y) \
(GET_CODE ((x)) == reversed_comparison_code ((y), NULL))

[Target Hook]bool TARGET_FIXED_CONDITION_CODE_REGS (unsigned int *,
unsigned int *)

On targets which do not use (cc0), and which use a hard register rather than a
pseudo-register to hold condition codes, the regular CSE passes are often not able
to identify cases in which the hard register is set to a common value. Use this hook
to enable a small pass which optimizes such cases. This hook should return true to
enable this pass, and it should set the integers to which its arguments point to the
hard register numbers used for condition codes. When there is only one such register,
as is true on most systems, the integer pointed to by the second argument should be
set to INVALID_REGNUM.

The default version of this hook returns false.

[Target Hook]enum machine_mode TARGET CC MODES COMPATIBLE (enum
machine mode, enum machine mode)

On targets which use multiple condition code modes in class MODE_CC, it is sometimes
the case that a comparison can be validly done in more than one mode. On such a
system, de�ne this target hook to take two mode arguments and to return a mode
in which both comparisons may be validly done. If there is no such mode, return
VOIDmode.

The default version of this hook checks whether the modes are the same. If they are,
it returns that mode. If they are di�erent, it returns VOIDmode.

15.17 Describing Relative Costs of Operations

These macros let you describe the relative speed of various operations on the target machine.

[Macro]REGISTER_MOVE_COST (mode, from, to)
A C expression for the cost of moving data of mode mode from a register in class
from to one in class to. The classes are expressed using the enumeration values such
as GENERAL_REGS. A value of 2 is the default; other values are interpreted relative to
that.

372 GNU Compiler Collection (GCC) Internals

It is not required that the cost always equal 2 when from is the same as to; on some
machines it is expensive to move between registers if they are not general registers.

If reload sees an insn consisting of a single set between two hard registers, and if
REGISTER_MOVE_COST applied to their classes returns a value of 2, reload does not
check to ensure that the constraints of the insn are met. Setting a cost of other than
2 will allow reload to verify that the constraints are met. You should do this if the
`movm ' pattern's constraints do not allow such copying.

[Macro]MEMORY_MOVE_COST (mode, class, in)
A C expression for the cost of moving data of mode mode between a register of class
class and memory; in is zero if the value is to be written to memory, nonzero if it is to
be read in. This cost is relative to those in REGISTER_MOVE_COST. If moving between
registers and memory is more expensive than between two registers, you should de�ne
this macro to express the relative cost.

If you do not de�ne this macro, GCC uses a default cost of 4 plus the cost of copying
via a secondary reload register, if one is needed. If your machine requires a secondary
reload register to copy between memory and a register of class but the reload mech-
anism is more complex than copying via an intermediate, de�ne this macro to re
ect
the actual cost of the move.

GCC de�nes the function memory_move_secondary_cost if secondary reloads are
needed. It computes the costs due to copying via a secondary register. If your
machine copies from memory using a secondary register in the conventional way but
the default base value of 4 is not correct for your machine, de�ne this macro to add
some other value to the result of that function. The arguments to that function are
the same as to this macro.

[Macro]BRANCH_COST
A C expression for the cost of a branch instruction. A value of 1 is the default; other
values are interpreted relative to that.

Here are additional macros which do not specify precise relative costs, but only that
certain actions are more expensive than GCC would ordinarily expect.

[Macro]SLOW_BYTE_ACCESS
De�ne this macro as a C expression which is nonzero if accessing less than a word of
memory (i.e. a char or a short) is no faster than accessing a word of memory, i.e.,
if such access require more than one instruction or if there is no di�erence in cost
between byte and (aligned) word loads.

When this macro is not de�ned, the compiler will access a �eld by �nding the smallest
containing object; when it is de�ned, a fullword load will be used if alignment permits.
Unless bytes accesses are faster than word accesses, using word accesses is preferable
since it may eliminate subsequent memory access if subsequent accesses occur to other
�elds in the same word of the structure, but to di�erent bytes.

[Macro]SLOW_UNALIGNED_ACCESS (mode, alignment)
De�ne this macro to be the value 1 if memory accesses described by the mode and
alignment parameters have a cost many times greater than aligned accesses, for ex-
ample if they are emulated in a trap handler.

Chapter 15: Target Description Macros and Functions 373

When this macro is nonzero, the compiler will act as if STRICT_ALIGNMENT were
nonzero when generating code for block moves. This can cause signi�cantly more
instructions to be produced. Therefore, do not set this macro nonzero if unaligned
accesses only add a cycle or two to the time for a memory access.

If the value of this macro is always zero, it need not be de�ned. If this macro is
de�ned, it should produce a nonzero value when STRICT_ALIGNMENT is nonzero.

[Macro]MOVE_RATIO
The threshold of number of scalar memory-to-memory move insns, below which a
sequence of insns should be generated instead of a string move insn or a library call.
Increasing the value will always make code faster, but eventually incurs high cost in
increased code size.

Note that on machines where the corresponding move insn is a define_expand that
emits a sequence of insns, this macro counts the number of such sequences.

If you don't de�ne this, a reasonable default is used.

[Macro]MOVE_BY_PIECES_P (size, alignment)
A C expression used to determine whether move_by_pieces will be used to copy a
chunk of memory, or whether some other block move mechanism will be used. Defaults
to 1 if move_by_pieces_ninsns returns less than MOVE_RATIO.

[Macro]MOVE_MAX_PIECES
A C expression used by move_by_pieces to determine the largest unit a load or store
used to copy memory is. Defaults to MOVE_MAX.

[Macro]CLEAR_RATIO
The threshold of number of scalar move insns, below which a sequence of insns should
be generated to clear memory instead of a string clear insn or a library call. Increasing
the value will always make code faster, but eventually incurs high cost in increased
code size.

If you don't de�ne this, a reasonable default is used.

[Macro]CLEAR_BY_PIECES_P (size, alignment)
A C expression used to determine whether clear_by_pieces will be used to clear a
chunk of memory, or whether some other block clear mechanism will be used. Defaults
to 1 if move_by_pieces_ninsns returns less than CLEAR_RATIO.

[Macro]SET_RATIO
The threshold of number of scalar move insns, below which a sequence of insns should
be generated to set memory to a constant value, instead of a block set insn or a library
call. Increasing the value will always make code faster, but eventually incurs high
cost in increased code size.

If you don't de�ne this, it defaults to the value of MOVE_RATIO.

[Macro]SET_BY_PIECES_P (size, alignment)
A C expression used to determine whether store_by_pieces will be used to set a
chunk of memory to a constant value, or whether some other mechanism will be used.
Used by __builtin_memset when storing values other than constant zero. Defaults
to 1 if move_by_pieces_ninsns returns less than SET_RATIO.

374 GNU Compiler Collection (GCC) Internals

[Macro]STORE_BY_PIECES_P (size, alignment)
A C expression used to determine whether store_by_pieces will be used to set a
chunk of memory to a constant string value, or whether some other mechanism will be
used. Used by __builtin_strcpy when called with a constant source string. Defaults
to 1 if move_by_pieces_ninsns returns less than MOVE_RATIO.

[Macro]USE_LOAD_POST_INCREMENT (mode)
A C expression used to determine whether a load postincrement is a good thing to
use for a given mode. Defaults to the value of HAVE_POST_INCREMENT.

[Macro]USE_LOAD_POST_DECREMENT (mode)
A C expression used to determine whether a load postdecrement is a good thing to
use for a given mode. Defaults to the value of HAVE_POST_DECREMENT.

[Macro]USE_LOAD_PRE_INCREMENT (mode)
A C expression used to determine whether a load preincrement is a good thing to use
for a given mode. Defaults to the value of HAVE_PRE_INCREMENT.

[Macro]USE_LOAD_PRE_DECREMENT (mode)
A C expression used to determine whether a load predecrement is a good thing to use
for a given mode. Defaults to the value of HAVE_PRE_DECREMENT.

[Macro]USE_STORE_POST_INCREMENT (mode)
A C expression used to determine whether a store postincrement is a good thing to
use for a given mode. Defaults to the value of HAVE_POST_INCREMENT.

[Macro]USE_STORE_POST_DECREMENT (mode)
A C expression used to determine whether a store postdecrement is a good thing to
use for a given mode. Defaults to the value of HAVE_POST_DECREMENT.

[Macro]USE_STORE_PRE_INCREMENT (mode)
This macro is used to determine whether a store preincrement is a good thing to use
for a given mode. Defaults to the value of HAVE_PRE_INCREMENT.

[Macro]USE_STORE_PRE_DECREMENT (mode)
This macro is used to determine whether a store predecrement is a good thing to use
for a given mode. Defaults to the value of HAVE_PRE_DECREMENT.

[Macro]NO_FUNCTION_CSE
De�ne this macro if it is as good or better to call a constant function address than to
call an address kept in a register.

[Macro]RANGE_TEST_NON_SHORT_CIRCUIT
De�ne this macro if a non-short-circuit operation produced by `fold_range_test ()'
is optimal. This macro defaults to true if BRANCH_COST is greater than or equal to
the value 2.

[Target Hook]bool TARGET_RTX_COSTS (rtx x, int code, int outer_code, int
*total)

This target hook describes the relative costs of RTL expressions.

Chapter 15: Target Description Macros and Functions 375

The cost may depend on the precise form of the expression, which is available for
examination in x, and the rtx code of the expression in which it is contained, found
in outer code. code is the expression code|redundant, since it can be obtained with
GET_CODE (x).

In implementing this hook, you can use the construct COSTS_N_INSNS (n) to specify
a cost equal to n fast instructions.

On entry to the hook, *total contains a default estimate for the cost of the ex-
pression. The hook should modify this value as necessary. Traditionally, the default
costs are COSTS_N_INSNS (5) for multiplications, COSTS_N_INSNS (7) for division and
modulus operations, and COSTS_N_INSNS (1) for all other operations.

When optimizing for code size, i.e. when optimize_size is nonzero, this target hook
should be used to estimate the relative size cost of an expression, again relative to
COSTS_N_INSNS.

The hook returns true when all subexpressions of x have been processed, and false
when rtx_cost should recurse.

[Target Hook]int TARGET_ADDRESS_COST (rtx address)
This hook computes the cost of an addressing mode that contains address. If not
de�ned, the cost is computed from the address expression and the TARGET_RTX_COST
hook.

For most CISC machines, the default cost is a good approximation of the true cost
of the addressing mode. However, on RISC machines, all instructions normally have
the same length and execution time. Hence all addresses will have equal costs.

In cases where more than one form of an address is known, the form with the lowest
cost will be used. If multiple forms have the same, lowest, cost, the one that is the
most complex will be used.

For example, suppose an address that is equal to the sum of a register and a constant
is used twice in the same basic block. When this macro is not de�ned, the address
will be computed in a register and memory references will be indirect through that
register. On machines where the cost of the addressing mode containing the sum is
no higher than that of a simple indirect reference, this will produce an additional
instruction and possibly require an additional register. Proper speci�cation of this
macro eliminates this overhead for such machines.

This hook is never called with an invalid address.

On machines where an address involving more than one register is as cheap as an
address computation involving only one register, de�ning TARGET_ADDRESS_COST to
re
ect this can cause two registers to be live over a region of code where only one
would have been if TARGET_ADDRESS_COST were not de�ned in that manner. This
e�ect should be considered in the de�nition of this macro. Equivalent costs should
probably only be given to addresses with di�erent numbers of registers on machines
with lots of registers.

376 GNU Compiler Collection (GCC) Internals

15.18 Adjusting the Instruction Scheduler

The instruction scheduler may need a fair amount of machine-speci�c adjustment in order
to produce good code. GCC provides several target hooks for this purpose. It is usually
enough to de�ne just a few of them: try the �rst ones in this list �rst.

[Target Hook]int TARGET_SCHED_ISSUE_RATE (void)
This hook returns the maximum number of instructions that can ever issue at the
same time on the target machine. The default is one. Although the insn scheduler
can de�ne itself the possibility of issue an insn on the same cycle, the value can serve
as an additional constraint to issue insns on the same simulated processor cycle (see
hooks `TARGET_SCHED_REORDER' and `TARGET_SCHED_REORDER2'). This value must be
constant over the entire compilation. If you need it to vary depending on what the
instructions are, you must use `TARGET_SCHED_VARIABLE_ISSUE'.

[Target Hook]int TARGET_SCHED_VARIABLE_ISSUE (FILE *file, int verbose,
rtx insn, int more)

This hook is executed by the scheduler after it has scheduled an insn from the ready
list. It should return the number of insns which can still be issued in the current cycle.
The default is `more - 1' for insns other than CLOBBER and USE, which normally are
not counted against the issue rate. You should de�ne this hook if some insns take
more machine resources than others, so that fewer insns can follow them in the same
cycle. �le is either a null pointer, or a stdio stream to write any debug output to.
verbose is the verbose level provided by `-fsched-verbose-n '. insn is the instruction
that was scheduled.

[Target Hook]int TARGET_SCHED_ADJUST_COST (rtx insn, rtx link, rtx
dep_insn, int cost)

This function corrects the value of cost based on the relationship between insn and
dep insn through the dependence link. It should return the new value. The default is
to make no adjustment to cost. This can be used for example to specify to the sched-
uler using the traditional pipeline description that an output- or anti-dependence does
not incur the same cost as a data-dependence. If the scheduler using the automaton
based pipeline description, the cost of anti-dependence is zero and the cost of output-
dependence is maximum of one and the di�erence of latency times of the �rst and the
second insns. If these values are not acceptable, you could use the hook to modify
them too. See also see Section 14.19.8 [Processor pipeline description], page 282.

[Target Hook]int TARGET_SCHED_ADJUST_PRIORITY (rtx insn, int priority)
This hook adjusts the integer scheduling priority priority of insn. It should return
the new priority. Increase the priority to execute insn earlier, reduce the priority to
execute insn later. Do not de�ne this hook if you do not need to adjust the scheduling
priorities of insns.

[Target Hook]int TARGET_SCHED_REORDER (FILE *file, int verbose, rtx
*ready, int *n_readyp, int clock)

This hook is executed by the scheduler after it has scheduled the ready list, to allow
the machine description to reorder it (for example to combine two small instructions
together on `VLIW' machines). �le is either a null pointer, or a stdio stream to write

Chapter 15: Target Description Macros and Functions 377

any debug output to. verbose is the verbose level provided by `-fsched-verbose-n '.
ready is a pointer to the ready list of instructions that are ready to be scheduled.
n readyp is a pointer to the number of elements in the ready list. The scheduler
reads the ready list in reverse order, starting with ready [*n readyp-1] and going to
ready [0]. clock is the timer tick of the scheduler. You may modify the ready list and
the number of ready insns. The return value is the number of insns that can issue
this cycle; normally this is just issue_rate. See also `TARGET_SCHED_REORDER2'.

[Target Hook]int TARGET_SCHED_REORDER2 (FILE *file, int verbose, rtx
*ready, int *n_ready, clock)

Like `TARGET_SCHED_REORDER', but called at a di�erent time. That function is called
whenever the scheduler starts a new cycle. This one is called once per iteration over
a cycle, immediately after `TARGET_SCHED_VARIABLE_ISSUE'; it can reorder the ready
list and return the number of insns to be scheduled in the same cycle. De�ning this
hook can be useful if there are frequent situations where scheduling one insn causes
other insns to become ready in the same cycle. These other insns can then be taken
into account properly.

[Target Hook]void TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK (rtx head,
rtx tail)

This hook is called after evaluation forward dependencies of insns in chain given by
two parameter values (head and tail correspondingly) but before insns scheduling of
the insn chain. For example, it can be used for better insn classi�cation if it requires
analysis of dependencies. This hook can use backward and forward dependencies of
the insn scheduler because they are already calculated.

[Target Hook]void TARGET_SCHED_INIT (FILE *file, int verbose, int
max_ready)

This hook is executed by the scheduler at the beginning of each block of instructions
that are to be scheduled. �le is either a null pointer, or a stdio stream to write
any debug output to. verbose is the verbose level provided by `-fsched-verbose-n '.
max ready is the maximum number of insns in the current scheduling region that can
be live at the same time. This can be used to allocate scratch space if it is needed,
e.g. by `TARGET_SCHED_REORDER'.

[Target Hook]void TARGET_SCHED_FINISH (FILE *file, int verbose)
This hook is executed by the scheduler at the end of each block of instructions that
are to be scheduled. It can be used to perform cleanup of any actions done by the
other scheduling hooks. �le is either a null pointer, or a stdio stream to write any
debug output to. verbose is the verbose level provided by `-fsched-verbose-n '.

[Target Hook]void TARGET_SCHED_INIT_GLOBAL (FILE *file, int verbose, int
old_max_uid)

This hook is executed by the scheduler after function level initializations. �le is either
a null pointer, or a stdio stream to write any debug output to. verbose is the verbose
level provided by `-fsched-verbose-n '. old max uid is the maximum insn uid when
scheduling begins.

378 GNU Compiler Collection (GCC) Internals

[Target Hook]void TARGET_SCHED_FINISH_GLOBAL (FILE *file, int verbose)
This is the cleanup hook corresponding to TARGET_SCHED_INIT_GLOBAL. �le is either
a null pointer, or a stdio stream to write any debug output to. verbose is the verbose
level provided by `-fsched-verbose-n '.

[Target Hook]int TARGET_SCHED_DFA_PRE_CYCLE_INSN (void)
The hook returns an RTL insn. The automaton state used in the pipeline hazard
recognizer is changed as if the insn were scheduled when the new simulated processor
cycle starts. Usage of the hook may simplify the automaton pipeline description for
some VLIW processors. If the hook is de�ned, it is used only for the automaton based
pipeline description. The default is not to change the state when the new simulated
processor cycle starts.

[Target Hook]void TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN (void)
The hook can be used to initialize data used by the previous hook.

[Target Hook]int TARGET_SCHED_DFA_POST_CYCLE_INSN (void)
The hook is analogous to `TARGET_SCHED_DFA_PRE_CYCLE_INSN' but used to changed
the state as if the insn were scheduled when the new simulated processor cycle �nishes.

[Target Hook]void TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN (void)
The hook is analogous to `TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN' but used to
initialize data used by the previous hook.

[Target Hook]void TARGET_SCHED_DFA_PRE_CYCLE_ADVANCE (void)
The hook to notify target that the current simulated cycle is about to �nish. The
hook is analogous to `TARGET_SCHED_DFA_PRE_CYCLE_ADVANCE' but used to change
the state in more complicated situations - e.g. when advancing state on a single insn
is not enough.

[Target Hook]void TARGET_SCHED_DFA_POST_CYCLE_ADVANCE (void)
The hook to notify target that new simulated cycle has just started. The hook
is analogous to `TARGET_SCHED_DFA_POST_CYCLE_ADVANCE' but used to change the
state in more complicated situations - e.g. when advancing state on a single insn is
not enough.

[Target Hook]int TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
(void)

This hook controls better choosing an insn from the ready insn queue for the DFA-
based insn scheduler. Usually the scheduler chooses the �rst insn from the queue.
If the hook returns a positive value, an additional scheduler code tries all permu-
tations of `TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD ()' subsequent
ready insns to choose an insn whose issue will result in maximal number of issued
insns on the same cycle. For the VLIW processor, the code could actually solve the
problem of packing simple insns into the VLIW insn. Of course, if the rules of VLIW
packing are described in the automaton.

This code also could be used for superscalar RISC processors. Let us consider a
superscalar RISC processor with 3 pipelines. Some insns can be executed in pipelines
A or B, some insns can be executed only in pipelines B or C, and one insn can be

Chapter 15: Target Description Macros and Functions 379

executed in pipeline B. The processor may issue the 1st insn into A and the 2nd one
into B. In this case, the 3rd insn will wait for freeing B until the next cycle. If the
scheduler issues the 3rd insn the �rst, the processor could issue all 3 insns per cycle.

Actually this code demonstrates advantages of the automaton based pipeline hazard
recognizer. We try quickly and easy many insn schedules to choose the best one.

The default is no multipass scheduling.

[Target Hook]int
TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD (rtx)

This hook controls what insns from the ready insn queue will be considered for the
multipass insn scheduling. If the hook returns zero for insn passed as the parameter,
the insn will be not chosen to be issued.

The default is that any ready insns can be chosen to be issued.

[Target Hook]int TARGET_SCHED_DFA_NEW_CYCLE (FILE *, int, rtx, int, int, int *)
This hook is called by the insn scheduler before issuing insn passed as the third
parameter on given cycle. If the hook returns nonzero, the insn is not issued on given
processors cycle. Instead of that, the processor cycle is advanced. If the value passed
through the last parameter is zero, the insn ready queue is not sorted on the new cycle
start as usually. The �rst parameter passes �le for debugging output. The second
one passes the scheduler verbose level of the debugging output. The forth and the
�fth parameter values are correspondingly processor cycle on which the previous insn
has been issued and the current processor cycle.

[Target Hook]bool TARGET_SCHED_IS_COSTLY_DEPENDENCE (rtx insn1, rtx
insn2, rtx dep_link, int dep_cost, int distance)

This hook is used to de�ne which dependences are considered costly by the target,
so costly that it is not advisable to schedule the insns that are involved in the de-
pendence too close to one another. The parameters to this hook are as follows: The
second parameter insn2 is dependent upon the �rst parameter insn1. The dependence
between insn1 and insn2 is represented by the third parameter dep link. The fourth
parameter cost is the cost of the dependence, and the �fth parameter distance is the
distance in cycles between the two insns. The hook returns true if considering the
distance between the two insns the dependence between them is considered costly by
the target, and false otherwise.

De�ning this hook can be useful in multiple-issue out-of-order machines, where (a) it's
practically hopeless to predict the actual data/resource delays, however: (b) there's
a better chance to predict the actual grouping that will be formed, and (c) correctly
emulating the grouping can be very important. In such targets one may want to
allow issuing dependent insns closer to one another|i.e., closer than the dependence
distance; however, not in cases of "costly dependences", which this hooks allows to
de�ne.

[Target Hook]int TARGET_SCHED_ADJUST_COST_2 (rtx insn, int dep_type, rtx
dep_insn, int cost)

This hook is a modi�ed version of `TARGET_SCHED_ADJUST_COST'. Instead of
passing dependence as a second parameter, it passes a type of that dependence.

380 GNU Compiler Collection (GCC) Internals

This is useful to calculate cost of dependence between insns not having the
corresponding link. If `TARGET_SCHED_ADJUST_COST_2' is de�ned it is used instead
of `TARGET_SCHED_ADJUST_COST'.

[Target Hook]void TARGET_SCHED_H_I_D_EXTENDED (void)
This hook is called by the insn scheduler after emitting a new instruction to the
instruction stream. The hook noti�es a target backend to extend its per instruction
data structures.

[Target Hook]int TARGET_SCHED_SPECULATE_INSN (rtx insn, int request, rtx
*new_pat)

This hook is called by the insn scheduler when insn has only speculative dependencies
and therefore can be scheduled speculatively. The hook is used to check if the pattern
of insn has a speculative version and, in case of successful check, to generate that
speculative pattern. The hook should return 1, if the instruction has a speculative
form, or -1, if it doesn't. request describes the type of requested speculation. If the
return value equals 1 then new pat is assigned the generated speculative pattern.

[Target Hook]int TARGET_SCHED_NEEDS_BLOCK_P (rtx insn)
This hook is called by the insn scheduler during generation of recovery code for insn.
It should return nonzero, if the corresponding check instruction should branch to
recovery code, or zero otherwise.

[Target Hook]rtx TARGET_SCHED_GEN_CHECK (rtx insn, rtx label, int
mutate_p)

This hook is called by the insn scheduler to generate a pattern for recovery check
instruction. If mutate p is zero, then insn is a speculative instruction for which the
check should be generated. label is either a label of a basic block, where recovery
code should be emitted, or a null pointer, when requested check doesn't branch to
recovery code (a simple check). If mutate p is nonzero, then a pattern for a branchy
check corresponding to a simple check denoted by insn should be generated. In this
case label can't be null.

[Target Hook]int
TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC
(rtx insn)

This hook is used as a workaround for `TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD'
not being called on the �rst instruction of the ready list. The hook is used to
discard speculative instruction that stand �rst in the ready list from being scheduled
on the current cycle. For non-speculative instructions, the hook should always
return nonzero. For example, in the ia64 backend the hook is used to cancel data
speculative insns when the ALAT table is nearly full.

[Target Hook]void TARGET_SCHED_SET_SCHED_FLAGS (unsigned int *flags,
spec info t spec_info)

This hook is used by the insn scheduler to �nd out what features should be
enabled/used.
ags initially may have either the SCHED RGN or SCHED EBB
bit set. This denotes the scheduler pass for which the data should be provided.
The target backend should modify
ags by modifying the bits corresponding to

Chapter 15: Target Description Macros and Functions 381

the following features: USE DEPS LIST, USE GLAT, DETACH LIFE INFO, and
DO SPECULATION. For the DO SPECULATION feature an additional structure
spec info should be �lled by the target. The structure describes speculation types
that can be used in the scheduler.

15.19 Dividing the Output into Sections (Texts, Data, . . .)

An object �le is divided into sections containing di�erent types of data. In the most common
case, there are three sections: the text section, which holds instructions and read-only data;
the data section, which holds initialized writable data; and the bss section, which holds
uninitialized data. Some systems have other kinds of sections.

`varasm.c' provides several well-known sections, such as text_section, data_section
and bss_section. The normal way of controlling a foo_section variable is to de�ne the
associated FOO_SECTION_ASM_OP macro, as described below. The macros are only read
once, when `varasm.c' initializes itself, so their values must be run-time constants. They
may however depend on command-line
ags.

Note: Some run-time �les, such `crtstuff.c', also make use of the FOO_SECTION_ASM_OP
macros, and expect them to be string literals.

Some assemblers require a di�erent string to be written every time a section is selected. If
your assembler falls into this category, you should de�ne the TARGET_ASM_INIT_SECTIONS

hook and use get_unnamed_section to set up the sections.

You must always create a text_section, either by de�ning TEXT_SECTION_ASM_OP or
by initializing text_section in TARGET_ASM_INIT_SECTIONS. The same is true of data_
section and DATA_SECTION_ASM_OP. If you do not create a distinct readonly_data_

section, the default is to reuse text_section.

All the other `varasm.c' sections are optional, and are null if the target does not provide
them.

[Macro]TEXT_SECTION_ASM_OP
A C expression whose value is a string, including spacing, containing the assembler
operation that should precede instructions and read-only data. Normally "\t.text"

is right.

[Macro]HOT_TEXT_SECTION_NAME
If de�ned, a C string constant for the name of the section containing most frequently
executed functions of the program. If not de�ned, GCC will provide a default de�ni-
tion if the target supports named sections.

[Macro]UNLIKELY_EXECUTED_TEXT_SECTION_NAME
If de�ned, a C string constant for the name of the section containing unlikely executed
functions in the program.

[Macro]DATA_SECTION_ASM_OP
A C expression whose value is a string, including spacing, containing the assem-
bler operation to identify the following data as writable initialized data. Normally
"\t.data" is right.

382 GNU Compiler Collection (GCC) Internals

[Macro]SDATA_SECTION_ASM_OP
If de�ned, a C expression whose value is a string, including spacing, containing the
assembler operation to identify the following data as initialized, writable small data.

[Macro]READONLY_DATA_SECTION_ASM_OP
A C expression whose value is a string, including spacing, containing the assembler
operation to identify the following data as read-only initialized data.

[Macro]BSS_SECTION_ASM_OP
If de�ned, a C expression whose value is a string, including spacing, containing the
assembler operation to identify the following data as uninitialized global data. If
not de�ned, and neither ASM_OUTPUT_BSS nor ASM_OUTPUT_ALIGNED_BSS are de�ned,
uninitialized global data will be output in the data section if `-fno-common' is passed,
otherwise ASM_OUTPUT_COMMON will be used.

[Macro]SBSS_SECTION_ASM_OP
If de�ned, a C expression whose value is a string, including spacing, containing the
assembler operation to identify the following data as uninitialized, writable small
data.

[Macro]INIT_SECTION_ASM_OP
If de�ned, a C expression whose value is a string, including spacing, containing the
assembler operation to identify the following data as initialization code. If not de�ned,
GCC will assume such a section does not exist. This section has no corresponding
init_section variable; it is used entirely in runtime code.

[Macro]FINI_SECTION_ASM_OP
If de�ned, a C expression whose value is a string, including spacing, containing the
assembler operation to identify the following data as �nalization code. If not de�ned,
GCC will assume such a section does not exist. This section has no corresponding
fini_section variable; it is used entirely in runtime code.

[Macro]INIT_ARRAY_SECTION_ASM_OP
If de�ned, a C expression whose value is a string, including spacing, containing the
assembler operation to identify the following data as part of the .init_array (or
equivalent) section. If not de�ned, GCC will assume such a section does not exist.
Do not de�ne both this macro and INIT_SECTION_ASM_OP.

[Macro]FINI_ARRAY_SECTION_ASM_OP
If de�ned, a C expression whose value is a string, including spacing, containing the
assembler operation to identify the following data as part of the .fini_array (or
equivalent) section. If not de�ned, GCC will assume such a section does not exist.
Do not de�ne both this macro and FINI_SECTION_ASM_OP.

[Macro]CRT_CALL_STATIC_FUNCTION (section_op, function)
If de�ned, an ASM statement that switches to a di�erent section via section op, calls
function, and switches back to the text section. This is used in `crtstuff.c' if INIT_
SECTION_ASM_OP or FINI_SECTION_ASM_OP to calls to initialization and �nalization
functions from the init and �ni sections. By default, this macro uses a simple function

Chapter 15: Target Description Macros and Functions 383

call. Some ports need hand-crafted assembly code to avoid dependencies on registers
initialized in the function prologue or to ensure that constant pools don't end up too
far way in the text section.

[Macro]TARGET_LIBGCC_SDATA_SECTION
If de�ned, a string which names the section into which small variables de�ned in
crtstu� and libgcc should go. This is useful when the target has options for optimizing
access to small data, and you want the crtstu� and libgcc routines to be conservative
in what they expect of your application yet liberal in what your application expects.
For example, for targets with a .sdata section (like MIPS), you could compile crtstu�
with -G 0 so that it doesn't require small data support from your application, but use
this macro to put small data into .sdata so that your application can access these
variables whether it uses small data or not.

[Macro]FORCE_CODE_SECTION_ALIGN
If de�ned, an ASM statement that aligns a code section to some arbitrary boundary.
This is used to force all fragments of the .init and .fini sections to have to same
alignment and thus prevent the linker from having to add any padding.

[Macro]JUMP_TABLES_IN_TEXT_SECTION
De�ne this macro to be an expression with a nonzero value if jump tables (for
tablejump insns) should be output in the text section, along with the assembler
instructions. Otherwise, the readonly data section is used.

This macro is irrelevant if there is no separate readonly data section.

[Target Hook]void TARGET_ASM_INIT_SECTIONS (void)
De�ne this hook if you need to do something special to set up the `varasm.c' sections,
or if your target has some special sections of its own that you need to create.

GCC calls this hook after processing the command line, but before writing any as-
sembly code, and before calling any of the section-returning hooks described below.

[Target Hook]TARGET_ASM_RELOC_RW_MASK (void)
Return a mask describing how relocations should be treated when selecting sections.
Bit 1 should be set if global relocations should be placed in a read-write section; bit
0 should be set if local relocations should be placed in a read-write section.

The default version of this function returns 3 when `-fpic' is in e�ect, and 0 other-
wise. The hook is typically rede�ned when the target cannot support (some kinds of)
dynamic relocations in read-only sections even in executables.

[Target Hook]section * TARGET_ASM_SELECT_SECTION (tree exp, int reloc,
unsigned HOST WIDE INT align)

Return the section into which exp should be placed. You can assume that exp is
either a VAR_DECL node or a constant of some sort. reloc indicates whether the
initial value of exp requires link-time relocations. Bit 0 is set when variable contains
local relocations only, while bit 1 is set for global relocations. align is the constant
alignment in bits.

The default version of this function takes care of putting read-only variables in
readonly_data_section.

See also USE SELECT SECTION FOR FUNCTIONS.

384 GNU Compiler Collection (GCC) Internals

[Macro]USE_SELECT_SECTION_FOR_FUNCTIONS
De�ne this macro if you wish TARGET ASM SELECT SECTION to be called for
FUNCTION_DECLs as well as for variables and constants.

In the case of a FUNCTION_DECL, reloc will be zero if the function has been determined
to be likely to be called, and nonzero if it is unlikely to be called.

[Target Hook]void TARGET_ASM_UNIQUE_SECTION (tree decl, int reloc)
Build up a unique section name, expressed as a STRING_CST node, and assign it
to `DECL_SECTION_NAME (decl)'. As with TARGET_ASM_SELECT_SECTION, reloc indi-
cates whether the initial value of exp requires link-time relocations.

The default version of this function appends the symbol name to the ELF section
name that would normally be used for the symbol. For example, the function foo

would be placed in .text.foo. Whatever the actual target object format, this is
often good enough.

[Target Hook]section * TARGET_ASM_FUNCTION_RODATA_SECTION (tree decl)
Return the readonly data section associated with `DECL_SECTION_NAME (decl)'. The
default version of this function selects .gnu.linkonce.r.name if the function's sec-
tion is .gnu.linkonce.t.name, .rodata.name if function is in .text.name, and the
normal readonly-data section otherwise.

[Target Hook]section * TARGET_ASM_SELECT_RTX_SECTION (enum
machine mode mode, rtx x, unsigned HOST WIDE INT align)

Return the section into which a constant x, of mode mode, should be placed. You can
assume that x is some kind of constant in RTL. The argument mode is redundant
except in the case of a const_int rtx. align is the constant alignment in bits.

The default version of this function takes care of putting symbolic constants in flag_

pic mode in data_section and everything else in readonly_data_section.

[Target Hook]void TARGET_ENCODE_SECTION_INFO (tree decl, rtx rtl, int
new_decl_p)

De�ne this hook if references to a symbol or a constant must be treated di�erently
depending on something about the variable or function named by the symbol (such
as what section it is in).

The hook is executed immediately after rtl has been created for decl, which may be
a variable or function declaration or an entry in the constant pool. In either case, rtl
is the rtl in question. Do not use DECL_RTL (decl) in this hook; that �eld may not
have been initialized yet.

In the case of a constant, it is safe to assume that the rtl is a mem whose address is a
symbol_ref. Most decls will also have this form, but that is not guaranteed. Global
register variables, for instance, will have a reg for their rtl. (Normally the right thing
to do with such unusual rtl is leave it alone.)

The new decl p argument will be true if this is the �rst time that TARGET_ENCODE_
SECTION_INFO has been invoked on this decl. It will be false for subsequent invoca-
tions, which will happen for duplicate declarations. Whether or not anything must
be done for the duplicate declaration depends on whether the hook examines DECL_
ATTRIBUTES. new decl p is always true when the hook is called for a constant.

Chapter 15: Target Description Macros and Functions 385

The usual thing for this hook to do is to record
ags in the symbol_ref, using
SYMBOL_REF_FLAG or SYMBOL_REF_FLAGS. Historically, the name string was modi�ed
if it was necessary to encode more than one bit of information, but this practice is
now discouraged; use SYMBOL_REF_FLAGS.

The default de�nition of this hook, default_encode_section_info in `varasm.c',
sets a number of commonly-useful bits in SYMBOL_REF_FLAGS. Check whether the
default does what you need before overriding it.

[Target Hook]const char *TARGET STRIP NAME ENCODING (const char
*name)

Decode name and return the real name part, sans the characters that TARGET_ENCODE_
SECTION_INFO may have added.

[Target Hook]bool TARGET_IN_SMALL_DATA_P (tree exp)
Returns true if exp should be placed into a \small data" section. The default version
of this hook always returns false.

[Variable]Target Hook bool TARGET HAVE SRODATA SECTION
Contains the value true if the target places read-only \small data" into a separate
section. The default value is false.

[Target Hook]bool TARGET_BINDS_LOCAL_P (tree exp)
Returns true if exp names an object for which name resolution rules must resolve to
the current \module" (dynamic shared library or executable image).

The default version of this hook implements the name resolution rules for ELF, which
has a looser model of global name binding than other currently supported object �le
formats.

[Variable]Target Hook bool TARGET HAVE TLS
Contains the value true if the target supports thread-local storage. The default value
is false.

15.20 Position Independent Code

This section describes macros that help implement generation of position independent code.
Simply de�ning these macros is not enough to generate valid PIC; you must also add sup-
port to the macros GO_IF_LEGITIMATE_ADDRESS and PRINT_OPERAND_ADDRESS, as well as
LEGITIMIZE_ADDRESS. You must modify the de�nition of `movsi' to do something appro-
priate when the source operand contains a symbolic address. You may also need to alter
the handling of switch statements so that they use relative addresses.

[Macro]PIC_OFFSET_TABLE_REGNUM
The register number of the register used to address a table of static data addresses
in memory. In some cases this register is de�ned by a processor's \application binary
interface" (ABI). When this macro is de�ned, RTL is generated for this register once,
as with the stack pointer and frame pointer registers. If this macro is not de�ned, it
is up to the machine-dependent �les to allocate such a register (if necessary). Note
that this register must be �xed when in use (e.g. when flag_pic is true).

386 GNU Compiler Collection (GCC) Internals

[Macro]PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
De�ne this macro if the register de�ned by PIC_OFFSET_TABLE_REGNUM is clobbered
by calls. Do not de�ne this macro if PIC_OFFSET_TABLE_REGNUM is not de�ned.

[Macro]LEGITIMATE_PIC_OPERAND_P (x)
A C expression that is nonzero if x is a legitimate immediate operand on the target
machine when generating position independent code. You can assume that x satis�es
CONSTANT_P, so you need not check this. You can also assume
ag pic is true, so you
need not check it either. You need not de�ne this macro if all constants (including
SYMBOL_REF) can be immediate operands when generating position independent code.

15.21 De�ning the Output Assembler Language

This section describes macros whose principal purpose is to describe how to write instruc-
tions in assembler language|rather than what the instructions do.

15.21.1 The Overall Framework of an Assembler File

This describes the overall framework of an assembly �le.

[Target Hook]void TARGET_ASM_FILE_START ()
Output to asm_out_file any text which the assembler expects to �nd at the be-
ginning of a �le. The default behavior is controlled by two
ags, documented below.
Unless your target's assembler is quite unusual, if you override the default, you should
call default_file_start at some point in your target hook. This lets other target
�les rely on these variables.

[Target Hook]bool TARGET_ASM_FILE_START_APP_OFF
If this
ag is true, the text of the macro ASM_APP_OFF will be printed as the very �rst
line in the assembly �le, unless `-fverbose-asm' is in e�ect. (If that macro has been
de�ned to the empty string, this variable has no e�ect.) With the normal de�nition
of ASM_APP_OFF, the e�ect is to notify the GNU assembler that it need not bother
stripping comments or extra whitespace from its input. This allows it to work a bit
faster.

The default is false. You should not set it to true unless you have veri�ed that your
port does not generate any extra whitespace or comments that will cause GAS to
issue errors in NO APP mode.

[Target Hook]bool TARGET_ASM_FILE_START_FILE_DIRECTIVE
If this
ag is true, output_file_directive will be called for the primary source �le,
immediately after printing ASM_APP_OFF (if that is enabled). Most ELF assemblers
expect this to be done. The default is false.

[Target Hook]void TARGET_ASM_FILE_END ()
Output to asm_out_file any text which the assembler expects to �nd at the end of
a �le. The default is to output nothing.

[Function]void file_end_indicate_exec_stack ()
Some systems use a common convention, the `.note.GNU-stack' special section, to
indicate whether or not an object �le relies on the stack being executable. If your

Chapter 15: Target Description Macros and Functions 387

system uses this convention, you should de�ne TARGET_ASM_FILE_END to this function.
If you need to do other things in that hook, have your hook function call this function.

[Macro]ASM_COMMENT_START
A C string constant describing how to begin a comment in the target assembler
language. The compiler assumes that the comment will end at the end of the line.

[Macro]ASM_APP_ON
A C string constant for text to be output before each asm statement or group of
consecutive ones. Normally this is "#APP", which is a comment that has no e�ect on
most assemblers but tells the GNU assembler that it must check the lines that follow
for all valid assembler constructs.

[Macro]ASM_APP_OFF
A C string constant for text to be output after each asm statement or group of con-
secutive ones. Normally this is "#NO_APP", which tells the GNU assembler to resume
making the time-saving assumptions that are valid for ordinary compiler output.

[Macro]ASM_OUTPUT_SOURCE_FILENAME (stream, name)
A C statement to output COFF information or DWARF debugging information which
indicates that �lename name is the current source �le to the stdio stream stream.

This macro need not be de�ned if the standard form of output for the �le format in
use is appropriate.

[Macro]OUTPUT_QUOTED_STRING (stream, string)
A C statement to output the string string to the stdio stream stream. If you do not
call the function output_quoted_string in your con�g �les, GCC will only call it
to output �lenames to the assembler source. So you can use it to canonicalize the
format of the �lename using this macro.

[Macro]ASM_OUTPUT_IDENT (stream, string)
A C statement to output something to the assembler �le to handle a `#ident' directive
containing the text string. If this macro is not de�ned, nothing is output for a `#ident'
directive.

[Target Hook]void TARGET_ASM_NAMED_SECTION (const char *name, unsigned int
flags, unsigned int align)

Output assembly directives to switch to section name. The section should have at-
tributes as speci�ed by
ags, which is a bit mask of the SECTION_*
ags de�ned in
`output.h'. If align is nonzero, it contains an alignment in bytes to be used for the
section, otherwise some target default should be used. Only targets that must specify
an alignment within the section directive need pay attention to align { we will still
use ASM_OUTPUT_ALIGN.

[Target Hook]bool TARGET_HAVE_NAMED_SECTIONS
This
ag is true if the target supports TARGET_ASM_NAMED_SECTION.

[Target Hook]bool TARGET_HAVE_SWITCHABLE_BSS_SECTIONS
This
ag is true if we can create zeroed data by switching to a BSS section and then
using ASM_OUTPUT_SKIP to allocate the space. This is true on most ELF targets.

388 GNU Compiler Collection (GCC) Internals

[Target Hook]unsigned int TARGET_SECTION_TYPE_FLAGS (tree decl, const
char *name, int reloc)

Choose a set of section attributes for use by TARGET_ASM_NAMED_SECTION based on
a variable or function decl, a section name, and whether or not the declaration's
initializer may contain runtime relocations. decl may be null, in which case read-
write data should be assumed.

The default version of this function handles choosing code vs data, read-only vs read-
write data, and flag_pic. You should only need to override this if your target has
special
ags that might be set via __attribute__.

15.21.2 Output of Data

[Target Hook]const char * TARGET_ASM_BYTE_OP
[Target Hook]const char * TARGET_ASM_ALIGNED_HI_OP
[Target Hook]const char * TARGET_ASM_ALIGNED_SI_OP
[Target Hook]const char * TARGET_ASM_ALIGNED_DI_OP
[Target Hook]const char * TARGET_ASM_ALIGNED_TI_OP
[Target Hook]const char * TARGET_ASM_UNALIGNED_HI_OP
[Target Hook]const char * TARGET_ASM_UNALIGNED_SI_OP
[Target Hook]const char * TARGET_ASM_UNALIGNED_DI_OP
[Target Hook]const char * TARGET_ASM_UNALIGNED_TI_OP

These hooks specify assembly directives for creating certain kinds of integer object.
The TARGET_ASM_BYTE_OP directive creates a byte-sized object, the TARGET_ASM_

ALIGNED_HI_OP one creates an aligned two-byte object, and so on. Any of the hooks
may be NULL, indicating that no suitable directive is available.

The compiler will print these strings at the start of a new line, followed immediately by
the object's initial value. In most cases, the string should contain a tab, a pseudo-op,
and then another tab.

[Target Hook]bool TARGET_ASM_INTEGER (rtx x, unsigned int size, int
aligned_p)

The assemble_integer function uses this hook to output an integer object. x is the
object's value, size is its size in bytes and aligned p indicates whether it is aligned.
The function should return true if it was able to output the object. If it returns false,
assemble_integer will try to split the object into smaller parts.

The default implementation of this hook will use the TARGET_ASM_BYTE_OP family of
strings, returning false when the relevant string is NULL.

[Macro]OUTPUT_ADDR_CONST_EXTRA (stream, x, fail)
A C statement to recognize rtx patterns that output_addr_const can't deal with,
and output assembly code to stream corresponding to the pattern x. This may be
used to allow machine-dependent UNSPECs to appear within constants.

If OUTPUT_ADDR_CONST_EXTRA fails to recognize a pattern, it must goto fail, so that
a standard error message is printed. If it prints an error message itself, by calling, for
example, output_operand_lossage, it may just complete normally.

Chapter 15: Target Description Macros and Functions 389

[Macro]ASM_OUTPUT_ASCII (stream, ptr, len)
A C statement to output to the stdio stream stream an assembler instruction to
assemble a string constant containing the len bytes at ptr. ptr will be a C expression
of type char * and len a C expression of type int.

If the assembler has a .ascii pseudo-op as found in the Berkeley Unix assembler, do
not de�ne the macro ASM_OUTPUT_ASCII.

[Macro]ASM_OUTPUT_FDESC (stream, decl, n)
A C statement to output word n of a function descriptor for decl. This must be
de�ned if TARGET_VTABLE_USES_DESCRIPTORS is de�ned, and is otherwise unused.

[Macro]CONSTANT_POOL_BEFORE_FUNCTION
You may de�ne this macro as a C expression. You should de�ne the expression to
have a nonzero value if GCC should output the constant pool for a function before
the code for the function, or a zero value if GCC should output the constant pool
after the function. If you do not de�ne this macro, the usual case, GCC will output
the constant pool before the function.

[Macro]ASM_OUTPUT_POOL_PROLOGUE (file, funname, fundecl, size)
A C statement to output assembler commands to de�ne the start of the constant pool
for a function. funname is a string giving the name of the function. Should the return
type of the function be required, it can be obtained via fundecl. size is the size, in
bytes, of the constant pool that will be written immediately after this call.

If no constant-pool pre�x is required, the usual case, this macro need not be de�ned.

[Macro]ASM_OUTPUT_SPECIAL_POOL_ENTRY (file, x, mode, align, labelno,
jumpto)

A C statement (with or without semicolon) to output a constant in the constant pool,
if it needs special treatment. (This macro need not do anything for RTL expressions
that can be output normally.)

The argument �le is the standard I/O stream to output the assembler code on. x is
the RTL expression for the constant to output, and mode is the machine mode (in
case x is a `const_int'). align is the required alignment for the value x; you should
output an assembler directive to force this much alignment.

The argument labelno is a number to use in an internal label for the address of
this pool entry. The de�nition of this macro is responsible for outputting the label
de�nition at the proper place. Here is how to do this:

(*targetm.asm_out.internal_label) (file, "LC", labelno);

When you output a pool entry specially, you should end with a goto to the label
jumpto. This will prevent the same pool entry from being output a second time in
the usual manner.

You need not de�ne this macro if it would do nothing.

[Macro]ASM_OUTPUT_POOL_EPILOGUE (file funname fundecl size)
A C statement to output assembler commands to at the end of the constant pool for
a function. funname is a string giving the name of the function. Should the return

390 GNU Compiler Collection (GCC) Internals

type of the function be required, you can obtain it via fundecl. size is the size, in
bytes, of the constant pool that GCC wrote immediately before this call.

If no constant-pool epilogue is required, the usual case, you need not de�ne this macro.

[Macro]IS_ASM_LOGICAL_LINE_SEPARATOR (C)
De�ne this macro as a C expression which is nonzero if C is used as a logical line
separator by the assembler.

If you do not de�ne this macro, the default is that only the character `;' is treated as
a logical line separator.

[Target Hook]const char * TARGET_ASM_OPEN_PAREN
[Target Hook]const char * TARGET_ASM_CLOSE_PAREN

These target hooks are C string constants, describing the syntax in the assembler for
grouping arithmetic expressions. If not overridden, they default to normal parenthe-
ses, which is correct for most assemblers.

These macros are provided by `real.h' for writing the de�nitions of ASM_OUTPUT_DOUBLE
and the like:

[Macro]REAL_VALUE_TO_TARGET_SINGLE (x, l)
[Macro]REAL_VALUE_TO_TARGET_DOUBLE (x, l)
[Macro]REAL_VALUE_TO_TARGET_LONG_DOUBLE (x, l)
[Macro]REAL_VALUE_TO_TARGET_DECIMAL32 (x, l)
[Macro]REAL_VALUE_TO_TARGET_DECIMAL64 (x, l)
[Macro]REAL_VALUE_TO_TARGET_DECIMAL128 (x, l)

These translate x, of type REAL_VALUE_TYPE, to the target's
oating point representa-
tion, and store its bit pattern in the variable l. For REAL_VALUE_TO_TARGET_SINGLE
and REAL_VALUE_TO_TARGET_DECIMAL32, this variable should be a simple long int.
For the others, it should be an array of long int. The number of elements in this
array is determined by the size of the desired target
oating point data type: 32 bits
of it go in each long int array element. Each array element holds 32 bits of the
result, even if long int is wider than 32 bits on the host machine.

The array element values are designed so that you can print them out using fprintf

in the order they should appear in the target machine's memory.

15.21.3 Output of Uninitialized Variables

Each of the macros in this section is used to do the whole job of outputting a single
uninitialized variable.

[Macro]ASM_OUTPUT_COMMON (stream, name, size, rounded)
A C statement (sans semicolon) to output to the stdio stream stream the assembler
de�nition of a common-label named name whose size is size bytes. The variable
rounded is the size rounded up to whatever alignment the caller wants.

Use the expression assemble_name (stream, name) to output the name itself; before
and after that, output the additional assembler syntax for de�ning the name, and a
newline.

This macro controls how the assembler de�nitions of uninitialized common global
variables are output.

Chapter 15: Target Description Macros and Functions 391

[Macro]ASM_OUTPUT_ALIGNED_COMMON (stream, name, size, alignment)
Like ASM_OUTPUT_COMMON except takes the required alignment as a separate, explicit
argument. If you de�ne this macro, it is used in place of ASM_OUTPUT_COMMON, and
gives you more
exibility in handling the required alignment of the variable. The
alignment is speci�ed as the number of bits.

[Macro]ASM_OUTPUT_ALIGNED_DECL_COMMON (stream, decl, name, size,
alignment)

Like ASM_OUTPUT_ALIGNED_COMMON except that decl of the variable to be output,
if there is one, or NULL_TREE if there is no corresponding variable. If you de�ne
this macro, GCC will use it in place of both ASM_OUTPUT_COMMON and ASM_OUTPUT_

ALIGNED_COMMON. De�ne this macro when you need to see the variable's decl in order
to chose what to output.

[Macro]ASM_OUTPUT_BSS (stream, decl, name, size, rounded)
A C statement (sans semicolon) to output to the stdio stream stream the assembler
de�nition of uninitialized global decl named name whose size is size bytes. The
variable rounded is the size rounded up to whatever alignment the caller wants.

Try to use function asm_output_bss de�ned in `varasm.c' when de�ning this macro.
If unable, use the expression assemble_name (stream, name) to output the name
itself; before and after that, output the additional assembler syntax for de�ning the
name, and a newline.

There are two ways of handling global BSS. One is to de�ne either this
macro or its aligned counterpart, ASM_OUTPUT_ALIGNED_BSS. The other is
to have TARGET_ASM_SELECT_SECTION return a switchable BSS section (see
[TARGET HAVE SWITCHABLE BSS SECTIONS], page 387). You do not need
to do both.

Some languages do not have common data, and require a non-common form of global
BSS in order to handle uninitialized globals e�ciently. C++ is one example of this.
However, if the target does not support global BSS, the front end may choose to make
globals common in order to save space in the object �le.

[Macro]ASM_OUTPUT_ALIGNED_BSS (stream, decl, name, size, alignment)
Like ASM_OUTPUT_BSS except takes the required alignment as a separate, explicit
argument. If you de�ne this macro, it is used in place of ASM_OUTPUT_BSS, and gives
you more
exibility in handling the required alignment of the variable. The alignment
is speci�ed as the number of bits.

Try to use function asm_output_aligned_bss de�ned in �le `varasm.c' when de�ning
this macro.

[Macro]ASM_OUTPUT_LOCAL (stream, name, size, rounded)
A C statement (sans semicolon) to output to the stdio stream stream the assembler
de�nition of a local-common-label named name whose size is size bytes. The variable
rounded is the size rounded up to whatever alignment the caller wants.

Use the expression assemble_name (stream, name) to output the name itself; before
and after that, output the additional assembler syntax for de�ning the name, and a
newline.

392 GNU Compiler Collection (GCC) Internals

This macro controls how the assembler de�nitions of uninitialized static variables are
output.

[Macro]ASM_OUTPUT_ALIGNED_LOCAL (stream, name, size, alignment)
Like ASM_OUTPUT_LOCAL except takes the required alignment as a separate, explicit
argument. If you de�ne this macro, it is used in place of ASM_OUTPUT_LOCAL, and
gives you more
exibility in handling the required alignment of the variable. The
alignment is speci�ed as the number of bits.

[Macro]ASM_OUTPUT_ALIGNED_DECL_LOCAL (stream, decl, name, size,
alignment)

Like ASM_OUTPUT_ALIGNED_DECL except that decl of the variable to be output, if there
is one, or NULL_TREE if there is no corresponding variable. If you de�ne this macro,
GCC will use it in place of both ASM_OUTPUT_DECL and ASM_OUTPUT_ALIGNED_DECL.
De�ne this macro when you need to see the variable's decl in order to chose what to
output.

15.21.4 Output and Generation of Labels

This is about outputting labels.

[Macro]ASM_OUTPUT_LABEL (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream the assem-
bler de�nition of a label named name. Use the expression assemble_name (stream,

name) to output the name itself; before and after that, output the additional assem-
bler syntax for de�ning the name, and a newline. A default de�nition of this macro
is provided which is correct for most systems.

[Macro]ASM_OUTPUT_INTERNAL_LABEL (stream, name)
Identical to ASM_OUTPUT_LABEL, except that name is known to refer to a
compiler-generated label. The default de�nition uses assemble_name_raw, which is
like assemble_name except that it is more e�cient.

[Macro]SIZE_ASM_OP
A C string containing the appropriate assembler directive to specify the size of
a symbol, without any arguments. On systems that use ELF, the default (in
`config/elfos.h') is `"\t.size\t"'; on other systems, the default is not to de�ne
this macro.

De�ne this macro only if it is correct to use the default de�nitions of ASM_OUTPUT_
SIZE_DIRECTIVE and ASM_OUTPUT_MEASURED_SIZE for your system. If you need your
own custom de�nitions of those macros, or if you do not need explicit symbol sizes at
all, do not de�ne this macro.

[Macro]ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size)
A C statement (sans semicolon) to output to the stdio stream stream a directive telling
the assembler that the size of the symbol name is size. size is a HOST_WIDE_INT. If
you de�ne SIZE_ASM_OP, a default de�nition of this macro is provided.

Chapter 15: Target Description Macros and Functions 393

[Macro]ASM_OUTPUT_MEASURED_SIZE (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream a directive
telling the assembler to calculate the size of the symbol name by subtracting its
address from the current address.

If you de�ne SIZE_ASM_OP, a default de�nition of this macro is provided. The default
assumes that the assembler recognizes a special `.' symbol as referring to the current
address, and can calculate the di�erence between this and another symbol. If your
assembler does not recognize `.' or cannot do calculations with it, you will need to
rede�ne ASM_OUTPUT_MEASURED_SIZE to use some other technique.

[Macro]TYPE_ASM_OP
A C string containing the appropriate assembler directive to specify the type of
a symbol, without any arguments. On systems that use ELF, the default (in
`config/elfos.h') is `"\t.type\t"'; on other systems, the default is not to de�ne
this macro.

De�ne this macro only if it is correct to use the default de�nition of ASM_OUTPUT_
TYPE_DIRECTIVE for your system. If you need your own custom de�nition of this
macro, or if you do not need explicit symbol types at all, do not de�ne this macro.

[Macro]TYPE_OPERAND_FMT
A C string which speci�es (using printf syntax) the format of the second operand
to TYPE_ASM_OP. On systems that use ELF, the default (in `config/elfos.h') is
`"@%s"'; on other systems, the default is not to de�ne this macro.

De�ne this macro only if it is correct to use the default de�nition of ASM_OUTPUT_
TYPE_DIRECTIVE for your system. If you need your own custom de�nition of this
macro, or if you do not need explicit symbol types at all, do not de�ne this macro.

[Macro]ASM_OUTPUT_TYPE_DIRECTIVE (stream, type)
A C statement (sans semicolon) to output to the stdio stream stream a directive
telling the assembler that the type of the symbol name is type. type is a C string;
currently, that string is always either `"function"' or `"object"', but you should not
count on this.

If you de�ne TYPE_ASM_OP and TYPE_OPERAND_FMT, a default de�nition of this macro
is provided.

[Macro]ASM_DECLARE_FUNCTION_NAME (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream stream any text nec-
essary for declaring the name name of a function which is being de�ned. This macro
is responsible for outputting the label de�nition (perhaps using ASM_OUTPUT_LABEL).
The argument decl is the FUNCTION_DECL tree node representing the function.

If this macro is not de�ned, then the function name is de�ned in the usual manner
as a label (by means of ASM_OUTPUT_LABEL).

You may wish to use ASM_OUTPUT_TYPE_DIRECTIVE in the de�nition of this macro.

[Macro]ASM_DECLARE_FUNCTION_SIZE (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream stream any text neces-
sary for declaring the size of a function which is being de�ned. The argument name

394 GNU Compiler Collection (GCC) Internals

is the name of the function. The argument decl is the FUNCTION_DECL tree node
representing the function.

If this macro is not de�ned, then the function size is not de�ned.

You may wish to use ASM_OUTPUT_MEASURED_SIZE in the de�nition of this macro.

[Macro]ASM_DECLARE_OBJECT_NAME (stream, name, decl)
A C statement (sans semicolon) to output to the stdio stream stream any text nec-
essary for declaring the name name of an initialized variable which is being de�ned.
This macro must output the label de�nition (perhaps using ASM_OUTPUT_LABEL). The
argument decl is the VAR_DECL tree node representing the variable.

If this macro is not de�ned, then the variable name is de�ned in the usual manner as
a label (by means of ASM_OUTPUT_LABEL).

You may wish to use ASM_OUTPUT_TYPE_DIRECTIVE and/or ASM_OUTPUT_SIZE_

DIRECTIVE in the de�nition of this macro.

[Macro]ASM_DECLARE_CONSTANT_NAME (stream, name, exp, size)
A C statement (sans semicolon) to output to the stdio stream stream any text nec-
essary for declaring the name name of a constant which is being de�ned. This macro
is responsible for outputting the label de�nition (perhaps using ASM_OUTPUT_LABEL).
The argument exp is the value of the constant, and size is the size of the constant in
bytes. name will be an internal label.

If this macro is not de�ned, then the name is de�ned in the usual manner as a label
(by means of ASM_OUTPUT_LABEL).

You may wish to use ASM_OUTPUT_TYPE_DIRECTIVE in the de�nition of this macro.

[Macro]ASM_DECLARE_REGISTER_GLOBAL (stream, decl, regno, name)
A C statement (sans semicolon) to output to the stdio stream stream any text nec-
essary for claiming a register regno for a global variable decl with name name.

If you don't de�ne this macro, that is equivalent to de�ning it to do nothing.

[Macro]ASM_FINISH_DECLARE_OBJECT (stream, decl, toplevel, atend)
A C statement (sans semicolon) to �nish up declaring a variable name once the
compiler has processed its initializer fully and thus has had a chance to determine the
size of an array when controlled by an initializer. This is used on systems where it's
necessary to declare something about the size of the object.

If you don't de�ne this macro, that is equivalent to de�ning it to do nothing.

You may wish to use ASM_OUTPUT_SIZE_DIRECTIVE and/or ASM_OUTPUT_MEASURED_
SIZE in the de�nition of this macro.

[Target Hook]void TARGET_ASM_GLOBALIZE_LABEL (FILE *stream, const char
*name)

This target hook is a function to output to the stdio stream stream some commands
that will make the label name global; that is, available for reference from other �les.

The default implementation relies on a proper de�nition of GLOBAL_ASM_OP.

Chapter 15: Target Description Macros and Functions 395

[Macro]ASM_WEAKEN_LABEL (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream some com-
mands that will make the label name weak; that is, available for reference from other
�les but only used if no other de�nition is available. Use the expression assemble_

name (stream, name) to output the name itself; before and after that, output the
additional assembler syntax for making that name weak, and a newline.

If you don't de�ne this macro or ASM_WEAKEN_DECL, GCC will not support weak
symbols and you should not de�ne the SUPPORTS_WEAK macro.

[Macro]ASM_WEAKEN_DECL (stream, decl, name, value)
Combines (and replaces) the function of ASM_WEAKEN_LABEL and ASM_OUTPUT_WEAK_

ALIAS, allowing access to the associated function or variable decl. If value is not
NULL, this C statement should output to the stdio stream stream assembler code
which de�nes (equates) the weak symbol name to have the value value. If value is
NULL, it should output commands to make name weak.

[Macro]ASM_OUTPUT_WEAKREF (stream, decl, name, value)
Outputs a directive that enables name to be used to refer to symbol value with
weak-symbol semantics. decl is the declaration of name.

[Macro]SUPPORTS_WEAK
A C expression which evaluates to true if the target supports weak symbols.

If you don't de�ne this macro, `defaults.h' provides a default de�nition. If either
ASM_WEAKEN_LABEL or ASM_WEAKEN_DECL is de�ned, the default de�nition is `1'; oth-
erwise, it is `0'. De�ne this macro if you want to control weak symbol support with
a compiler
ag such as `-melf'.

[Macro]MAKE_DECL_ONE_ONLY (decl)
A C statement (sans semicolon) to mark decl to be emitted as a public symbol such
that extra copies in multiple translation units will be discarded by the linker. De�ne
this macro if your object �le format provides support for this concept, such as the
`COMDAT' section
ags in the Microsoft Windows PE/COFF format, and this support
requires changes to decl, such as putting it in a separate section.

[Macro]SUPPORTS_ONE_ONLY
A C expression which evaluates to true if the target supports one-only semantics.

If you don't de�ne this macro, `varasm.c' provides a default de�nition. If MAKE_
DECL_ONE_ONLY is de�ned, the default de�nition is `1'; otherwise, it is `0'. De�ne
this macro if you want to control one-only symbol support with a compiler
ag, or
if setting the DECL_ONE_ONLY
ag is enough to mark a declaration to be emitted as
one-only.

[Target Hook]void TARGET_ASM_ASSEMBLE_VISIBILITY (tree decl, const char
*visibility)

This target hook is a function to output to asm out �le some commands that will
make the symbol(s) associated with decl have hidden, protected or internal visibility
as speci�ed by visibility.

396 GNU Compiler Collection (GCC) Internals

[Macro]TARGET_WEAK_NOT_IN_ARCHIVE_TOC
A C expression that evaluates to true if the target's linker expects that weak symbols
do not appear in a static archive's table of contents. The default is 0.

Leaving weak symbols out of an archive's table of contents means that, if a symbol
will only have a de�nition in one translation unit and will have unde�ned references
from other translation units, that symbol should not be weak. De�ning this macro to
be nonzero will thus have the e�ect that certain symbols that would normally be weak
(explicit template instantiations, and vtables for polymorphic classes with noninline
key methods) will instead be nonweak.

The C++ ABI requires this macro to be zero. De�ne this macro for targets where full
C++ ABI compliance is impossible and where linker restrictions require weak symbols
to be left out of a static archive's table of contents.

[Macro]ASM_OUTPUT_EXTERNAL (stream, decl, name)
A C statement (sans semicolon) to output to the stdio stream stream any text neces-
sary for declaring the name of an external symbol named name which is referenced in
this compilation but not de�ned. The value of decl is the tree node for the declaration.

This macro need not be de�ned if it does not need to output anything. The GNU
assembler and most Unix assemblers don't require anything.

[Target Hook]void TARGET_ASM_EXTERNAL_LIBCALL (rtx symref)
This target hook is a function to output to asm out �le an assembler pseudo-op to
declare a library function name external. The name of the library function is given
by symref, which is a symbol_ref.

[Target Hook]void TARGET_ASM_MARK_DECL_PRESERVED (tree decl)
This target hook is a function to output to asm out �le an assembler directive to
annotate used symbol. Darwin target use .no dead code strip directive.

[Macro]ASM_OUTPUT_LABELREF (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream a reference in
assembler syntax to a label named name. This should add `_' to the front of the
name, if that is customary on your operating system, as it is in most Berkeley Unix
systems. This macro is used in assemble_name.

[Macro]ASM_OUTPUT_SYMBOL_REF (stream, sym)
A C statement (sans semicolon) to output a reference to SYMBOL_REF sym. If not
de�ned, assemble_name will be used to output the name of the symbol. This macro
may be used to modify the way a symbol is referenced depending on information
encoded by TARGET_ENCODE_SECTION_INFO.

[Macro]ASM_OUTPUT_LABEL_REF (stream, buf)
A C statement (sans semicolon) to output a reference to buf, the result of ASM_
GENERATE_INTERNAL_LABEL. If not de�ned, assemble_name will be used to output
the name of the symbol. This macro is not used by output_asm_label, or the %l

speci�er that calls it; the intention is that this macro should be set when it is necessary
to output a label di�erently when its address is being taken.

Chapter 15: Target Description Macros and Functions 397

[Target Hook]void TARGET_ASM_INTERNAL_LABEL (FILE *stream, const char
*prefix, unsigned long labelno)

A function to output to the stdio stream stream a label whose name is made from
the string pre�x and the number labelno.

It is absolutely essential that these labels be distinct from the labels used for user-level
functions and variables. Otherwise, certain programs will have name con
icts with
internal labels.

It is desirable to exclude internal labels from the symbol table of the object �le. Most
assemblers have a naming convention for labels that should be excluded; on many
systems, the letter `L' at the beginning of a label has this e�ect. You should �nd out
what convention your system uses, and follow it.

The default version of this function utilizes ASM_GENERATE_INTERNAL_LABEL.

[Macro]ASM_OUTPUT_DEBUG_LABEL (stream, prefix, num)
A C statement to output to the stdio stream stream a debug info label whose name
is made from the string pre�x and the number num. This is useful for VLIW tar-
gets, where debug info labels may need to be treated di�erently than branch target
labels. On some systems, branch target labels must be at the beginning of instruction
bundles, but debug info labels can occur in the middle of instruction bundles.

If this macro is not de�ned, then (*targetm.asm_out.internal_label) will be used.

[Macro]ASM_GENERATE_INTERNAL_LABEL (string, prefix, num)
A C statement to store into the string string a label whose name is made from the
string pre�x and the number num.

This string, when output subsequently by assemble_name, should produce the output
that (*targetm.asm_out.internal_label) would produce with the same pre�x and
num.

If the string begins with `*', then assemble_name will output the rest of the string
unchanged. It is often convenient for ASM_GENERATE_INTERNAL_LABEL to use `*' in
this way. If the string doesn't start with `*', then ASM_OUTPUT_LABELREF gets to
output the string, and may change it. (Of course, ASM_OUTPUT_LABELREF is also part
of your machine description, so you should know what it does on your machine.)

[Macro]ASM_FORMAT_PRIVATE_NAME (outvar, name, number)
A C expression to assign to outvar (which is a variable of type char *) a newly
allocated string made from the string name and the number number, with some
suitable punctuation added. Use alloca to get space for the string.

The string will be used as an argument to ASM_OUTPUT_LABELREF to produce an
assembler label for an internal static variable whose name is name. Therefore, the
string must be such as to result in valid assembler code. The argument number is
di�erent each time this macro is executed; it prevents con
icts between similarly-
named internal static variables in di�erent scopes.

Ideally this string should not be a valid C identi�er, to prevent any con
ict with
the user's own symbols. Most assemblers allow periods or percent signs in assembler
symbols; putting at least one of these between the name and the number will su�ce.

If this macro is not de�ned, a default de�nition will be provided which is correct for
most systems.

398 GNU Compiler Collection (GCC) Internals

[Macro]ASM_OUTPUT_DEF (stream, name, value)
A C statement to output to the stdio stream stream assembler code which de�nes
(equates) the symbol name to have the value value.

If SET_ASM_OP is de�ned, a default de�nition is provided which is correct for most
systems.

[Macro]ASM_OUTPUT_DEF_FROM_DECLS (stream, decl_of_name,
decl_of_value)

A C statement to output to the stdio stream stream assembler code which de�nes
(equates) the symbol whose tree node is decl of name to have the value of the tree
node decl of value. This macro will be used in preference to `ASM_OUTPUT_DEF' if it
is de�ned and if the tree nodes are available.

If SET_ASM_OP is de�ned, a default de�nition is provided which is correct for most
systems.

[Macro]TARGET_DEFERRED_OUTPUT_DEFS (decl_of_name, decl_of_value)
A C statement that evaluates to true if the assembler code which de�nes (equates)
the symbol whose tree node is decl of name to have the value of the tree node
decl of value should be emitted near the end of the current compilation unit. The
default is to not defer output of de�nes. This macro a�ects de�nes output by
`ASM_OUTPUT_DEF' and `ASM_OUTPUT_DEF_FROM_DECLS'.

[Macro]ASM_OUTPUT_WEAK_ALIAS (stream, name, value)
A C statement to output to the stdio stream stream assembler code which de�nes
(equates) the weak symbol name to have the value value. If value is NULL, it de�nes
name as an unde�ned weak symbol.

De�ne this macro if the target only supports weak aliases; de�ne ASM_OUTPUT_DEF

instead if possible.

[Macro]OBJC_GEN_METHOD_LABEL (buf, is_inst, class_name, cat_name,
sel_name)

De�ne this macro to override the default assembler names used for Objective-C meth-
ods.

The default name is a unique method number followed by the name of the class (e.g.
`_1_Foo'). For methods in categories, the name of the category is also included in the
assembler name (e.g. `_1_Foo_Bar').

These names are safe on most systems, but make debugging di�cult since the
method's selector is not present in the name. Therefore, particular systems de�ne
other ways of computing names.

buf is an expression of type char * which gives you a bu�er in which to store the
name; its length is as long as class name, cat name and sel name put together, plus
50 characters extra.

The argument is inst speci�es whether the method is an instance method or a class
method; class name is the name of the class; cat name is the name of the category
(or NULL if the method is not in a category); and sel name is the name of the selector.

On systems where the assembler can handle quoted names, you can use this macro
to provide more human-readable names.

Chapter 15: Target Description Macros and Functions 399

[Macro]ASM_DECLARE_CLASS_REFERENCE (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream commands to
declare that the label name is an Objective-C class reference. This is only needed for
targets whose linkers have special support for NeXT-style runtimes.

[Macro]ASM_DECLARE_UNRESOLVED_REFERENCE (stream, name)
A C statement (sans semicolon) to output to the stdio stream stream commands to
declare that the label name is an unresolved Objective-C class reference. This is only
needed for targets whose linkers have special support for NeXT-style runtimes.

15.21.5 How Initialization Functions Are Handled

The compiled code for certain languages includes constructors (also called initialization
routines)|functions to initialize data in the program when the program is started. These
functions need to be called before the program is \started"|that is to say, before main is
called.

Compiling some languages generates destructors (also called termination routines) that
should be called when the program terminates.

To make the initialization and termination functions work, the compiler must output
something in the assembler code to cause those functions to be called at the appropriate
time. When you port the compiler to a new system, you need to specify how to do this.

There are two major ways that GCC currently supports the execution of initialization
and termination functions. Each way has two variants. Much of the structure is common
to all four variations.

The linker must build two lists of these functions|a list of initialization functions, called
__CTOR_LIST__, and a list of termination functions, called __DTOR_LIST__.

Each list always begins with an ignored function pointer (which may hold 0, �1, or a
count of the function pointers after it, depending on the environment). This is followed
by a series of zero or more function pointers to constructors (or destructors), followed by a
function pointer containing zero.

Depending on the operating system and its executable �le format, either `crtstuff.c'
or `libgcc2.c' traverses these lists at startup time and exit time. Constructors are called
in reverse order of the list; destructors in forward order.

The best way to handle static constructors works only for object �le formats which provide
arbitrarily-named sections. A section is set aside for a list of constructors, and another for
a list of destructors. Traditionally these are called `.ctors' and `.dtors'. Each object �le
that de�nes an initialization function also puts a word in the constructor section to point to
that function. The linker accumulates all these words into one contiguous `.ctors' section.
Termination functions are handled similarly.

This method will be chosen as the default by `target-def.h' if TARGET_ASM_NAMED_
SECTION is de�ned. A target that does not support arbitrary sections, but does support
special designated constructor and destructor sections may de�ne CTORS_SECTION_ASM_OP
and DTORS_SECTION_ASM_OP to achieve the same e�ect.

When arbitrary sections are available, there are two variants, depending upon how the
code in `crtstuff.c' is called. On systems that support a .init section which is executed
at program startup, parts of `crtstuff.c' are compiled into that section. The program is
linked by the gcc driver like this:

400 GNU Compiler Collection (GCC) Internals

ld -o output_file crti.o crtbegin.o ... -lgcc crtend.o crtn.o

The prologue of a function (__init) appears in the .init section of `crti.o'; the epilogue
appears in `crtn.o'. Likewise for the function __fini in the .�ni section. Normally these
�les are provided by the operating system or by the GNU C library, but are provided by
GCC for a few targets.

The objects `crtbegin.o' and `crtend.o' are (for most targets) compiled from
`crtstuff.c'. They contain, among other things, code fragments within the .init and
.fini sections that branch to routines in the .text section. The linker will pull all parts
of a section together, which results in a complete __init function that invokes the routines
we need at startup.

To use this variant, you must de�ne the INIT_SECTION_ASM_OP macro properly.

If no init section is available, when GCC compiles any function called main (or more
accurately, any function designated as a program entry point by the language front end
calling expand_main_function), it inserts a procedure call to __main as the �rst executable
code after the function prologue. The __main function is de�ned in `libgcc2.c' and runs
the global constructors.

In �le formats that don't support arbitrary sections, there are again two variants. In
the simplest variant, the GNU linker (GNU ld) and an `a.out' format must be used. In
this case, TARGET_ASM_CONSTRUCTOR is de�ned to produce a .stabs entry of type `N_SETT',
referencing the name __CTOR_LIST__, and with the address of the void function containing
the initialization code as its value. The GNU linker recognizes this as a request to add the
value to a set; the values are accumulated, and are eventually placed in the executable as
a vector in the format described above, with a leading (ignored) count and a trailing zero
element. TARGET_ASM_DESTRUCTOR is handled similarly. Since no init section is available,
the absence of INIT_SECTION_ASM_OP causes the compilation of main to call __main as
above, starting the initialization process.

The last variant uses neither arbitrary sections nor the GNU linker. This is preferable
when you want to do dynamic linking and when using �le formats which the GNU linker
does not support, such as `ECOFF'. In this case, TARGET_HAVE_CTORS_DTORS is false,
initialization and termination functions are recognized simply by their names. This requires
an extra program in the linkage step, called collect2. This program pretends to be the
linker, for use with GCC; it does its job by running the ordinary linker, but also arranges to
include the vectors of initialization and termination functions. These functions are called
via __main as described above. In order to use this method, use_collect2 must be de�ned
in the target in `config.gcc'.

15.21.6 Macros Controlling Initialization Routines

Here are the macros that control how the compiler handles initialization and termination
functions:

[Macro]INIT_SECTION_ASM_OP
If de�ned, a C string constant, including spacing, for the assembler operation to
identify the following data as initialization code. If not de�ned, GCC will assume such
a section does not exist. When you are using special sections for initialization and
termination functions, this macro also controls how `crtstuff.c' and `libgcc2.c'
arrange to run the initialization functions.

Chapter 15: Target Description Macros and Functions 401

[Macro]HAS_INIT_SECTION
If de�ned, main will not call __main as described above. This macro should be de�ned
for systems that control start-up code on a symbol-by-symbol basis, such as OSF/1,
and should not be de�ned explicitly for systems that support INIT_SECTION_ASM_OP.

[Macro]LD_INIT_SWITCH
If de�ned, a C string constant for a switch that tells the linker that the following
symbol is an initialization routine.

[Macro]LD_FINI_SWITCH
If de�ned, a C string constant for a switch that tells the linker that the following
symbol is a �nalization routine.

[Macro]COLLECT_SHARED_INIT_FUNC (stream, func)
If de�ned, a C statement that will write a function that can be automatically called
when a shared library is loaded. The function should call func, which takes no ar-
guments. If not de�ned, and the object format requires an explicit initialization
function, then a function called _GLOBAL__DI will be generated.

This function and the following one are used by collect2 when linking a shared library
that needs constructors or destructors, or has DWARF2 exception tables embedded
in the code.

[Macro]COLLECT_SHARED_FINI_FUNC (stream, func)
If de�ned, a C statement that will write a function that can be automatically called
when a shared library is unloaded. The function should call func, which takes no
arguments. If not de�ned, and the object format requires an explicit �nalization
function, then a function called _GLOBAL__DD will be generated.

[Macro]INVOKE__main
If de�ned, main will call __main despite the presence of INIT_SECTION_ASM_OP. This
macro should be de�ned for systems where the init section is not actually run auto-
matically, but is still useful for collecting the lists of constructors and destructors.

[Macro]SUPPORTS_INIT_PRIORITY
If nonzero, the C++ init_priority attribute is supported and the compiler should
emit instructions to control the order of initialization of objects. If zero, the compiler
will issue an error message upon encountering an init_priority attribute.

[Target Hook]bool TARGET_HAVE_CTORS_DTORS
This value is true if the target supports some \native" method of collecting con-
structors and destructors to be run at startup and exit. It is false if we must use
collect2.

[Target Hook]void TARGET_ASM_CONSTRUCTOR (rtx symbol, int priority)
If de�ned, a function that outputs assembler code to arrange to call the function
referenced by symbol at initialization time.

Assume that symbol is a SYMBOL_REF for a function taking no arguments and with
no return value. If the target supports initialization priorities, priority is a value
between 0 and MAX_INIT_PRIORITY; otherwise it must be DEFAULT_INIT_PRIORITY.

402 GNU Compiler Collection (GCC) Internals

If this macro is not de�ned by the target, a suitable default will be chosen if (1) the
target supports arbitrary section names, (2) the target de�nes CTORS_SECTION_ASM_
OP, or (3) USE_COLLECT2 is not de�ned.

[Target Hook]void TARGET_ASM_DESTRUCTOR (rtx symbol, int priority)
This is like TARGET_ASM_CONSTRUCTOR but used for termination functions rather than
initialization functions.

If TARGET_HAVE_CTORS_DTORS is true, the initialization routine generated for the gener-
ated object �le will have static linkage.

If your system uses collect2 as the means of processing constructors, then that program
normally uses nm to scan an object �le for constructor functions to be called.

On certain kinds of systems, you can de�ne this macro to make collect2 work faster
(and, in some cases, make it work at all):

[Macro]OBJECT_FORMAT_COFF
De�ne this macro if the system uses COFF (Common Object File Format) object �les,
so that collect2 can assume this format and scan object �les directly for dynamic
constructor/destructor functions.

This macro is e�ective only in a native compiler; collect2 as part of a cross compiler
always uses nm for the target machine.

[Macro]REAL_NM_FILE_NAME
De�ne this macro as a C string constant containing the �le name to use to execute
nm. The default is to search the path normally for nm.

If your system supports shared libraries and has a program to list the dynamic de-
pendencies of a given library or executable, you can de�ne these macros to enable
support for running initialization and termination functions in shared libraries:

[Macro]LDD_SUFFIX
De�ne this macro to a C string constant containing the name of the program which
lists dynamic dependencies, like "ldd" under SunOS 4.

[Macro]PARSE_LDD_OUTPUT (ptr)
De�ne this macro to be C code that extracts �lenames from the output of the program
denoted by LDD_SUFFIX. ptr is a variable of type char * that points to the beginning
of a line of output from LDD_SUFFIX. If the line lists a dynamic dependency, the code
must advance ptr to the beginning of the �lename on that line. Otherwise, it must
set ptr to NULL.

15.21.7 Output of Assembler Instructions

This describes assembler instruction output.

[Macro]REGISTER_NAMES
A C initializer containing the assembler's names for the machine registers, each one
as a C string constant. This is what translates register numbers in the compiler into
assembler language.

Chapter 15: Target Description Macros and Functions 403

[Macro]ADDITIONAL_REGISTER_NAMES
If de�ned, a C initializer for an array of structures containing a name and a register
number. This macro de�nes additional names for hard registers, thus allowing the
asm option in declarations to refer to registers using alternate names.

[Macro]ASM_OUTPUT_OPCODE (stream, ptr)
De�ne this macro if you are using an unusual assembler that requires di�erent names
for the machine instructions.

The de�nition is a C statement or statements which output an assembler instruction
opcode to the stdio stream stream. The macro-operand ptr is a variable of type char
* which points to the opcode name in its \internal" form|the form that is written in
the machine description. The de�nition should output the opcode name to stream,
performing any translation you desire, and increment the variable ptr to point at the
end of the opcode so that it will not be output twice.

In fact, your macro de�nition may process less than the entire opcode name, or more
than the opcode name; but if you want to process text that includes `%'-sequences to
substitute operands, you must take care of the substitution yourself. Just be sure to
increment ptr over whatever text should not be output normally.

If you need to look at the operand values, they can be found as the elements of
recog_data.operand.

If the macro de�nition does nothing, the instruction is output in the usual way.

[Macro]FINAL_PRESCAN_INSN (insn, opvec, noperands)
If de�ned, a C statement to be executed just prior to the output of assembler code
for insn, to modify the extracted operands so they will be output di�erently.

Here the argument opvec is the vector containing the operands extracted from insn,
and noperands is the number of elements of the vector which contain meaningful data
for this insn. The contents of this vector are what will be used to convert the insn
template into assembler code, so you can change the assembler output by changing
the contents of the vector.

This macro is useful when various assembler syntaxes share a single �le of instruction
patterns; by de�ning this macro di�erently, you can cause a large class of instructions
to be output di�erently (such as with rearranged operands). Naturally, variations in
assembler syntax a�ecting individual insn patterns ought to be handled by writing
conditional output routines in those patterns.

If this macro is not de�ned, it is equivalent to a null statement.

[Macro]PRINT_OPERAND (stream, x, code)
A C compound statement to output to stdio stream stream the assembler syntax for
an instruction operand x. x is an RTL expression.

code is a value that can be used to specify one of several ways of printing the operand.
It is used when identical operands must be printed di�erently depending on the con-
text. code comes from the `%' speci�cation that was used to request printing of the
operand. If the speci�cation was just `%digit ' then code is 0; if the speci�cation was
`%ltr digit ' then code is the ASCII code for ltr.

404 GNU Compiler Collection (GCC) Internals

If x is a register, this macro should print the register's name. The names can be
found in an array reg_names whose type is char *[]. reg_names is initialized from
REGISTER_NAMES.

When the machine description has a speci�cation `%punct ' (a `%' followed by a punc-
tuation character), this macro is called with a null pointer for x and the punctuation
character for code.

[Macro]PRINT_OPERAND_PUNCT_VALID_P (code)
A C expression which evaluates to true if code is a valid punctuation character for
use in the PRINT_OPERAND macro. If PRINT_OPERAND_PUNCT_VALID_P is not de�ned,
it means that no punctuation characters (except for the standard one, `%') are used
in this way.

[Macro]PRINT_OPERAND_ADDRESS (stream, x)
A C compound statement to output to stdio stream stream the assembler syntax for
an instruction operand that is a memory reference whose address is x. x is an RTL
expression.

On some machines, the syntax for a symbolic address depends on the section that
the address refers to. On these machines, de�ne the hook TARGET_ENCODE_SECTION_

INFO to store the information into the symbol_ref, and then check for it here. See
Section 15.21 [Assembler Format], page 386.

[Macro]DBR_OUTPUT_SEQEND (file)
A C statement, to be executed after all slot-�ller instructions have been output. If
necessary, call dbr_sequence_length to determine the number of slots �lled in a
sequence (zero if not currently outputting a sequence), to decide how many no-ops to
output, or whatever.

Don't de�ne this macro if it has nothing to do, but it is helpful in reading assembly
output if the extent of the delay sequence is made explicit (e.g. with white space).

Note that output routines for instructions with delay slots must be prepared to deal with
not being output as part of a sequence (i.e. when the scheduling pass is not run, or when
no slot �llers could be found.) The variable final_sequence is null when not processing a
sequence, otherwise it contains the sequence rtx being output.

[Macro]REGISTER_PREFIX
[Macro]LOCAL_LABEL_PREFIX
[Macro]USER_LABEL_PREFIX
[Macro]IMMEDIATE_PREFIX

If de�ned, C string expressions to be used for the `%R', `%L', `%U', and `%I' options of
asm_fprintf (see `final.c'). These are useful when a single `md' �le must support
multiple assembler formats. In that case, the various `tm.h' �les can de�ne these
macros di�erently.

[Macro]ASM_FPRINTF_EXTENSIONS (file, argptr, format)
If de�ned this macro should expand to a series of case statements which will be
parsed inside the switch statement of the asm_fprintf function. This allows targets
to de�ne extra printf formats which may useful when generating their assembler

Chapter 15: Target Description Macros and Functions 405

statements. Note that uppercase letters are reserved for future generic extensions
to asm fprintf, and so are not available to target speci�c code. The output �le is
given by the parameter �le. The varargs input pointer is argptr and the rest of the
format string, starting the character after the one that is being switched upon, is
pointed to by format.

[Macro]ASSEMBLER_DIALECT
If your target supports multiple dialects of assembler language (such as di�erent
opcodes), de�ne this macro as a C expression that gives the numeric index of the
assembler language dialect to use, with zero as the �rst variant.
If this macro is de�ned, you may use constructs of the form

`{option0|option1|option2...}'

in the output templates of patterns (see Section 14.5 [Output Template], page 204) or
in the �rst argument of asm_fprintf. This construct outputs `option0', `option1',
`option2', etc., if the value of ASSEMBLER_DIALECT is zero, one, two, etc. Any special
characters within these strings retain their usual meaning. If there are fewer alterna-
tives within the braces than the value of ASSEMBLER_DIALECT, the construct outputs
nothing.

If you do not de�ne this macro, the characters `{', `|' and `}' do not have any special
meaning when used in templates or operands to asm_fprintf.

De�ne the macros REGISTER_PREFIX, LOCAL_LABEL_PREFIX, USER_LABEL_PREFIX

and IMMEDIATE_PREFIX if you can express the variations in assembler language syntax
with that mechanism. De�ne ASSEMBLER_DIALECT and use the `{option0|option1}'
syntax if the syntax variant are larger and involve such things as di�erent opcodes
or operand order.

[Macro]ASM_OUTPUT_REG_PUSH (stream, regno)
A C expression to output to stream some assembler code which will push hard register
number regno onto the stack. The code need not be optimal, since this macro is used
only when pro�ling.

[Macro]ASM_OUTPUT_REG_POP (stream, regno)
A C expression to output to stream some assembler code which will pop hard register
number regno o� of the stack. The code need not be optimal, since this macro is used
only when pro�ling.

15.21.8 Output of Dispatch Tables

This concerns dispatch tables.

[Macro]ASM_OUTPUT_ADDR_DIFF_ELT (stream, body, value, rel)
A C statement to output to the stdio stream stream an assembler pseudo-instruction
to generate a di�erence between two labels. value and rel are the numbers of two
internal labels. The de�nitions of these labels are output using (*targetm.asm_

out.internal_label), and they must be printed in the same way here. For example,
fprintf (stream, "\t.word L%d-L%d\n",

value, rel)

You must provide this macro on machines where the addresses in a dispatch table
are relative to the table's own address. If de�ned, GCC will also use this macro on

406 GNU Compiler Collection (GCC) Internals

all machines when producing PIC. body is the body of the ADDR_DIFF_VEC; it is
provided so that the mode and
ags can be read.

[Macro]ASM_OUTPUT_ADDR_VEC_ELT (stream, value)
This macro should be provided on machines where the addresses in a dispatch table
are absolute.

The de�nition should be a C statement to output to the stdio stream stream an
assembler pseudo-instruction to generate a reference to a label. value is the number
of an internal label whose de�nition is output using (*targetm.asm_out.internal_

label). For example,
fprintf (stream, "\t.word L%d\n", value)

[Macro]ASM_OUTPUT_CASE_LABEL (stream, prefix, num, table)
De�ne this if the label before a jump-table needs to be output specially. The �rst three
arguments are the same as for (*targetm.asm_out.internal_label); the fourth
argument is the jump-table which follows (a jump_insn containing an addr_vec or
addr_diff_vec).

This feature is used on system V to output a swbeg statement for the table.

If this macro is not de�ned, these labels are output with (*targetm.asm_

out.internal_label).

[Macro]ASM_OUTPUT_CASE_END (stream, num, table)
De�ne this if something special must be output at the end of a jump-table. The
de�nition should be a C statement to be executed after the assembler code for the
table is written. It should write the appropriate code to stdio stream stream. The
argument table is the jump-table insn, and num is the label-number of the preceding
label.

If this macro is not de�ned, nothing special is output at the end of the jump-table.

[Target Hook]void TARGET_ASM_EMIT_UNWIND_LABEL (stream, decl, for_eh,
empty)

This target hook emits a label at the beginning of each FDE. It should be de�ned on
targets where FDEs need special labels, and it should write the appropriate label, for
the FDE associated with the function declaration decl, to the stdio stream stream.
The third argument, for eh, is a boolean: true if this is for an exception table. The
fourth argument, empty, is a boolean: true if this is a placeholder label for an omitted
FDE.

The default is that FDEs are not given nonlocal labels.

[Target Hook]void TARGET_ASM_EMIT_EXCEPT_TABLE_LABEL (stream)
This target hook emits a label at the beginning of the exception table. It should be
de�ned on targets where it is desirable for the table to be broken up according to
function.

The default is that no label is emitted.

[Target Hook]void TARGET_UNWIND_EMIT (FILE * stream, rtx insn)
This target hook emits and assembly directives required to unwind the given instruc-
tion. This is only used when TARGET UNWIND INFO is set.

Chapter 15: Target Description Macros and Functions 407

15.21.9 Assembler Commands for Exception Regions

This describes commands marking the start and the end of an exception region.

[Macro]EH_FRAME_SECTION_NAME
If de�ned, a C string constant for the name of the section containing exception han-
dling frame unwind information. If not de�ned, GCC will provide a default de�nition
if the target supports named sections. `crtstuff.c' uses this macro to switch to the
appropriate section.

You should de�ne this symbol if your target supports DWARF 2 frame unwind infor-
mation and the default de�nition does not work.

[Macro]EH_FRAME_IN_DATA_SECTION
If de�ned, DWARF 2 frame unwind information will be placed in the data section even
though the target supports named sections. This might be necessary, for instance, if
the system linker does garbage collection and sections cannot be marked as not to be
collected.

Do not de�ne this macro unless TARGET_ASM_NAMED_SECTION is also de�ned.

[Macro]EH_TABLES_CAN_BE_READ_ONLY
De�ne this macro to 1 if your target is such that no frame unwind information en-
coding used with non-PIC code will ever require a runtime relocation, but the linker
may not support merging read-only and read-write sections into a single read-write
section.

[Macro]MASK_RETURN_ADDR
An rtx used to mask the return address found via RETURN_ADDR_RTX, so that it does
not contain any extraneous set bits in it.

[Macro]DWARF2_UNWIND_INFO
De�ne this macro to 0 if your target supports DWARF 2 frame unwind informa-
tion, but it does not yet work with exception handling. Otherwise, if your tar-
get supports this information (if it de�nes `INCOMING_RETURN_ADDR_RTX' and either
`UNALIGNED_INT_ASM_OP' or `OBJECT_FORMAT_ELF'), GCC will provide a default def-
inition of 1.

If TARGET_UNWIND_INFO is de�ned, the target speci�c unwinder will be used in all
cases. De�ning this macro will enable the generation of DWARF 2 frame debugging
information.

If TARGET_UNWIND_INFO is not de�ned, and this macro is de�ned to 1, the DWARF
2 unwinder will be the default exception handling mechanism; otherwise, the
setjmp/longjmp-based scheme will be used by default.

[Macro]TARGET_UNWIND_INFO
De�ne this macro if your target has ABI speci�ed unwind tables. Usually these will
be output by TARGET_UNWIND_EMIT.

[Variable]Target Hook bool TARGET UNWIND TABLES DEFAULT
This variable should be set to true if the target ABI requires unwinding tables even
when exceptions are not used.

408 GNU Compiler Collection (GCC) Internals

[Macro]MUST_USE_SJLJ_EXCEPTIONS
This macro need only be de�ned if DWARF2_UNWIND_INFO is runtime-variable. In that
case, `except.h' cannot correctly determine the corresponding de�nition of MUST_
USE_SJLJ_EXCEPTIONS, so the target must provide it directly.

[Macro]DONT_USE_BUILTIN_SETJMP
De�ne this macro to 1 if the setjmp/longjmp-based scheme should use the
setjmp/longjmp functions from the C library instead of the __builtin_setjmp/__
builtin_longjmp machinery.

[Macro]DWARF_CIE_DATA_ALIGNMENT
This macro need only be de�ned if the target might save registers in the function
prologue at an o�set to the stack pointer that is not aligned to UNITS_PER_WORD. The
de�nition should be the negative minimum alignment if STACK_GROWS_DOWNWARD is
de�ned, and the positive minimum alignment otherwise. See Section 15.22.5 [SDB
and DWARF], page 415. Only applicable if the target supports DWARF 2 frame
unwind information.

[Variable]Target Hook bool TARGET TERMINATE DW2 EH FRAME INFO
Contains the value true if the target should add a zero word onto the end of a Dwarf-2
frame info section when used for exception handling. Default value is false if EH_
FRAME_SECTION_NAME is de�ned, and true otherwise.

[Target Hook]rtx TARGET_DWARF_REGISTER_SPAN (rtx reg)
Given a register, this hook should return a parallel of registers to represent where to
�nd the register pieces. De�ne this hook if the register and its mode are represented
in Dwarf in non-contiguous locations, or if the register should be represented in more
than one register in Dwarf. Otherwise, this hook should return NULL_RTX. If not
de�ned, the default is to return NULL_RTX.

[Target Hook]void TARGET_INIT_DWARF_REG_SIZES_EXTRA (tree address)
If some registers are represented in Dwarf-2 unwind information in multiple pieces,
de�ne this hook to �ll in information about the sizes of those pieces in the table used
by the unwinder at runtime. It will be called by expand_builtin_init_dwarf_reg_

sizes after �lling in a single size corresponding to each hard register; address is the
address of the table.

[Target Hook]bool TARGET_ASM_TTYPE (rtx sym)
This hook is used to output a reference from a frame unwinding table to the type info
object identi�ed by sym. It should return true if the reference was output. Returning
false will cause the reference to be output using the normal Dwarf2 routines.

[Target Hook]bool TARGET_ARM_EABI_UNWINDER
This hook should be set to true on targets that use an ARM EABI based unwinding
library, and false on other targets. This e�ects the format of unwinding tables, and
how the unwinder in entered after running a cleanup. The default is false.

Chapter 15: Target Description Macros and Functions 409

15.21.10 Assembler Commands for Alignment

This describes commands for alignment.

[Macro]JUMP_ALIGN (label)
The alignment (log base 2) to put in front of label, which is a common destination of
jumps and has no fallthru incoming edge.

This macro need not be de�ned if you don't want any special alignment to be done
at such a time. Most machine descriptions do not currently de�ne the macro.

Unless it's necessary to inspect the label parameter, it is better to set the variable
align jumps in the target's OVERRIDE_OPTIONS. Otherwise, you should try to honor
the user's selection in align jumps in a JUMP_ALIGN implementation.

[Macro]LABEL_ALIGN_AFTER_BARRIER (label)
The alignment (log base 2) to put in front of label, which follows a BARRIER.

This macro need not be de�ned if you don't want any special alignment to be done
at such a time. Most machine descriptions do not currently de�ne the macro.

[Macro]LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
The maximum number of bytes to skip when applying LABEL_ALIGN_AFTER_BARRIER.
This works only if ASM_OUTPUT_MAX_SKIP_ALIGN is de�ned.

[Macro]LOOP_ALIGN (label)
The alignment (log base 2) to put in front of label, which follows a NOTE_INSN_LOOP_
BEG note.

This macro need not be de�ned if you don't want any special alignment to be done
at such a time. Most machine descriptions do not currently de�ne the macro.

Unless it's necessary to inspect the label parameter, it is better to set the variable
align_loops in the target's OVERRIDE_OPTIONS. Otherwise, you should try to honor
the user's selection in align_loops in a LOOP_ALIGN implementation.

[Macro]LOOP_ALIGN_MAX_SKIP
The maximum number of bytes to skip when applying LOOP_ALIGN. This works only
if ASM_OUTPUT_MAX_SKIP_ALIGN is de�ned.

[Macro]LABEL_ALIGN (label)
The alignment (log base 2) to put in front of label. If LABEL_ALIGN_AFTER_BARRIER
/ LOOP_ALIGN specify a di�erent alignment, the maximum of the speci�ed values is
used.

Unless it's necessary to inspect the label parameter, it is better to set the variable
align_labels in the target's OVERRIDE_OPTIONS. Otherwise, you should try to honor
the user's selection in align_labels in a LABEL_ALIGN implementation.

[Macro]LABEL_ALIGN_MAX_SKIP
The maximum number of bytes to skip when applying LABEL_ALIGN. This works only
if ASM_OUTPUT_MAX_SKIP_ALIGN is de�ned.

410 GNU Compiler Collection (GCC) Internals

[Macro]ASM_OUTPUT_SKIP (stream, nbytes)
A C statement to output to the stdio stream stream an assembler instruction to
advance the location counter by nbytes bytes. Those bytes should be zero when
loaded. nbytes will be a C expression of type int.

[Macro]ASM_NO_SKIP_IN_TEXT
De�ne this macro if ASM_OUTPUT_SKIP should not be used in the text section because
it fails to put zeros in the bytes that are skipped. This is true on many Unix systems,
where the pseudo{op to skip bytes produces no-op instructions rather than zeros when
used in the text section.

[Macro]ASM_OUTPUT_ALIGN (stream, power)
A C statement to output to the stdio stream stream an assembler command to advance
the location counter to a multiple of 2 to the power bytes. power will be a C expression
of type int.

[Macro]ASM_OUTPUT_ALIGN_WITH_NOP (stream, power)
Like ASM_OUTPUT_ALIGN, except that the \nop" instruction is used for padding, if
necessary.

[Macro]ASM_OUTPUT_MAX_SKIP_ALIGN (stream, power, max_skip)
A C statement to output to the stdio stream stream an assembler command to advance
the location counter to a multiple of 2 to the power bytes, but only if max skip or
fewer bytes are needed to satisfy the alignment request. power and max skip will be
a C expression of type int.

15.22 Controlling Debugging Information Format

This describes how to specify debugging information.

15.22.1 Macros A�ecting All Debugging Formats

These macros a�ect all debugging formats.

[Macro]DBX_REGISTER_NUMBER (regno)
A C expression that returns the DBX register number for the compiler register number
regno. In the default macro provided, the value of this expression will be regno itself.
But sometimes there are some registers that the compiler knows about and DBX does
not, or vice versa. In such cases, some register may need to have one number in the
compiler and another for DBX.

If two registers have consecutive numbers inside GCC, and they can be used as a pair
to hold a multiword value, then they must have consecutive numbers after renumber-
ing with DBX_REGISTER_NUMBER. Otherwise, debuggers will be unable to access such
a pair, because they expect register pairs to be consecutive in their own numbering
scheme.

If you �nd yourself de�ning DBX_REGISTER_NUMBER in way that does not preserve
register pairs, then what you must do instead is rede�ne the actual register numbering
scheme.

Chapter 15: Target Description Macros and Functions 411

[Macro]DEBUGGER_AUTO_OFFSET (x)
A C expression that returns the integer o�set value for an automatic variable having
address x (an RTL expression). The default computation assumes that x is based on
the frame-pointer and gives the o�set from the frame-pointer. This is required for
targets that produce debugging output for DBX or COFF-style debugging output for
SDB and allow the frame-pointer to be eliminated when the `-g' options is used.

[Macro]DEBUGGER_ARG_OFFSET (offset, x)
A C expression that returns the integer o�set value for an argument having address
x (an RTL expression). The nominal o�set is o�set.

[Macro]PREFERRED_DEBUGGING_TYPE
A C expression that returns the type of debugging output GCC should produce when
the user speci�es just `-g'. De�ne this if you have arranged for GCC to support more
than one format of debugging output. Currently, the allowable values are DBX_DEBUG,
SDB_DEBUG, DWARF_DEBUG, DWARF2_DEBUG, XCOFF_DEBUG, VMS_DEBUG, and VMS_AND_

DWARF2_DEBUG.

When the user speci�es `-ggdb', GCC normally also uses the value of this macro to
select the debugging output format, but with two exceptions. If DWARF2_DEBUGGING_
INFO is de�ned, GCC uses the value DWARF2_DEBUG. Otherwise, if DBX_DEBUGGING_
INFO is de�ned, GCC uses DBX_DEBUG.

The value of this macro only a�ects the default debugging output; the user can always
get a speci�c type of output by using `-gstabs', `-gcoff', `-gdwarf-2', `-gxcoff', or
`-gvms'.

15.22.2 Speci�c Options for DBX Output

These are speci�c options for DBX output.

[Macro]DBX_DEBUGGING_INFO
De�ne this macro if GCC should produce debugging output for DBX in response to
the `-g' option.

[Macro]XCOFF_DEBUGGING_INFO
De�ne this macro if GCC should produce XCOFF format debugging output in re-
sponse to the `-g' option. This is a variant of DBX format.

[Macro]DEFAULT_GDB_EXTENSIONS
De�ne this macro to control whether GCC should by default generate GDB's extended
version of DBX debugging information (assuming DBX-format debugging information
is enabled at all). If you don't de�ne the macro, the default is 1: always generate the
extended information if there is any occasion to.

[Macro]DEBUG_SYMS_TEXT
De�ne this macro if all .stabs commands should be output while in the text section.

[Macro]ASM_STABS_OP
A C string constant, including spacing, naming the assembler pseudo op to use instead
of "\t.stabs\t" to de�ne an ordinary debugging symbol. If you don't de�ne this
macro, "\t.stabs\t" is used. This macro applies only to DBX debugging information
format.

412 GNU Compiler Collection (GCC) Internals

[Macro]ASM_STABD_OP
A C string constant, including spacing, naming the assembler pseudo op to use instead
of "\t.stabd\t" to de�ne a debugging symbol whose value is the current location. If
you don't de�ne this macro, "\t.stabd\t" is used. This macro applies only to DBX
debugging information format.

[Macro]ASM_STABN_OP
A C string constant, including spacing, naming the assembler pseudo op to use instead
of "\t.stabn\t" to de�ne a debugging symbol with no name. If you don't de�ne this
macro, "\t.stabn\t" is used. This macro applies only to DBX debugging information
format.

[Macro]DBX_NO_XREFS
De�ne this macro if DBX on your system does not support the construct `xstagname '.
On some systems, this construct is used to describe a forward reference to a structure
named tagname. On other systems, this construct is not supported at all.

[Macro]DBX_CONTIN_LENGTH
A symbol name in DBX-format debugging information is normally continued (split
into two separate .stabs directives) when it exceeds a certain length (by default,
80 characters). On some operating systems, DBX requires this splitting; on others,
splitting must not be done. You can inhibit splitting by de�ning this macro with the
value zero. You can override the default splitting-length by de�ning this macro as an
expression for the length you desire.

[Macro]DBX_CONTIN_CHAR
Normally continuation is indicated by adding a `\' character to the end of a .stabs

string when a continuation follows. To use a di�erent character instead, de�ne this
macro as a character constant for the character you want to use. Do not de�ne this
macro if backslash is correct for your system.

[Macro]DBX_STATIC_STAB_DATA_SECTION
De�ne this macro if it is necessary to go to the data section before outputting the
`.stabs' pseudo-op for a non-global static variable.

[Macro]DBX_TYPE_DECL_STABS_CODE
The value to use in the \code" �eld of the .stabs directive for a typedef. The default
is N_LSYM.

[Macro]DBX_STATIC_CONST_VAR_CODE
The value to use in the \code" �eld of the .stabs directive for a static variable located
in the text section. DBX format does not provide any \right" way to do this. The
default is N_FUN.

[Macro]DBX_REGPARM_STABS_CODE
The value to use in the \code" �eld of the .stabs directive for a parameter passed
in registers. DBX format does not provide any \right" way to do this. The default is
N_RSYM.

Chapter 15: Target Description Macros and Functions 413

[Macro]DBX_REGPARM_STABS_LETTER
The letter to use in DBX symbol data to identify a symbol as a parameter passed in
registers. DBX format does not customarily provide any way to do this. The default
is 'P'.

[Macro]DBX_FUNCTION_FIRST
De�ne this macro if the DBX information for a function and its arguments should
precede the assembler code for the function. Normally, in DBX format, the debugging
information entirely follows the assembler code.

[Macro]DBX_BLOCKS_FUNCTION_RELATIVE
De�ne this macro, with value 1, if the value of a symbol describing the scope of a
block (N_LBRAC or N_RBRAC) should be relative to the start of the enclosing function.
Normally, GCC uses an absolute address.

[Macro]DBX_LINES_FUNCTION_RELATIVE
De�ne this macro, with value 1, if the value of a symbol indicating the current line
number (N_SLINE) should be relative to the start of the enclosing function. Normally,
GCC uses an absolute address.

[Macro]DBX_USE_BINCL
De�ne this macro if GCC should generate N_BINCL and N_EINCL stabs for included
header �les, as on Sun systems. This macro also directs GCC to output a type number
as a pair of a �le number and a type number within the �le. Normally, GCC does
not generate N_BINCL or N_EINCL stabs, and it outputs a single number for a type
number.

15.22.3 Open-Ended Hooks for DBX Format

These are hooks for DBX format.

[Macro]DBX_OUTPUT_LBRAC (stream, name)
De�ne this macro to say how to output to stream the debugging information for the
start of a scope level for variable names. The argument name is the name of an
assembler symbol (for use with assemble_name) whose value is the address where the
scope begins.

[Macro]DBX_OUTPUT_RBRAC (stream, name)
Like DBX_OUTPUT_LBRAC, but for the end of a scope level.

[Macro]DBX_OUTPUT_NFUN (stream, lscope_label, decl)
De�ne this macro if the target machine requires special handling to output an N_FUN

entry for the function decl.

[Macro]DBX_OUTPUT_SOURCE_LINE (stream, line, counter)
A C statement to output DBX debugging information before code for line number line
of the current source �le to the stdio stream stream. counter is the number of time
the macro was invoked, including the current invocation; it is intended to generate
unique labels in the assembly output.

This macro should not be de�ned if the default output is correct, or if it can be made
correct by de�ning DBX_LINES_FUNCTION_RELATIVE.

414 GNU Compiler Collection (GCC) Internals

[Macro]NO_DBX_FUNCTION_END
Some stabs encapsulation formats (in particular ECOFF), cannot handle the .stabs
"",N_FUN,,0,0,Lscope-function-1 gdb dbx extension construct. On those ma-
chines, de�ne this macro to turn this feature o� without disturbing the rest of the
gdb extensions.

[Macro]NO_DBX_BNSYM_ENSYM
Some assemblers cannot handle the .stabd BNSYM/ENSYM,0,0 gdb dbx extension con-
struct. On those machines, de�ne this macro to turn this feature o� without disturb-
ing the rest of the gdb extensions.

15.22.4 File Names in DBX Format

This describes �le names in DBX format.

[Macro]DBX_OUTPUT_MAIN_SOURCE_FILENAME (stream, name)
A C statement to output DBX debugging information to the stdio stream stream,
which indicates that �le name is the main source �le|the �le speci�ed as the input
�le for compilation. This macro is called only once, at the beginning of compilation.

This macro need not be de�ned if the standard form of output for DBX debugging
information is appropriate.

It may be necessary to refer to a label equal to the beginning of the text section. You
can use `assemble_name (stream, ltext_label_name)' to do so. If you do this, you
must also set the variable used ltext label name to true.

[Macro]NO_DBX_MAIN_SOURCE_DIRECTORY
De�ne this macro, with value 1, if GCC should not emit an indication of the current
directory for compilation and current source language at the beginning of the �le.

[Macro]NO_DBX_GCC_MARKER
De�ne this macro, with value 1, if GCC should not emit an indication that this object
�le was compiled by GCC. The default is to emit an N_OPT stab at the beginning of
every source �le, with `gcc2_compiled.' for the string and value 0.

[Macro]DBX_OUTPUT_MAIN_SOURCE_FILE_END (stream, name)
A C statement to output DBX debugging information at the end of compilation of
the main source �le name. Output should be written to the stdio stream stream.

If you don't de�ne this macro, nothing special is output at the end of compilation,
which is correct for most machines.

[Macro]DBX_OUTPUT_NULL_N_SO_AT_MAIN_SOURCE_FILE_END
De�ne this macro instead of de�ning DBX_OUTPUT_MAIN_SOURCE_FILE_END, if what
needs to be output at the end of compilation is a N_SO stab with an empty string,
whose value is the highest absolute text address in the �le.

Chapter 15: Target Description Macros and Functions 415

15.22.5 Macros for SDB and DWARF Output

Here are macros for SDB and DWARF output.

[Macro]SDB_DEBUGGING_INFO
De�ne this macro if GCC should produce COFF-style debugging output for SDB in
response to the `-g' option.

[Macro]DWARF2_DEBUGGING_INFO
De�ne this macro if GCC should produce dwarf version 2 format debugging output
in response to the `-g' option.

[Target Hook]int TARGET_DWARF_CALLING_CONVENTION (tree function)
De�ne this to enable the dwarf attribute DW_AT_calling_convention to be
emitted for each function. Instead of an integer return the enum value for the
DW_CC_ tag.

To support optional call frame debugging information, you must also de�ne
INCOMING_RETURN_ADDR_RTX and either set RTX_FRAME_RELATED_P on the
prologue insns if you use RTL for the prologue, or call dwarf2out_def_cfa and
dwarf2out_reg_save as appropriate from TARGET_ASM_FUNCTION_PROLOGUE if you
don't.

[Macro]DWARF2_FRAME_INFO
De�ne this macro to a nonzero value if GCC should always output Dwarf 2 frame
information. If DWARF2_UNWIND_INFO (see Section 15.21.9 [Exception Region Output],
page 407 is nonzero, GCC will output this information not matter how you de�ne
DWARF2_FRAME_INFO.

[Macro]DWARF2_ASM_LINE_DEBUG_INFO
De�ne this macro to be a nonzero value if the assembler can generate Dwarf 2 line
debug info sections. This will result in much more compact line number tables, and
hence is desirable if it works.

[Macro]ASM_OUTPUT_DWARF_DELTA (stream, size, label1, label2)
A C statement to issue assembly directives that create a di�erence lab1 minus lab2,
using an integer of the given size.

[Macro]ASM_OUTPUT_DWARF_OFFSET (stream, size, label, section)
A C statement to issue assembly directives that create a section-relative reference to
the given label, using an integer of the given size. The label is known to be de�ned
in the given section.

[Macro]ASM_OUTPUT_DWARF_PCREL (stream, size, label)
A C statement to issue assembly directives that create a self-relative reference to the
given label, using an integer of the given size.

[Target Hook]void TARGET_ASM_OUTPUT_DWARF_DTPREL (FILE *FILE, int size,
rtx x)

If de�ned, this target hook is a function which outputs a DTP-relative reference to
the given TLS symbol of the speci�ed size.

416 GNU Compiler Collection (GCC) Internals

[Macro]PUT_SDB_...
De�ne these macros to override the assembler syntax for the special SDB assembler
directives. See `sdbout.c' for a list of these macros and their arguments. If the
standard syntax is used, you need not de�ne them yourself.

[Macro]SDB_DELIM
Some assemblers do not support a semicolon as a delimiter, even between SDB as-
sembler directives. In that case, de�ne this macro to be the delimiter to use (usually
`\n'). It is not necessary to de�ne a new set of PUT_SDB_op macros if this is the only
change required.

[Macro]SDB_ALLOW_UNKNOWN_REFERENCES
De�ne this macro to allow references to unknown structure, union, or enumeration
tags to be emitted. Standard COFF does not allow handling of unknown references,
MIPS ECOFF has support for it.

[Macro]SDB_ALLOW_FORWARD_REFERENCES
De�ne this macro to allow references to structure, union, or enumeration tags that
have not yet been seen to be handled. Some assemblers choke if forward tags are
used, while some require it.

[Macro]SDB_OUTPUT_SOURCE_LINE (stream, line)
A C statement to output SDB debugging information before code for line number
line of the current source �le to the stdio stream stream. The default is to emit an
.ln directive.

15.22.6 Macros for VMS Debug Format

Here are macros for VMS debug format.

[Macro]VMS_DEBUGGING_INFO
De�ne this macro if GCC should produce debugging output for VMS in response to
the `-g' option. The default behavior for VMS is to generate minimal debug info for a
traceback in the absence of `-g' unless explicitly overridden with `-g0'. This behavior
is controlled by OPTIMIZATION_OPTIONS and OVERRIDE_OPTIONS.

15.23 Cross Compilation and Floating Point

While all modern machines use twos-complement representation for integers, there are a
variety of representations for
oating point numbers. This means that in a cross-compiler
the representation of
oating point numbers in the compiled program may be di�erent from
that used in the machine doing the compilation.

Because di�erent representation systems may o�er di�erent amounts of range and pre-
cision, all
oating point constants must be represented in the target machine's format.
Therefore, the cross compiler cannot safely use the host machine's
oating point arith-
metic; it must emulate the target's arithmetic. To ensure consistency, GCC always uses
emulation to work with
oating point values, even when the host and target
oating point
formats are identical.

Chapter 15: Target Description Macros and Functions 417

The following macros are provided by `real.h' for the compiler to use. All parts of
the compiler which generate or optimize
oating-point calculations must use these macros.
They may evaluate their operands more than once, so operands must not have side e�ects.

[Macro]REAL_VALUE_TYPE
The C data type to be used to hold a
oating point value in the target machine's
format. Typically this is a struct containing an array of HOST_WIDE_INT, but all
code should treat it as an opaque quantity.

[Macro]int REAL_VALUES_EQUAL (REAL VALUE TYPE x, REAL VALUE TYPE
y)

Compares for equality the two values, x and y. If the target
oating point format
supports negative zeroes and/or NaNs, `REAL_VALUES_EQUAL (-0.0, 0.0)' is true,
and `REAL_VALUES_EQUAL (NaN, NaN)' is false.

[Macro]int REAL_VALUES_LESS (REAL VALUE TYPE x, REAL VALUE TYPE
y)

Tests whether x is less than y.

[Macro]HOST_WIDE_INT REAL_VALUE_FIX (REAL VALUE TYPE x)
Truncates x to a signed integer, rounding toward zero.

[Macro]unsigned HOST_WIDE_INT REAL_VALUE_UNSIGNED_FIX
(REAL VALUE TYPE x)

Truncates x to an unsigned integer, rounding toward zero. If x is negative, returns
zero.

[Macro]REAL_VALUE_TYPE REAL_VALUE_ATOF (const char *string, enum
machine mode mode)

Converts string into a
oating point number in the target machine's representation
for mode mode. This routine can handle both decimal and hexadecimal
oating point
constants, using the syntax de�ned by the C language for both.

[Macro]int REAL_VALUE_NEGATIVE (REAL VALUE TYPE x)
Returns 1 if x is negative (including negative zero), 0 otherwise.

[Macro]int REAL_VALUE_ISINF (REAL VALUE TYPE x)
Determines whether x represents in�nity (positive or negative).

[Macro]int REAL_VALUE_ISNAN (REAL VALUE TYPE x)
Determines whether x represents a \NaN" (not-a-number).

[Macro]void REAL_ARITHMETIC (REAL VALUE TYPE output, enum tree code
code, REAL VALUE TYPE x, REAL VALUE TYPE y)

Calculates an arithmetic operation on the two
oating point values x and y, storing
the result in output (which must be a variable).

The operation to be performed is speci�ed by code. Only the following codes are
supported: PLUS_EXPR, MINUS_EXPR, MULT_EXPR, RDIV_EXPR, MAX_EXPR, MIN_EXPR.

If REAL_ARITHMETIC is asked to evaluate division by zero and the target's
oating
point format cannot represent in�nity, it will call abort. Callers should check for
this situation �rst, using MODE_HAS_INFINITIES. See Section 15.5 [Storage Layout],
page 304.

418 GNU Compiler Collection (GCC) Internals

[Macro]REAL_VALUE_TYPE REAL_VALUE_NEGATE (REAL VALUE TYPE x)
Returns the negative of the
oating point value x.

[Macro]REAL_VALUE_TYPE REAL_VALUE_ABS (REAL VALUE TYPE x)
Returns the absolute value of x.

[Macro]REAL_VALUE_TYPE REAL_VALUE_TRUNCATE (REAL VALUE TYPE mode,
enum machine mode x)

Truncates the
oating point value x to �t in mode. The return value is still a full-size
REAL_VALUE_TYPE, but it has an appropriate bit pattern to be output asa
oating
constant whose precision accords with mode mode.

[Macro]void REAL_VALUE_TO_INT (HOST WIDE INT low, HOST WIDE INT
high, REAL VALUE TYPE x)

Converts a
oating point value x into a double-precision integer which is then stored
into low and high. If the value is not integral, it is truncated.

[Macro]void REAL_VALUE_FROM_INT (REAL VALUE TYPE x, HOST WIDE INT
low, HOST WIDE INT high, enum machine mode mode)

Converts a double-precision integer found in low and high, into a
oating point value
which is then stored into x. The value is truncated to �t in mode mode.

15.24 Mode Switching Instructions

The following macros control mode switching optimizations:

[Macro]OPTIMIZE_MODE_SWITCHING (entity)
De�ne this macro if the port needs extra instructions inserted for mode switching in
an optimizing compilation.

For an example, the SH4 can perform both single and double precision
oating point
operations, but to perform a single precision operation, the FPSCR PR bit has to be
cleared, while for a double precision operation, this bit has to be set. Changing the
PR bit requires a general purpose register as a scratch register, hence these FPSCR
sets have to be inserted before reload, i.e. you can't put this into instruction emitting
or TARGET_MACHINE_DEPENDENT_REORG.

You can have multiple entities that are mode-switched, and select at run time which
entities actually need it. OPTIMIZE_MODE_SWITCHING should return nonzero for any
entity that needs mode-switching. If you de�ne this macro, you also have to de-
�ne NUM_MODES_FOR_MODE_SWITCHING, MODE_NEEDED, MODE_PRIORITY_TO_MODE and
EMIT_MODE_SET. MODE_AFTER, MODE_ENTRY, and MODE_EXIT are optional.

[Macro]NUM_MODES_FOR_MODE_SWITCHING
If you de�ne OPTIMIZE_MODE_SWITCHING, you have to de�ne this as initializer for
an array of integers. Each initializer element N refers to an entity that needs mode
switching, and speci�es the number of di�erent modes that might need to be set
for this entity. The position of the initializer in the initializer|starting counting
at zero|determines the integer that is used to refer to the mode-switched entity in
question. In macros that take mode arguments / yield a mode result, modes are
represented as numbers 0 . . . N � 1. N is used to specify that no mode switch is
needed / supplied.

Chapter 15: Target Description Macros and Functions 419

[Macro]MODE_NEEDED (entity, insn)
entity is an integer specifying a mode-switched entity. If OPTIMIZE_MODE_SWITCHING
is de�ned, you must de�ne this macro to return an integer value not larger than the
corresponding element in NUM_MODES_FOR_MODE_SWITCHING, to denote the mode that
entity must be switched into prior to the execution of insn.

[Macro]MODE_AFTER (mode, insn)
If this macro is de�ned, it is evaluated for every insn during mode switching. It
determines the mode that an insn results in (if di�erent from the incoming mode).

[Macro]MODE_ENTRY (entity)
If this macro is de�ned, it is evaluated for every entity that needs mode switching. It
should evaluate to an integer, which is a mode that entity is assumed to be switched
to at function entry. If MODE_ENTRY is de�ned then MODE_EXIT must be de�ned.

[Macro]MODE_EXIT (entity)
If this macro is de�ned, it is evaluated for every entity that needs mode switching. It
should evaluate to an integer, which is a mode that entity is assumed to be switched
to at function exit. If MODE_EXIT is de�ned then MODE_ENTRY must be de�ned.

[Macro]MODE_PRIORITY_TO_MODE (entity, n)
This macro speci�es the order in which modes for entity are processed. 0 is the highest
priority, NUM_MODES_FOR_MODE_SWITCHING[entity] - 1 the lowest. The value of the
macro should be an integer designating a mode for entity. For any �xed entity,
mode_priority_to_mode (entity, n) shall be a bijection in 0 . . . num_modes_for_

mode_switching[entity] - 1.

[Macro]EMIT_MODE_SET (entity, mode, hard_regs_live)
Generate one or more insns to set entity to mode. hard reg live is the set of hard
registers live at the point where the insn(s) are to be inserted.

15.25 De�ning target-speci�c uses of __attribute__

Target-speci�c attributes may be de�ned for functions, data and types. These are described
using the following target hooks; they also need to be documented in `extend.texi'.

[Target Hook]const struct attribute_spec * TARGET_ATTRIBUTE_TABLE
If de�ned, this target hook points to an array of `struct attribute_spec' (de�ned
in `tree.h') specifying the machine speci�c attributes for this target and some of the
restrictions on the entities to which these attributes are applied and the arguments
they take.

[Target Hook]int TARGET_COMP_TYPE_ATTRIBUTES (tree type1, tree type2)
If de�ned, this target hook is a function which returns zero if the attributes on type1
and type2 are incompatible, one if they are compatible, and two if they are nearly
compatible (which causes a warning to be generated). If this is not de�ned, machine-
speci�c attributes are supposed always to be compatible.

[Target Hook]void TARGET_SET_DEFAULT_TYPE_ATTRIBUTES (tree type)
If de�ned, this target hook is a function which assigns default attributes to newly
de�ned type.

420 GNU Compiler Collection (GCC) Internals

[Target Hook]tree TARGET_MERGE_TYPE_ATTRIBUTES (tree type1, tree type2)
De�ne this target hook if the merging of type attributes needs special handling. If
de�ned, the result is a list of the combined TYPE_ATTRIBUTES of type1 and type2. It
is assumed that comptypes has already been called and returned 1. This function
may call merge_attributes to handle machine-independent merging.

[Target Hook]tree TARGET_MERGE_DECL_ATTRIBUTES (tree olddecl, tree
newdecl)

De�ne this target hook if the merging of decl attributes needs special handling. If
de�ned, the result is a list of the combined DECL_ATTRIBUTES of olddecl and newdecl.
newdecl is a duplicate declaration of olddecl. Examples of when this is needed are
when one attribute overrides another, or when an attribute is nulli�ed by a subsequent
de�nition. This function may call merge_attributes to handle machine-independent
merging.

If the only target-speci�c handling you require is `dllimport' for Microsoft Win-
dows targets, you should de�ne the macro TARGET_DLLIMPORT_DECL_ATTRIBUTES to 1.
The compiler will then de�ne a function called merge_dllimport_decl_attributes

which can then be de�ned as the expansion of TARGET_MERGE_DECL_ATTRIBUTES. You
can also add handle_dll_attribute in the attribute table for your port to perform
initial processing of the `dllimport' and `dllexport' attributes. This is done in
`i386/cygwin.h' and `i386/i386.c', for example.

[Target Hook]bool TARGET_VALID_DLLIMPORT_ATTRIBUTE_P (tree decl)
decl is a variable or function with __attribute__((dllimport)) speci�ed. Use this
hook if the target needs to add extra validation checks to handle_dll_attribute.

[Macro]TARGET_DECLSPEC
De�ne this macro to a nonzero value if you want to treat __declspec(X) as equivalent
to __attribute((X)). By default, this behavior is enabled only for targets that de�ne
TARGET_DLLIMPORT_DECL_ATTRIBUTES. The current implementation of __declspec
is via a built-in macro, but you should not rely on this implementation detail.

[Target Hook]void TARGET_INSERT_ATTRIBUTES (tree node, tree *attr_ptr)
De�ne this target hook if you want to be able to add attributes to a decl when it
is being created. This is normally useful for back ends which wish to implement a
pragma by using the attributes which correspond to the pragma's e�ect. The node
argument is the decl which is being created. The attr ptr argument is a pointer to
the attribute list for this decl. The list itself should not be modi�ed, since it may be
shared with other decls, but attributes may be chained on the head of the list and
*attr_ptr modi�ed to point to the new attributes, or a copy of the list may be made
if further changes are needed.

[Target Hook]bool TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P (tree fndecl)
This target hook returns true if it is ok to inline fndecl into the current function,
despite its having target-speci�c attributes, false otherwise. By default, if a function
has a target speci�c attribute attached to it, it will not be inlined.

Chapter 15: Target Description Macros and Functions 421

15.26 De�ning coprocessor speci�cs for MIPS targets.

The MIPS speci�cation allows MIPS implementations to have as many as 4 coprocessors,
each with as many as 32 private registers. GCC supports accessing these registers and
transferring values between the registers and memory using asm-ized variables. For example:

register unsigned int cp0count asm ("c0r1");
unsigned int d;

d = cp0count + 3;

(\c0r1" is the default name of register 1 in coprocessor 0; alternate names may be
added as described below, or the default names may be overridden entirely in SUBTARGET_

CONDITIONAL_REGISTER_USAGE.)

Coprocessor registers are assumed to be epilogue-used; sets to them will be preserved
even if it does not appear that the register is used again later in the function.

Another note: according to the MIPS spec, coprocessor 1 (if present) is the FPU. One
accesses COP1 registers through standard mips
oating-point support; they are not included
in this mechanism.

There is one macro used in de�ning the MIPS coprocessor interface which you may want
to override in subtargets; it is described below.

[Macro]ALL_COP_ADDITIONAL_REGISTER_NAMES
A comma-separated list (with leading comma) of pairs describing the alternate names
of coprocessor registers. The format of each entry should be

{ alternatename, register_number}

Default: empty.

15.27 Parameters for Precompiled Header Validity Checking

[Target Hook]void *TARGET_GET_PCH_VALIDITY (size t *sz)
This hook returns the data needed by TARGET_PCH_VALID_P and sets `*sz ' to the size
of the data in bytes.

[Target Hook]const char *TARGET PCH VALID P (const void *data, size t sz)
This hook checks whether the options used to create a PCH �le are compatible with
the current settings. It returns NULL if so and a suitable error message if not. Error
messages will be presented to the user and must be localized using `_(msg)'.

data is the data that was returned by TARGET_GET_PCH_VALIDITY when the PCH �le
was created and sz is the size of that data in bytes. It's safe to assume that the data
was created by the same version of the compiler, so no format checking is needed.

The default de�nition of default_pch_valid_p should be suitable for most targets.

[Target Hook]const char *TARGET CHECK PCH TARGET FLAGS (int
pch_flags)

If this hook is nonnull, the default implementation of TARGET_PCH_VALID_P will use
it to check for compatible values of target_flags. pch
ags speci�es the value that
target_flags had when the PCH �le was created. The return value is the same as
for TARGET_PCH_VALID_P.

422 GNU Compiler Collection (GCC) Internals

15.28 C++ ABI parameters

[Target Hook]tree TARGET_CXX_GUARD_TYPE (void)
De�ne this hook to override the integer type used for guard variables. These
are used to implement one-time construction of static objects. The default is
long long integer type node.

[Target Hook]bool TARGET_CXX_GUARD_MASK_BIT (void)
This hook determines how guard variables are used. It should return false (the
default) if �rst byte should be used. A return value of true indicates the least
signi�cant bit should be used.

[Target Hook]tree TARGET_CXX_GET_COOKIE_SIZE (tree type)
This hook returns the size of the cookie to use when allocating an array whose elements
have the indicated type. Assumes that it is already known that a cookie is needed.
The default is max(sizeof (size_t), alignof(type)), as de�ned in section 2.7 of
the IA64/Generic C++ ABI.

[Target Hook]bool TARGET_CXX_COOKIE_HAS_SIZE (void)
This hook should return true if the element size should be stored in array cookies.
The default is to return false.

[Target Hook]int TARGET_CXX_IMPORT_EXPORT_CLASS (tree type, int
import_export)

If de�ned by a backend this hook allows the decision made to export class type to
be overruled. Upon entry import export will contain 1 if the class is going to be
exported, �1 if it is going to be imported and 0 otherwise. This function should
return the modi�ed value and perform any other actions necessary to support the
backend's targeted operating system.

[Target Hook]bool TARGET_CXX_CDTOR_RETURNS_THIS (void)
This hook should return true if constructors and destructors return the address of
the object created/destroyed. The default is to return false.

[Target Hook]bool TARGET_CXX_KEY_METHOD_MAY_BE_INLINE (void)
This hook returns true if the key method for a class (i.e., the method which, if de�ned
in the current translation unit, causes the virtual table to be emitted) may be an inline
function. Under the standard Itanium C++ ABI the key method may be an inline
function so long as the function is not declared inline in the class de�nition. Under
some variants of the ABI, an inline function can never be the key method. The default
is to return true.

[Target Hook]void TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY (tree
decl)

decl is a virtual table, virtual table table, typeinfo object, or other similar implicit
class data object that will be emitted with external linkage in this translation unit. No
ELF visibility has been explicitly speci�ed. If the target needs to specify a visibility
other than that of the containing class, use this hook to set DECL_VISIBILITY and
DECL_VISIBILITY_SPECIFIED.

Chapter 15: Target Description Macros and Functions 423

[Target Hook]bool TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT (void)
This hook returns true (the default) if virtual tables and other similar implicit class
data objects are always COMDAT if they have external linkage. If this hook returns
false, then class data for classes whose virtual table will be emitted in only one
translation unit will not be COMDAT.

[Target Hook]bool TARGET_CXX_USE_AEABI_ATEXIT (void)
This hook returns true if __aeabi_atexit (as de�ned by the ARM EABI) should be
used to register static destructors when `-fuse-cxa-atexit' is in e�ect. The default
is to return false to use __cxa_atexit.

[Target Hook]void TARGET_CXX_ADJUST_CLASS_AT_DEFINITION (tree type)
type is a C++ class (i.e., RECORD TYPE or UNION TYPE) that has just been
de�ned. Use this hook to make adjustments to the class (eg, tweak visibility or
perform any other required target modi�cations).

15.29 Miscellaneous Parameters

Here are several miscellaneous parameters.

[Macro]HAS_LONG_COND_BRANCH
De�ne this boolean macro to indicate whether or not your architecture has conditional
branches that can span all of memory. It is used in conjunction with an optimization
that partitions hot and cold basic blocks into separate sections of the executable. If
this macro is set to false, gcc will convert any conditional branches that attempt to
cross between sections into unconditional branches or indirect jumps.

[Macro]HAS_LONG_UNCOND_BRANCH
De�ne this boolean macro to indicate whether or not your architecture has uncon-
ditional branches that can span all of memory. It is used in conjunction with an
optimization that partitions hot and cold basic blocks into separate sections of the
executable. If this macro is set to false, gcc will convert any unconditional branches
that attempt to cross between sections into indirect jumps.

[Macro]CASE_VECTOR_MODE
An alias for a machine mode name. This is the machine mode that elements of a
jump-table should have.

[Macro]CASE_VECTOR_SHORTEN_MODE (min_offset, max_offset, body)
Optional: return the preferred mode for an addr_diff_vec when the minimum and
maximum o�set are known. If you de�ne this, it enables extra code in branch short-
ening to deal with addr_diff_vec. To make this work, you also have to de�ne INSN_
ALIGN and make the alignment for addr_diff_vec explicit. The body argument is
provided so that the o�set unsigned and scale
ags can be updated.

[Macro]CASE_VECTOR_PC_RELATIVE
De�ne this macro to be a C expression to indicate when jump-tables should contain
relative addresses. You need not de�ne this macro if jump-tables never contain relative
addresses, or jump-tables should contain relative addresses only when `-fPIC' or
`-fPIC' is in e�ect.

424 GNU Compiler Collection (GCC) Internals

[Macro]CASE_VALUES_THRESHOLD
De�ne this to be the smallest number of di�erent values for which it is best to use a
jump-table instead of a tree of conditional branches. The default is four for machines
with a casesi instruction and �ve otherwise. This is best for most machines.

[Macro]CASE_USE_BIT_TESTS
De�ne this macro to be a C expression to indicate whether C switch statements may
be implemented by a sequence of bit tests. This is advantageous on processors that
can e�ciently implement left shift of 1 by the number of bits held in a register, but
inappropriate on targets that would require a loop. By default, this macro returns
true if the target de�nes an ashlsi3 pattern, and false otherwise.

[Macro]WORD_REGISTER_OPERATIONS
De�ne this macro if operations between registers with integral mode smaller than a
word are always performed on the entire register. Most RISC machines have this
property and most CISC machines do not.

[Macro]LOAD_EXTEND_OP (mem_mode)
De�ne this macro to be a C expression indicating when insns that read memory in
mem mode, an integral mode narrower than a word, set the bits outside ofmem mode
to be either the sign-extension or the zero-extension of the data read. Return SIGN_

EXTEND for values of mem mode for which the insn sign-extends, ZERO_EXTEND for
which it zero-extends, and UNKNOWN for other modes.

This macro is not called with mem mode non-integral or with a width greater than or
equal to BITS_PER_WORD, so you may return any value in this case. Do not de�ne this
macro if it would always return UNKNOWN. On machines where this macro is de�ned,
you will normally de�ne it as the constant SIGN_EXTEND or ZERO_EXTEND.

You may return a non-UNKNOWN value even if for some hard registers the sign extension
is not performed, if for the REGNO_REG_CLASS of these hard registers CANNOT_CHANGE_
MODE_CLASS returns nonzero when the from mode is mem mode and the to mode is
any integral mode larger than this but not larger than word_mode.

You must return UNKNOWN if for some hard registers that allow this mode, CANNOT_
CHANGE_MODE_CLASS says that they cannot change to word_mode, but that they can
change to another integral mode that is larger then mem mode but still smaller than
word_mode.

[Macro]SHORT_IMMEDIATES_SIGN_EXTEND
De�ne this macro if loading short immediate values into registers sign extends.

[Macro]FIXUNS_TRUNC_LIKE_FIX_TRUNC
De�ne this macro if the same instructions that convert a
oating point number to a
signed �xed point number also convert validly to an unsigned one.

[Target Hook]int TARGET_MIN_DIVISIONS_FOR_RECIP_MUL (enum machine mode
mode)

When `-ffast-math' is in e�ect, GCC tries to optimize divisions by the same divisor,
by turning them into multiplications by the reciprocal. This target hook speci�es
the minimum number of divisions that should be there for GCC to perform the

Chapter 15: Target Description Macros and Functions 425

optimization for a variable of mode mode. The default implementation returns 3 if
the machine has an instruction for the division, and 2 if it does not.

[Macro]MOVE_MAX
The maximum number of bytes that a single instruction can move quickly between
memory and registers or between two memory locations.

[Macro]MAX_MOVE_MAX
The maximum number of bytes that a single instruction can move quickly between
memory and registers or between two memory locations. If this is unde�ned, the
default is MOVE_MAX. Otherwise, it is the constant value that is the largest value that
MOVE_MAX can have at run-time.

[Macro]SHIFT_COUNT_TRUNCATED
A C expression that is nonzero if on this machine the number of bits actually used
for the count of a shift operation is equal to the number of bits needed to represent
the size of the object being shifted. When this macro is nonzero, the compiler will
assume that it is safe to omit a sign-extend, zero-extend, and certain bitwise `and'
instructions that truncates the count of a shift operation. On machines that have
instructions that act on bit-�elds at variable positions, which may include `bit test'
instructions, a nonzero SHIFT_COUNT_TRUNCATED also enables deletion of truncations
of the values that serve as arguments to bit-�eld instructions.

If both types of instructions truncate the count (for shifts) and position (for bit-�eld
operations), or if no variable-position bit-�eld instructions exist, you should de�ne
this macro.

However, on some machines, such as the 80386 and the 680x0, truncation only applies
to shift operations and not the (real or pretended) bit-�eld operations. De�ne SHIFT_
COUNT_TRUNCATED to be zero on such machines. Instead, add patterns to the `md' �le
that include the implied truncation of the shift instructions.

You need not de�ne this macro if it would always have the value of zero.

[Target Hook]int TARGET_SHIFT_TRUNCATION_MASK (enum machine mode mode)
This function describes how the standard shift patterns for mode deal with shifts
by negative amounts or by more than the width of the mode. See [shift patterns],
page 241.

On many machines, the shift patterns will apply a mask m to the shift count, meaning
that a �xed-width shift of x by y is equivalent to an arbitrary-width shift of x by y
& m. If this is true for mode mode, the function should return m, otherwise it should
return 0. A return value of 0 indicates that no particular behavior is guaranteed.

Note that, unlike SHIFT_COUNT_TRUNCATED, this function does not apply to general
shift rtxes; it applies only to instructions that are generated by the named shift
patterns.

The default implementation of this function returns GET_MODE_BITSIZE (mode) - 1

if SHIFT_COUNT_TRUNCATED and 0 otherwise. This de�nition is always safe, but if
SHIFT_COUNT_TRUNCATED is false, and some shift patterns nevertheless truncate the
shift count, you may get better code by overriding it.

426 GNU Compiler Collection (GCC) Internals

[Macro]TRULY_NOOP_TRUNCATION (outprec, inprec)
A C expression which is nonzero if on this machine it is safe to \convert" an integer
of inprec bits to one of outprec bits (where outprec is smaller than inprec) by merely
operating on it as if it had only outprec bits.

On many machines, this expression can be 1.

When TRULY_NOOP_TRUNCATION returns 1 for a pair of sizes for modes for which
MODES_TIEABLE_P is 0, suboptimal code can result. If this is the case, making TRULY_
NOOP_TRUNCATION return 0 in such cases may improve things.

[Target Hook]int TARGET_MODE_REP_EXTENDED (enum machine mode mode, enum
machine mode rep_mode)

The representation of an integral mode can be such that the values are always ex-
tended to a wider integral mode. Return SIGN_EXTEND if values of mode are rep-
resented in sign-extended form to rep mode. Return UNKNOWN otherwise. (Cur-
rently, none of the targets use zero-extended representation this way so unlike LOAD_
EXTEND_OP, TARGET_MODE_REP_EXTENDED is expected to return either SIGN_EXTEND

or UNKNOWN. Also no target extends mode to mode rep so that mode rep is not the
next widest integral mode and currently we take advantage of this fact.)

Similarly to LOAD_EXTEND_OP you may return a non-UNKNOWN value even if the exten-
sion is not performed on certain hard registers as long as for the REGNO_REG_CLASS

of these hard registers CANNOT_CHANGE_MODE_CLASS returns nonzero.

Note that TARGET_MODE_REP_EXTENDED and LOAD_EXTEND_OP describe two related
properties. If you de�ne TARGET_MODE_REP_EXTENDED (mode, word_mode) you prob-
ably also want to de�ne LOAD_EXTEND_OP (mode) to return the same type of extension.

In order to enforce the representation of mode, TRULY_NOOP_TRUNCATION should return
false when truncating to mode.

[Macro]STORE_FLAG_VALUE
A C expression describing the value returned by a comparison operator with an in-
tegral mode and stored by a store-
ag instruction (`scond ') when the condition is
true. This description must apply to all the `scond ' patterns and all the comparison
operators whose results have a MODE_INT mode.

A value of 1 or �1 means that the instruction implementing the comparison operator
returns exactly 1 or �1 when the comparison is true and 0 when the comparison is
false. Otherwise, the value indicates which bits of the result are guaranteed to be 1
when the comparison is true. This value is interpreted in the mode of the comparison
operation, which is given by the mode of the �rst operand in the `scond ' pattern.
Either the low bit or the sign bit of STORE_FLAG_VALUE be on. Presently, only those
bits are used by the compiler.

If STORE_FLAG_VALUE is neither 1 or �1, the compiler will generate code that depends
only on the speci�ed bits. It can also replace comparison operators with equivalent
operations if they cause the required bits to be set, even if the remaining bits are
unde�ned. For example, on a machine whose comparison operators return an SImode

value and where STORE_FLAG_VALUE is de�ned as `0x80000000', saying that just the
sign bit is relevant, the expression

Chapter 15: Target Description Macros and Functions 427

(ne:SI (and:SI x (const_int power-of-2)) (const_int 0))

can be converted to
(ashift:SI x (const_int n))

where n is the appropriate shift count to move the bit being tested into the sign bit.

There is no way to describe a machine that always sets the low-order bit for a true
value, but does not guarantee the value of any other bits, but we do not know of
any machine that has such an instruction. If you are trying to port GCC to such a
machine, include an instruction to perform a logical-and of the result with 1 in the
pattern for the comparison operators and let us know at gcc@gcc.gnu.org.

Often, a machine will have multiple instructions that obtain a value from a comparison
(or the condition codes). Here are rules to guide the choice of value for STORE_FLAG_
VALUE, and hence the instructions to be used:

� Use the shortest sequence that yields a valid de�nition for STORE_FLAG_VALUE. It
is more e�cient for the compiler to \normalize" the value (convert it to, e.g., 1 or
0) than for the comparison operators to do so because there may be opportunities
to combine the normalization with other operations.

� For equal-length sequences, use a value of 1 or �1, with �1 being slightly pre-
ferred on machines with expensive jumps and 1 preferred on other machines.

� As a second choice, choose a value of `0x80000001' if instructions exist that set
both the sign and low-order bits but do not de�ne the others.

� Otherwise, use a value of `0x80000000'.

Many machines can produce both the value chosen for STORE_FLAG_VALUE and its
negation in the same number of instructions. On those machines, you should also
de�ne a pattern for those cases, e.g., one matching

(set A (neg:m (ne:m B C)))

Some machines can also perform and or plus operations on condition code values with
less instructions than the corresponding `scond ' insn followed by and or plus. On
those machines, de�ne the appropriate patterns. Use the names incscc and decscc,
respectively, for the patterns which perform plus or minus operations on condition
code values. See `rs6000.md' for some examples. The GNU Superoptizer can be used
to �nd such instruction sequences on other machines.

If this macro is not de�ned, the default value, 1, is used. You need not de�ne STORE_
FLAG_VALUE if the machine has no store-
ag instructions, or if the value generated by
these instructions is 1.

[Macro]FLOAT_STORE_FLAG_VALUE (mode)
A C expression that gives a nonzero REAL_VALUE_TYPE value that is returned when
comparison operators with
oating-point results are true. De�ne this macro on ma-
chines that have comparison operations that return
oating-point values. If there are
no such operations, do not de�ne this macro.

[Macro]VECTOR_STORE_FLAG_VALUE (mode)
A C expression that gives a rtx representing the nonzero true element for vector
comparisons. The returned rtx should be valid for the inner mode of mode which
is guaranteed to be a vector mode. De�ne this macro on machines that have vector

mailto:gcc@gcc.gnu.org

428 GNU Compiler Collection (GCC) Internals

comparison operations that return a vector result. If there are no such operations, do
not de�ne this macro. Typically, this macro is de�ned as const1_rtx or constm1_
rtx. This macro may return NULL_RTX to prevent the compiler optimizing such vector
comparison operations for the given mode.

[Macro]CLZ_DEFINED_VALUE_AT_ZERO (mode, value)
[Macro]CTZ_DEFINED_VALUE_AT_ZERO (mode, value)

A C expression that indicates whether the architecture de�nes a value for clz or ctz
with a zero operand. A result of 0 indicates the value is unde�ned. If the value
is de�ned for only the RTL expression, the macro should evaluate to 1; if the value
applies also to the corresponding optab entry (which is normally the case if it expands
directly into the corresponding RTL), then the macro should evaluate to 2. In the
cases where the value is de�ned, value should be set to this value.

If this macro is not de�ned, the value of clz or ctz at zero is assumed to be unde�ned.

This macro must be de�ned if the target's expansion for ffs relies on a particular
value to get correct results. Otherwise it is not necessary, though it may be used to
optimize some corner cases, and to provide a default expansion for the ffs optab.

Note that regardless of this macro the \de�nedness" of clz and ctz at zero do not
extend to the builtin functions visible to the user. Thus one may be free to adjust
the value at will to match the target expansion of these operations without fear of
breaking the API.

[Macro]Pmode
An alias for the machine mode for pointers. On most machines, de�ne this to be the
integer mode corresponding to the width of a hardware pointer; SImode on 32-bit
machine or DImode on 64-bit machines. On some machines you must de�ne this to
be one of the partial integer modes, such as PSImode.

The width of Pmode must be at least as large as the value of POINTER_SIZE. If it
is not equal, you must de�ne the macro POINTERS_EXTEND_UNSIGNED to specify how
pointers are extended to Pmode.

[Macro]FUNCTION_MODE
An alias for the machine mode used for memory references to functions being called,
in call RTL expressions. On most machines this should be QImode.

[Macro]STDC_0_IN_SYSTEM_HEADERS
In normal operation, the preprocessor expands __STDC__ to the constant 1, to signify
that GCC conforms to ISO Standard C. On some hosts, like Solaris, the system
compiler uses a di�erent convention, where __STDC__ is normally 0, but is 1 if the
user speci�es strict conformance to the C Standard.

De�ning STDC_0_IN_SYSTEM_HEADERS makes GNU CPP follows the host convention
when processing system header �les, but when processing user �les __STDC__ will
always expand to 1.

[Macro]NO_IMPLICIT_EXTERN_C
De�ne this macro if the system header �les support C++ as well as C. This macro
inhibits the usual method of using system header �les in C++, which is to pretend
that the �le's contents are enclosed in `extern "C" {...}'.

Chapter 15: Target Description Macros and Functions 429

[Macro]REGISTER_TARGET_PRAGMAS ()
De�ne this macro if you want to implement any target-speci�c pragmas. If de�ned, it
is a C expression which makes a series of calls to c_register_pragma or c_register_
pragma_with_expansion for each pragma. The macro may also do any setup required
for the pragmas.

The primary reason to de�ne this macro is to provide compatibility with other compil-
ers for the same target. In general, we discourage de�nition of target-speci�c pragmas
for GCC.

If the pragma can be implemented by attributes then you should consider de�ning
the target hook `TARGET_INSERT_ATTRIBUTES' as well.

Preprocessor macros that appear on pragma lines are not expanded. All `#pragma'
directives that do not match any registered pragma are silently ignored, unless the
user speci�es `-Wunknown-pragmas'.

[Function]void c_register_pragma (const char *space, const char *name, void
(*callback) (struct cpp reader *))

[Function]void c_register_pragma_with_expansion (const char *space, const
char *name, void (*callback) (struct cpp reader *))

Each call to c_register_pragma or c_register_pragma_with_expansion estab-
lishes one pragma. The callback routine will be called when the preprocessor en-
counters a pragma of the form

#pragma [space] name ...

space is the case-sensitive namespace of the pragma, or NULL to put the pragma in the
global namespace. The callback routine receives p�le as its �rst argument, which can
be passed on to cpplib's functions if necessary. You can lex tokens after the name by
calling pragma_lex. Tokens that are not read by the callback will be silently ignored.
The end of the line is indicated by a token of type CPP_EOF. Macro expansion occurs
on the arguments of pragmas registered with c_register_pragma_with_expansion

but not on the arguments of pragmas registered with c_register_pragma.

For an example use of this routine, see `c4x.h' and the callback routines de�ned in
`c4x-c.c'.

Note that the use of pragma_lex is speci�c to the C and C++ compilers. It will
not work in the Java or Fortran compilers, or any other language compilers for that
matter. Thus if pragma_lex is going to be called from target-speci�c code, it must
only be done so when building the C and C++ compilers. This can be done by
de�ning the variables c_target_objs and cxx_target_objs in the target entry in
the `config.gcc' �le. These variables should name the target-speci�c, language-
speci�c object �le which contains the code that uses pragma_lex. Note it will also
be necessary to add a rule to the make�le fragment pointed to by tmake_file that
shows how to build this object �le.

[Macro]HANDLE_SYSV_PRAGMA
De�ne this macro (to a value of 1) if you want the System V style pragmas `#pragma
pack(<n>)' and `#pragma weak <name> [=<value>]' to be supported by gcc.

The pack pragma speci�es the maximum alignment (in bytes) of �elds within a struc-
ture, in much the same way as the `__aligned__' and `__packed__' __attribute__s
do. A pack value of zero resets the behavior to the default.

430 GNU Compiler Collection (GCC) Internals

A subtlety for Microsoft Visual C/C++ style bit-�eld packing (e.g. -mms-bit�elds) for
targets that support it: When a bit-�eld is inserted into a packed record, the whole
size of the underlying type is used by one or more same-size adjacent bit-�elds (that
is, if its long:3, 32 bits is used in the record, and any additional adjacent long bit-�elds
are packed into the same chunk of 32 bits. However, if the size changes, a new �eld
of that size is allocated).

If both MS bit-�elds and `__attribute__((packed))' are used, the latter will take
precedence. If `__attribute__((packed))' is used on a single �eld when MS bit-
�elds are in use, it will take precedence for that �eld, but the alignment of the rest
of the structure may a�ect its placement.

The weak pragma only works if SUPPORTS_WEAK and ASM_WEAKEN_LABEL are de�ned.
If enabled it allows the creation of speci�cally named weak labels, optionally with a
value.

[Macro]HANDLE_PRAGMA_PACK_PUSH_POP
De�ne this macro (to a value of 1) if you want to support the Win32 style prag-
mas `#pragma pack(push[,n])' and `#pragma pack(pop)'. The `pack(push,[n])'
pragma speci�es the maximum alignment (in bytes) of �elds within a structure, in
much the same way as the `__aligned__' and `__packed__' __attribute__s do.
A pack value of zero resets the behavior to the default. Successive invocations of
this pragma cause the previous values to be stacked, so that invocations of `#pragma
pack(pop)' will return to the previous value.

[Macro]HANDLE_PRAGMA_PACK_WITH_EXPANSION
De�ne this macro, as well as HANDLE_SYSV_PRAGMA, if macros should be expanded in
the arguments of `#pragma pack'.

[Macro]TARGET_DEFAULT_PACK_STRUCT
If your target requires a structure packing default other than 0 (meaning the machine
default), de�ne this macro to the necessary value (in bytes). This must be a value
that would also be valid to use with `#pragma pack()' (that is, a small power of two).

[Macro]DOLLARS_IN_IDENTIFIERS
De�ne this macro to control use of the character `$' in identi�er names for the C
family of languages. 0 means `$' is not allowed by default; 1 means it is allowed. 1 is
the default; there is no need to de�ne this macro in that case.

[Macro]NO_DOLLAR_IN_LABEL
De�ne this macro if the assembler does not accept the character `$' in label names.
By default constructors and destructors in G++ have `$' in the identi�ers. If this
macro is de�ned, `.' is used instead.

[Macro]NO_DOT_IN_LABEL
De�ne this macro if the assembler does not accept the character `.' in label names.
By default constructors and destructors in G++ have names that use `.'. If this macro
is de�ned, these names are rewritten to avoid `.'.

[Macro]INSN_SETS_ARE_DELAYED (insn)
De�ne this macro as a C expression that is nonzero if it is safe for the delay slot
scheduler to place instructions in the delay slot of insn, even if they appear to use

Chapter 15: Target Description Macros and Functions 431

a resource set or clobbered in insn. insn is always a jump_insn or an insn; GCC
knows that every call_insn has this behavior. On machines where some insn or
jump_insn is really a function call and hence has this behavior, you should de�ne
this macro.

You need not de�ne this macro if it would always return zero.

[Macro]INSN_REFERENCES_ARE_DELAYED (insn)
De�ne this macro as a C expression that is nonzero if it is safe for the delay slot
scheduler to place instructions in the delay slot of insn, even if they appear to set or
clobber a resource referenced in insn. insn is always a jump_insn or an insn. On
machines where some insn or jump_insn is really a function call and its operands are
registers whose use is actually in the subroutine it calls, you should de�ne this macro.
Doing so allows the delay slot scheduler to move instructions which copy arguments
into the argument registers into the delay slot of insn.

You need not de�ne this macro if it would always return zero.

[Macro]MULTIPLE_SYMBOL_SPACES
De�ne this macro as a C expression that is nonzero if, in some cases, global symbols
from one translation unit may not be bound to unde�ned symbols in another transla-
tion unit without user intervention. For instance, under Microsoft Windows symbols
must be explicitly imported from shared libraries (DLLs).

You need not de�ne this macro if it would always evaluate to zero.

[Target Hook]tree TARGET_MD_ASM_CLOBBERS (tree outputs, tree inputs, tree
clobbers)

This target hook should add to clobbers STRING_CST trees for any hard regs the
port wishes to automatically clobber for an asm. It should return the result of the
last tree_cons used to add a clobber. The outputs, inputs and clobber lists are
the corresponding parameters to the asm and may be inspected to avoid clobbering
a register that is an input or output of the asm. You can use tree_overlaps_

hard_reg_set, declared in `tree.h', to test for overlap with regards to asm-declared
registers.

[Macro]MATH_LIBRARY
De�ne this macro as a C string constant for the linker argument to link in the system
math library, or `""' if the target does not have a separate math library.

You need only de�ne this macro if the default of `"-lm"' is wrong.

[Macro]LIBRARY_PATH_ENV
De�ne this macro as a C string constant for the environment variable that speci�es
where the linker should look for libraries.

You need only de�ne this macro if the default of `"LIBRARY_PATH"' is wrong.

[Macro]TARGET_POSIX_IO
De�ne this macro if the target supports the following POSIX �le functions, access,
mkdir and �le locking with fcntl / F SETLKW. De�ning TARGET_POSIX_IO will
enable the test coverage code to use �le locking when exiting a program, which avoids
race conditions if the program has forked. It will also create directories at run-time
for cross-pro�ling.

432 GNU Compiler Collection (GCC) Internals

[Macro]MAX_CONDITIONAL_EXECUTE
A C expression for the maximum number of instructions to execute via conditional
execution instructions instead of a branch. A value of BRANCH_COST+1 is the default
if the machine does not use cc0, and 1 if it does use cc0.

[Macro]IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr)
Used if the target needs to perform machine-dependent modi�cations on the condi-
tionals used for turning basic blocks into conditionally executed code. ce info points
to a data structure, struct ce_if_block, which contains information about the cur-
rently processed blocks. true expr and false expr are the tests that are used for
converting the then-block and the else-block, respectively. Set either true expr or
false expr to a null pointer if the tests cannot be converted.

[Macro]IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, true_expr,
false_expr)

Like IFCVT_MODIFY_TESTS, but used when converting more complicated if-statements
into conditions combined by and and or operations. bb contains the basic block that
contains the test that is currently being processed and about to be turned into a
condition.

[Macro]IFCVT_MODIFY_INSN (ce_info, pattern, insn)
A C expression to modify the PATTERN of an INSN that is to be converted to
conditional execution format. ce info points to a data structure, struct ce_if_

block, which contains information about the currently processed blocks.

[Macro]IFCVT_MODIFY_FINAL (ce_info)
A C expression to perform any �nal machine dependent modi�cations in converting
code to conditional execution. The involved basic blocks can be found in the struct
ce_if_block structure that is pointed to by ce info.

[Macro]IFCVT_MODIFY_CANCEL (ce_info)
A C expression to cancel any machine dependent modi�cations in converting code to
conditional execution. The involved basic blocks can be found in the struct ce_if_

block structure that is pointed to by ce info.

[Macro]IFCVT_INIT_EXTRA_FIELDS (ce_info)
A C expression to initialize any extra �elds in a struct ce_if_block structure, which
are de�ned by the IFCVT_EXTRA_FIELDS macro.

[Macro]IFCVT_EXTRA_FIELDS
If de�ned, it should expand to a set of �eld declarations that will be added to the
struct ce_if_block structure. These should be initialized by the IFCVT_INIT_

EXTRA_FIELDS macro.

[Target Hook]void TARGET_MACHINE_DEPENDENT_REORG ()
If non-null, this hook performs a target-speci�c pass over the instruction stream.
The compiler will run it at all optimization levels, just before the point at which it
normally does delayed-branch scheduling.

The exact purpose of the hook varies from target to target. Some use it to do trans-
formations that are necessary for correctness, such as laying out in-function constant

Chapter 15: Target Description Macros and Functions 433

pools or avoiding hardware hazards. Others use it as an opportunity to do some
machine-dependent optimizations.

You need not implement the hook if it has nothing to do. The default de�nition is
null.

[Target Hook]void TARGET_INIT_BUILTINS ()
De�ne this hook if you have any machine-speci�c built-in functions that need to be
de�ned. It should be a function that performs the necessary setup.

Machine speci�c built-in functions can be useful to expand special machine instruc-
tions that would otherwise not normally be generated because they have no equivalent
in the source language (for example, SIMD vector instructions or prefetch instruc-
tions).

To create a built-in function, call the function lang_hooks.builtin_function which
is de�ned by the language front end. You can use any type nodes set up by build_

common_tree_nodes and build_common_tree_nodes_2; only language front ends
that use those two functions will call `TARGET_INIT_BUILTINS'.

[Target Hook]rtx TARGET_EXPAND_BUILTIN (tree exp, rtx target, rtx
subtarget, enum machine mode mode, int ignore)

Expand a call to a machine speci�c built-in function that was set up by
`TARGET_INIT_BUILTINS'. exp is the expression for the function call; the result
should go to target if that is convenient, and have mode mode if that is convenient.
subtarget may be used as the target for computing one of exp's operands. ignore is
nonzero if the value is to be ignored. This function should return the result of the
call to the built-in function.

[Target Hook]tree TARGET_RESOLVE_OVERLOADED_BUILTIN (tree fndecl, tree
arglist)

Select a replacement for a machine speci�c built-in function that was set up by
`TARGET_INIT_BUILTINS'. This is done before regular type checking, and so allows
the target to implement a crude form of function overloading. fndecl is the decla-
ration of the built-in function. arglist is the list of arguments passed to the built-in
function. The result is a complete expression that implements the operation, usually
another CALL_EXPR.

[Target Hook]tree TARGET_FOLD_BUILTIN (tree fndecl, tree arglist, bool
ignore)

Fold a call to a machine speci�c built-in function that was set up by
`TARGET_INIT_BUILTINS'. fndecl is the declaration of the built-in function. arglist
is the list of arguments passed to the built-in function. The result is another tree
containing a simpli�ed expression for the call's result. If ignore is true the value will
be ignored.

[Target Hook]const char * TARGET INVALID WITHIN DOLOOP (rtx insn)
Take an instruction in insn and return NULL if it is valid within a low-overhead loop,
otherwise return a string why doloop could not be applied.

Many targets use special registers for low-overhead looping. For any instruction that
clobbers these this function should return a string indicating the reason why the

434 GNU Compiler Collection (GCC) Internals

doloop could not be applied. By default, the RTL loop optimizer does not use a
present doloop pattern for loops containing function calls or branch on table instruc-
tions.

[Macro]MD_CAN_REDIRECT_BRANCH (branch1, branch2)
Take a branch insn in branch1 and another in branch2. Return true if redirecting
branch1 to the destination of branch2 is possible.

On some targets, branches may have a limited range. Optimizing the �lling of delay
slots can result in branches being redirected, and this may in turn cause a branch
o�set to over
ow.

[Target Hook]bool TARGET_COMMUTATIVE_P (rtx x, outer_code)
This target hook returns true if x is considered to be commutative. Usually, this is
just COMMUTATIVE P (x), but the HP PA doesn't consider PLUS to be commuta-
tive inside a MEM. outer code is the rtx code of the enclosing rtl, if known, otherwise
it is UNKNOWN.

[Target Hook]rtx TARGET_ALLOCATE_INITIAL_VALUE (rtx hard_reg)
When the initial value of a hard register has been copied in a pseudo register, it
is often not necessary to actually allocate another register to this pseudo register,
because the original hard register or a stack slot it has been saved into can be used.
TARGET_ALLOCATE_INITIAL_VALUE is called at the start of register allocation once
for each hard register that had its initial value copied by using get_func_hard_reg_

initial_val or get_hard_reg_initial_val. Possible values are NULL_RTX, if you
don't want to do any special allocation, a REG rtx|that would typically be the hard
register itself, if it is known not to be clobbered|or a MEM. If you are returning a MEM,
this is only a hint for the allocator; it might decide to use another register anyways.
You may use current_function_leaf_function in the hook, functions that use
REG_N_SETS, to determine if the hard register in question will not be clobbered. The
default value of this hook is NULL, which disables any special allocation.

[Macro]TARGET_OBJECT_SUFFIX
De�ne this macro to be a C string representing the su�x for object �les on your
target machine. If you do not de�ne this macro, GCC will use `.o' as the su�x for
object �les.

[Macro]TARGET_EXECUTABLE_SUFFIX
De�ne this macro to be a C string representing the su�x to be automatically added
to executable �les on your target machine. If you do not de�ne this macro, GCC will
use the null string as the su�x for executable �les.

[Macro]COLLECT_EXPORT_LIST
If de�ned, collect2 will scan the individual object �les speci�ed on its command line
and create an export list for the linker. De�ne this macro for systems like AIX, where
the linker discards object �les that are not referenced from main and uses export lists.

[Macro]MODIFY_JNI_METHOD_CALL (mdecl)
De�ne this macro to a C expression representing a variant of the method call mdecl, if
Java Native Interface (JNI) methods must be invoked di�erently from other methods

Chapter 15: Target Description Macros and Functions 435

on your target. For example, on 32-bit Microsoft Windows, JNI methods must be
invoked using the stdcall calling convention and this macro is then de�ned as this
expression:

build_type_attribute_variant (mdecl,
build_tree_list
(get_identifier ("stdcall"),
NULL))

[Target Hook]bool TARGET_CANNOT_MODIFY_JUMPS_P (void)
This target hook returns true past the point in which new jump instructions could
be created. On machines that require a register for every jump such as the SHmedia
ISA of SH5, this point would typically be reload, so this target hook should be de�ned
to a function such as:

static bool
cannot_modify_jumps_past_reload_p ()
{
return (reload_completed || reload_in_progress);

}

[Target Hook]int TARGET_BRANCH_TARGET_REGISTER_CLASS (void)
This target hook returns a register class for which branch target register optimizations
should be applied. All registers in this class should be usable interchangeably. After
reload, registers in this class will be re-allocated and loads will be hoisted out of loops
and be subjected to inter-block scheduling.

[Target Hook]bool TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED (bool
after_prologue_epilogue_gen)

Branch target register optimization will by default exclude callee-saved registers that
are not already live during the current function; if this target hook returns true,
they will be included. The target code must than make sure that all target regis-
ters in the class returned by `TARGET_BRANCH_TARGET_REGISTER_CLASS' that might
need saving are saved. after prologue epilogue gen indicates if prologues and epi-
logues have already been generated. Note, even if you only return true when af-
ter prologue epilogue gen is false, you still are likely to have to make special provi-
sions in INITIAL_ELIMINATION_OFFSET to reserve space for caller-saved target regis-
ters.

[Macro]POWI_MAX_MULTS
If de�ned, this macro is interpreted as a signed integer C expression that speci�es
the maximum number of
oating point multiplications that should be emitted when
expanding exponentiation by an integer constant inline. When this value is de�ned,
exponentiation requiring more than this number of multiplications is implemented by
calling the system library's pow, powf or powl routines. The default value places no
upper bound on the multiplication count.

[Macro]void TARGET_EXTRA_INCLUDES (const char *sysroot, const char
*iprefix, int stdinc)

This target hook should register any extra include �les for the target. The parameter
stdinc indicates if normal include �les are present. The parameter sysroot is the
system root directory. The parameter ipre�x is the pre�x for the gcc directory.

436 GNU Compiler Collection (GCC) Internals

[Macro]void TARGET_EXTRA_PRE_INCLUDES (const char *sysroot, const char
*iprefix, int stdinc)

This target hook should register any extra include �les for the target before any
standard headers. The parameter stdinc indicates if normal include �les are present.
The parameter sysroot is the system root directory. The parameter ipre�x is the
pre�x for the gcc directory.

[Macro]void TARGET_OPTF (char *path)
This target hook should register special include paths for the target. The parameter
path is the include to register. On Darwin systems, this is used for Framework
includes, which have semantics that are di�erent from `-I'.

[Target Hook]bool TARGET_USE_LOCAL_THUNK_ALIAS_P (tree fndecl)
This target hook returns true if it is safe to use a local alias for a virtual function
fndecl when constructing thunks, false otherwise. By default, the hook returns true
for all functions, if a target supports aliases (i.e. de�nes ASM_OUTPUT_DEF), false
otherwise,

[Macro]TARGET_FORMAT_TYPES
If de�ned, this macro is the name of a global variable containing target-speci�c format
checking information for the `-Wformat' option. The default is to have no target-
speci�c format checks.

[Macro]TARGET_N_FORMAT_TYPES
If de�ned, this macro is the number of entries in TARGET_FORMAT_TYPES.

[Target Hook]bool TARGET_RELAXED_ORDERING
If set to true, means that the target's memory model does not guarantee that loads
which do not depend on one another will access main memory in the order of the
instruction stream; if ordering is important, an explicit memory barrier must be
used. This is true of many recent processors which implement a policy of \relaxed,"
\weak," or \release" memory consistency, such as Alpha, PowerPC, and ia64. The
default is false.

[Target Hook]const char
*TARGET INVALID ARG FOR UNPROTOTYPED FN (tree typelist,
tree funcdecl, tree val)

If de�ned, this macro returns the diagnostic message when it is illegal to pass argument
val to function funcdecl with prototype typelist.

[Target Hook]const char * TARGET_INVALID_CONVERSION (tree fromtype, tree
totype)

If de�ned, this macro returns the diagnostic message when it is invalid to convert
from fromtype to totype, or NULL if validity should be determined by the front end.

[Target Hook]const char * TARGET_INVALID_UNARY_OP (int op, tree type)
If de�ned, this macro returns the diagnostic message when it is invalid to apply
operation op (where unary plus is denoted by CONVERT_EXPR) to an operand of type
type, or NULL if validity should be determined by the front end.

Chapter 15: Target Description Macros and Functions 437

[Target Hook]const char * TARGET_INVALID_BINARY_OP (int op, tree type1,
tree type2)

If de�ned, this macro returns the diagnostic message when it is invalid to apply
operation op to operands of types type1 and type2, or NULL if validity should be
determined by the front end.

[Macro]TARGET_USE_JCR_SECTION
This macro determines whether to use the JCR section to register Java classes. By
default, TARGET USE JCR SECTION is de�ned to 1 if both SUPPORTS WEAK
and TARGET HAVE NAMED SECTIONS are true, else 0.

[Macro]OBJC_JBLEN
This macro determines the size of the objective C jump bu�er for the NeXT runtime.
By default, OBJC JBLEN is de�ned to an innocuous value.

438 GNU Compiler Collection (GCC) Internals

Chapter 16: Host Con�guration 439

16 Host Con�guration

Most details about the machine and system on which the compiler is actually running are
detected by the configure script. Some things are impossible for configure to detect;
these are described in two ways, either by macros de�ned in a �le named `xm-machine.h' or
by hook functions in the �le speci�ed by the out host hook obj variable in `config.gcc'.
(The intention is that very few hosts will need a header �le but nearly every fully supported
host will need to override some hooks.)

If you need to de�ne only a few macros, and they have simple de�nitions, consider using
the xm_defines variable in your `config.gcc' entry instead of creating a host con�guration
header. See Section 6.3.2.2 [System Con�g], page 26.

16.1 Host Common

Some things are just not portable, even between similar operating systems, and are too
di�cult for autoconf to detect. They get implemented using hook functions in the �le
speci�ed by the host hook obj variable in `config.gcc'.

[Host Hook]void HOST_HOOKS_EXTRA_SIGNALS (void)
This host hook is used to set up handling for extra signals. The most common thing
to do in this hook is to detect stack over
ow.

[Host Hook]void * HOST HOOKS GT PCH GET ADDRESS (size t size, int fd)
This host hook returns the address of some space that is likely to be free in some
subsequent invocation of the compiler. We intend to load the PCH data at this
address such that the data need not be relocated. The area should be able to hold
size bytes. If the host uses mmap, fd is an open �le descriptor that can be used for
probing.

[Host Hook]int HOST_HOOKS_GT_PCH_USE_ADDRESS (void * address, size t
size, int fd, size t offset)

This host hook is called when a PCH �le is about to be loaded. We want to load
size bytes from fd at o�set into memory at address. The given address will be the
result of a previous invocation of HOST_HOOKS_GT_PCH_GET_ADDRESS. Return �1 if
we couldn't allocate size bytes at address. Return 0 if the memory is allocated but
the data is not loaded. Return 1 if the hook has performed everything.

If the implementation uses reserved address space, free any reserved space beyond
size, regardless of the return value. If no PCH will be loaded, this hook may be called
with size zero, in which case all reserved address space should be freed.

Do not try to handle values of address that could not have been returned by this
executable; just return �1. Such values usually indicate an out-of-date PCH �le
(built by some other GCC executable), and such a PCH �le won't work.

[Host Hook]size_t HOST_HOOKS_GT_PCH_ALLOC_GRANULARITY (void);
This host hook returns the alignment required for allocating virtual memory. Usually
this is the same as getpagesize, but on some hosts the alignment for reserving memory
di�ers from the pagesize for committing memory.

440 GNU Compiler Collection (GCC) Internals

16.2 Host Filesystem

GCC needs to know a number of things about the semantics of the host machine's �lesys-
tem. Filesystems with Unix and MS-DOS semantics are automatically detected. For other
systems, you can de�ne the following macros in `xm-machine.h'.

HAVE_DOS_BASED_FILE_SYSTEM

This macro is automatically de�ned by `system.h' if the host �le system obeys
the semantics de�ned by MS-DOS instead of Unix. DOS �le systems are case
insensitive, �le speci�cations may begin with a drive letter, and both forward
slash and backslash (`/' and `\') are directory separators.

DIR_SEPARATOR

DIR_SEPARATOR_2

If de�ned, these macros expand to character constants specifying separators for
directory names within a �le speci�cation. `system.h' will automatically give
them appropriate values on Unix and MS-DOS �le systems. If your �le system
is neither of these, de�ne one or both appropriately in `xm-machine.h'.

However, operating systems like VMS, where constructing a pathname is more
complicated than just stringing together directory names separated by a special
character, should not de�ne either of these macros.

PATH_SEPARATOR

If de�ned, this macro should expand to a character constant specifying the
separator for elements of search paths. The default value is a colon (`:'). DOS-
based systems usually, but not always, use semicolon (`;').

VMS De�ne this macro if the host system is VMS.

HOST_OBJECT_SUFFIX

De�ne this macro to be a C string representing the su�x for object �les on
your host machine. If you do not de�ne this macro, GCC will use `.o' as the
su�x for object �les.

HOST_EXECUTABLE_SUFFIX

De�ne this macro to be a C string representing the su�x for executable �les
on your host machine. If you do not de�ne this macro, GCC will use the null
string as the su�x for executable �les.

HOST_BIT_BUCKET

A pathname de�ned by the host operating system, which can be opened as a �le
and written to, but all the information written is discarded. This is commonly
known as a bit bucket or null device. If you do not de�ne this macro, GCC will
use `/dev/null' as the bit bucket. If the host does not support a bit bucket,
de�ne this macro to an invalid �lename.

UPDATE_PATH_HOST_CANONICALIZE (path)

If de�ned, a C statement (sans semicolon) that performs host-dependent canon-
icalization when a path used in a compilation driver or preprocessor is canoni-
calized. path is a malloc-ed path to be canonicalized. If the C statement does
canonicalize path into a di�erent bu�er, the old path should be freed and the
new bu�er should have been allocated with malloc.

Chapter 16: Host Con�guration 441

DUMPFILE_FORMAT

De�ne this macro to be a C string representing the format to use for constructing
the index part of debugging dump �le names. The resultant string must �t in
�fteen bytes. The full �lename will be the concatenation of: the pre�x of the
assembler �le name, the string resulting from applying this format to an index
number, and a string unique to each dump �le kind, e.g. `rtl'.

If you do not de�ne this macro, GCC will use `.%02d.'. You should de�ne this
macro if using the default will create an invalid �le name.

DELETE_IF_ORDINARY

De�ne this macro to be a C statement (sans semicolon) that performs host-
dependent removal of ordinary temp �les in the compilation driver.

If you do not de�ne this macro, GCC will use the default version. You should
de�ne this macro if the default version does not reliably remove the temp �le
as, for example, on VMS which allows multiple versions of a �le.

HOST_LACKS_INODE_NUMBERS

De�ne this macro if the host �lesystem does not report meaningful inode num-
bers in struct stat.

16.3 Host Misc

FATAL_EXIT_CODE

A C expression for the status code to be returned when the compiler exits after
serious errors. The default is the system-provided macro `EXIT_FAILURE', or `1'
if the system doesn't de�ne that macro. De�ne this macro only if these defaults
are incorrect.

SUCCESS_EXIT_CODE

A C expression for the status code to be returned when the compiler exits
without serious errors. (Warnings are not serious errors.) The default is the
system-provided macro `EXIT_SUCCESS', or `0' if the system doesn't de�ne that
macro. De�ne this macro only if these defaults are incorrect.

USE_C_ALLOCA

De�ne this macro if GCC should use the C implementation of alloca provided
by `libiberty.a'. This only a�ects how some parts of the compiler itself
allocate memory. It does not change code generation.

When GCC is built with a compiler other than itself, the C alloca is always
used. This is because most other implementations have serious bugs. You
should de�ne this macro only on a system where no stack-based alloca can
possibly work. For instance, if a system has a small limit on the size of the
stack, GCC's builtin alloca will not work reliably.

COLLECT2_HOST_INITIALIZATION

If de�ned, a C statement (sans semicolon) that performs host-dependent ini-
tialization when collect2 is being initialized.

GCC_DRIVER_HOST_INITIALIZATION

If de�ned, a C statement (sans semicolon) that performs host-dependent ini-
tialization when a compilation driver is being initialized.

442 GNU Compiler Collection (GCC) Internals

HOST_LONG_LONG_FORMAT

If de�ned, the string used to indicate an argument of type long long to func-
tions like printf. The default value is "ll".

In addition, if configure generates an incorrect de�nition of any of the macros in
`auto-host.h', you can override that de�nition in a host con�guration header. If you
need to do this, �rst see if it is possible to �x configure.

Chapter 17: Make�le Fragments 443

17 Make�le Fragments

When you con�gure GCC using the `configure' script, it will construct the �le `Makefile'
from the template �le `Makefile.in'. When it does this, it can incorporate make�le frag-
ments from the `config' directory. These are used to set Make�le parameters that are
not amenable to being calculated by autoconf. The list of fragments to incorporate is set
by `config.gcc' (and occasionally `config.build' and `config.host'); See Section 6.3.2.2
[System Con�g], page 26.

Fragments are named either `t-target ' or `x-host ', depending on whether they are
relevant to con�guring GCC to produce code for a particular target, or to con�guring GCC
to run on a particular host. Here target and host are mnemonics which usually have some
relationship to the canonical system name, but no formal connection.

If these �les do not exist, it means nothing needs to be added for a given target or host.
Most targets need a few `t-target ' fragments, but needing `x-host ' fragments is rare.

17.1 Target Make�le Fragments

Target make�le fragments can set these Make�le variables.

LIBGCC2_CFLAGS

Compiler
ags to use when compiling `libgcc2.c'.

LIB2FUNCS_EXTRA

A list of source �le names to be compiled or assembled and inserted into
`libgcc.a'.

Floating Point Emulation
To have GCC include software
oating point libraries in `libgcc.a' de�ne
FPBIT and DPBIT along with a few rules as follows:

We want fine grained libraries, so use the new code
to build the floating point emulation libraries.
FPBIT = fp-bit.c
DPBIT = dp-bit.c

fp-bit.c: $(srcdir)/config/fp-bit.c
echo '#define FLOAT' > fp-bit.c
cat $(srcdir)/config/fp-bit.c >> fp-bit.c

dp-bit.c: $(srcdir)/config/fp-bit.c
cat $(srcdir)/config/fp-bit.c > dp-bit.c

You may need to provide additional #de�nes at the beginning of `fp-bit.c'
and `dp-bit.c' to control target endianness and other options.

CRTSTUFF_T_CFLAGS

Special
ags used when compiling `crtstuff.c'. See Section 15.21.5 [Initial-
ization], page 399.

CRTSTUFF_T_CFLAGS_S

Special
ags used when compiling `crtstuff.c' for shared linking. Used if
you use `crtbeginS.o' and `crtendS.o' in EXTRA-PARTS. See Section 15.21.5
[Initialization], page 399.

444 GNU Compiler Collection (GCC) Internals

MULTILIB_OPTIONS

For some targets, invoking GCC in di�erent ways produces objects that can not
be linked together. For example, for some targets GCC produces both big and
little endian code. For these targets, you must arrange for multiple versions
of `libgcc.a' to be compiled, one for each set of incompatible options. When
GCC invokes the linker, it arranges to link in the right version of `libgcc.a',
based on the command line options used.

The MULTILIB_OPTIONS macro lists the set of options for which special versions
of `libgcc.a' must be built. Write options that are mutually incompatible side
by side, separated by a slash. Write options that may be used together separated
by a space. The build procedure will build all combinations of compatible
options.

For example, if you set MULTILIB_OPTIONS to `m68000/m68020 msoft-float',
`Makefile' will build special versions of `libgcc.a' using the following sets of
options: `-m68000', `-m68020', `-msoft-float', `-m68000 -msoft-float', and
`-m68020 -msoft-float'.

MULTILIB_DIRNAMES

If MULTILIB_OPTIONS is used, this variable speci�es the directory names that
should be used to hold the various libraries. Write one element in MULTILIB_

DIRNAMES for each element in MULTILIB_OPTIONS. If MULTILIB_DIRNAMES is
not used, the default value will be MULTILIB_OPTIONS, with all slashes treated
as spaces.

For example, if MULTILIB_OPTIONS is set to `m68000/m68020 msoft-float',
then the default value of MULTILIB_DIRNAMES is `m68000 m68020 msoft-float'.
You may specify a di�erent value if you desire a di�erent set of directory names.

MULTILIB_MATCHES

Sometimes the same option may be written in two di�erent ways. If an option is
listed in MULTILIB_OPTIONS, GCC needs to know about any synonyms. In that
case, set MULTILIB_MATCHES to a list of items of the form `option=option' to de-
scribe all relevant synonyms. For example, `m68000=mc68000 m68020=mc68020'.

MULTILIB_EXCEPTIONS

Sometimes when there are multiple sets of MULTILIB_OPTIONS being speci�ed,
there are combinations that should not be built. In that case, set MULTILIB_
EXCEPTIONS to be all of the switch exceptions in shell case syntax that should
not be built.
For example the ARM processor cannot execute both hardware
oating point
instructions and the reduced size THUMB instructions at the same time, so
there is no need to build libraries with both of these options enabled. Therefore
MULTILIB_EXCEPTIONS is set to:

*mthumb/*mhard-float*

MULTILIB_EXTRA_OPTS

Sometimes it is desirable that when building multiple versions of `libgcc.a'
certain options should always be passed on to the compiler. In that case, set
MULTILIB_EXTRA_OPTS to be the list of options to be used for all builds. If you
set this, you should probably set CRTSTUFF_T_CFLAGS to a dash followed by it.

Chapter 17: Make�le Fragments 445

NATIVE_SYSTEM_HEADER_DIR

If the default location for system headers is not `/usr/include', you must set
this to the directory containing the headers. This value should match the value
of the SYSTEM_INCLUDE_DIR macro.

SPECS Unfortunately, setting MULTILIB_EXTRA_OPTS is not enough, since it does not
a�ect the build of target libraries, at least not the build of the default multilib.
One possible work-around is to use DRIVER_SELF_SPECS to bring options from
the `specs' �le as if they had been passed in the compiler driver command
line. However, you don't want to be adding these options after the toolchain is
installed, so you can instead tweak the `specs' �le that will be used during the
toolchain build, while you still install the original, built-in `specs'. The trick is
to set SPECS to some other �lename (say `specs.install'), that will then be
created out of the built-in specs, and introduce a `Makefile' rule to generate the
`specs' �le that's going to be used at build time out of your `specs.install'.

17.2 Host Make�le Fragments

The use of `x-host ' fragments is discouraged. You should do so only if there is no other
mechanism to get the behavior desired. Host fragments should never forcibly override
variables set by the con�gure script, as they may have been adjusted by the user.

Variables provided for host fragments to set include:

X_CFLAGS

X_CPPFLAGS

These are extra
ags to pass to the C compiler and preprocessor, respectively.
They are used both when building GCC, and when compiling things with the
just-built GCC.

XCFLAGS These are extra
ags to use when building the compiler. They are not used when
compiling `libgcc.a'. However, they are used when recompiling the compiler
with itself in later stages of a bootstrap.

BOOT_LDFLAGS

Flags to be passed to the linker when recompiling the compiler with itself in
later stages of a bootstrap. You might need to use this if, for instance, one of
the front ends needs more text space than the linker provides by default.

EXTRA_PROGRAMS

A list of additional programs required to use the compiler on this host, which
should be compiled with GCC and installed alongside the front ends. If you set
this variable, you must also provide rules to build the extra programs.

446 GNU Compiler Collection (GCC) Internals

Chapter 18: collect2 447

18 collect2

GCC uses a utility called collect2 on nearly all systems to arrange to call various initial-
ization functions at start time.

The program collect2 works by linking the program once and looking through the linker
output �le for symbols with particular names indicating they are constructor functions. If
it �nds any, it creates a new temporary `.c' �le containing a table of them, compiles it, and
links the program a second time including that �le.

The actual calls to the constructors are carried out by a subroutine called __main, which
is called (automatically) at the beginning of the body of main (provided main was compiled
with GNU CC). Calling __main is necessary, even when compiling C code, to allow linking
C and C++ object code together. (If you use `-nostdlib', you get an unresolved reference
to __main, since it's de�ned in the standard GCC library. Include `-lgcc' at the end of
your compiler command line to resolve this reference.)

The program collect2 is installed as ld in the directory where the passes of the compiler
are installed. When collect2 needs to �nd the real ld, it tries the following �le names:

� `real-ld' in the directories listed in the compiler's search directories.

� `real-ld' in the directories listed in the environment variable PATH.

� The �le speci�ed in the REAL_LD_FILE_NAME con�guration macro, if speci�ed.

� `ld' in the compiler's search directories, except that collect2 will not execute itself
recursively.

� `ld' in PATH.

\The compiler's search directories" means all the directories where gcc searches for passes
of the compiler. This includes directories that you specify with `-B'.

Cross-compilers search a little di�erently:

� `real-ld' in the compiler's search directories.

� `target-real-ld' in PATH.

� The �le speci�ed in the REAL_LD_FILE_NAME con�guration macro, if speci�ed.

� `ld' in the compiler's search directories.

� `target-ld' in PATH.

collect2 explicitly avoids running ld using the �le name under which collect2 itself
was invoked. In fact, it remembers up a list of such names|in case one copy of collect2
�nds another copy (or version) of collect2 installed as ld in a second place in the search
path.

collect2 searches for the utilities nm and strip using the same algorithm as above for
ld.

448 GNU Compiler Collection (GCC) Internals

Chapter 19: Standard Header File Directories 449

19 Standard Header File Directories

GCC_INCLUDE_DIR means the same thing for native and cross. It is where GCC stores its
private include �les, and also where GCC stores the �xed include �les. A cross compiled
GCC runs fixincludes on the header �les in `$(tooldir)/include'. (If the cross compi-
lation header �les need to be �xed, they must be installed before GCC is built. If the cross
compilation header �les are already suitable for GCC, nothing special need be done).

GPLUSPLUS_INCLUDE_DIR means the same thing for native and cross. It is where g++

looks �rst for header �les. The C++ library installs only target independent header �les in
that directory.

LOCAL_INCLUDE_DIR is used only by native compilers. GCC doesn't install anything
there. It is normally `/usr/local/include'. This is where local additions to a packaged
system should place header �les.

CROSS_INCLUDE_DIR is used only by cross compilers. GCC doesn't install anything there.

TOOL_INCLUDE_DIR is used for both native and cross compilers. It is the place for other
packages to install header �les that GCC will use. For a cross-compiler, this is the equivalent
of `/usr/include'. When you build a cross-compiler, fixincludes processes any header
�les in this directory.

450 GNU Compiler Collection (GCC) Internals

Chapter 20: Memory Management and Type Information 451

20 Memory Management and Type Information

GCC uses some fairly sophisticated memory management techniques, which involve deter-
mining information about GCC's data structures from GCC's source code and using this
information to perform garbage collection and implement precompiled headers.

A full C parser would be too complicated for this task, so a limited subset of C is
interpreted and special markers are used to determine what parts of the source to look
at. All struct and union declarations that de�ne data structures that are allocated under
control of the garbage collector must be marked. All global variables that hold pointers to
garbage-collected memory must also be marked. Finally, all global variables that need to
be saved and restored by a precompiled header must be marked. (The precompiled header
mechanism can only save static variables if they're scalar. Complex data structures must
be allocated in garbage-collected memory to be saved in a precompiled header.)
The full format of a marker is

GTY (([option] [(param)], [option] [(param)] ...))

but in most cases no options are needed. The outer double parentheses are still necessary,
though: GTY(()). Markers can appear:

� In a structure de�nition, before the open brace;

� In a global variable declaration, after the keyword static or extern; and

� In a structure �eld de�nition, before the name of the �eld.

Here are some examples of marking simple data structures and globals.
struct tag GTY(())
{
fields...

};

typedef struct tag GTY(())
{
fields...

} *typename;

static GTY(()) struct tag *list; /* points to GC memory */
static GTY(()) int counter; /* save counter in a PCH */

The parser understands simple typedefs such as typedef struct tag *name; and
typedef int name;. These don't need to be marked.

20.1 The Inside of a GTY(())

Sometimes the C code is not enough to fully describe the type structure. Extra information
can be provided with GTY options and additional markers. Some options take a parameter,
which may be either a string or a type name, depending on the parameter. If an option
takes no parameter, it is acceptable either to omit the parameter entirely, or to provide
an empty string as a parameter. For example, GTY ((skip)) and GTY ((skip (""))) are
equivalent.

When the parameter is a string, often it is a fragment of C code. Four special escapes
may be used in these strings, to refer to pieces of the data structure being marked:

%h The current structure.

452 GNU Compiler Collection (GCC) Internals

%1 The structure that immediately contains the current structure.

%0 The outermost structure that contains the current structure.

%a A partial expression of the form [i1][i2]... that indexes the array item cur-
rently being marked.

For instance, suppose that you have a structure of the form
struct A {
...

};
struct B {
struct A foo[12];

};

and b is a variable of type struct B. When marking `b.foo[11]', %h would expand to
`b.foo[11]', %0 and %1 would both expand to `b', and %a would expand to `[11]'.
As in ordinary C, adjacent strings will be concatenated; this is helpful when you have a

complicated expression.
GTY ((chain_next ("TREE_CODE (&%h.generic) == INTEGER_TYPE"

" ? TYPE_NEXT_VARIANT (&%h.generic)"
" : TREE_CHAIN (&%h.generic)")))

The available options are:

length ("expression")
There are two places the type machinery will need to be explicitly told the
length of an array. The �rst case is when a structure ends in a variable-length
array, like this:

struct rtvec_def GTY(()) {
int num_elem; /* number of elements */
rtx GTY ((length ("%h.num_elem"))) elem[1];

};

In this case, the length option is used to override the speci�ed array length
(which should usually be 1). The parameter of the option is a fragment of C
code that calculates the length.
The second case is when a structure or a global variable contains a pointer to
an array, like this:

tree *
GTY ((length ("%h.regno_pointer_align_length"))) regno_decl;

In this case, regno_decl has been allocated by writing something like
x->regno_decl =
ggc_alloc (x->regno_pointer_align_length * sizeof (tree));

and the length provides the length of the �eld.

This second use of length also works on global variables, like:

static GTY((length ("reg_base_value_size")))

rtx *reg_base_value;

skip

If skip is applied to a �eld, the type machinery will ignore it. This is somewhat
dangerous; the only safe use is in a union when one �eld really isn't ever used.

desc ("expression")

tag ("constant")

default

Chapter 20: Memory Management and Type Information 453

The type machinery needs to be told which �eld of a union is currently active.
This is done by giving each �eld a constant tag value, and then specifying a
discriminator using desc. The value of the expression given by desc is compared
against each tag value, each of which should be di�erent. If no tag is matched,
the �eld marked with default is used if there is one, otherwise no �eld in the
union will be marked.

In the desc option, the \current structure" is the union that it discriminates.
Use %1 to mean the structure containing it. There are no escapes available to
the tag option, since it is a constant.
For example,

struct tree_binding GTY(())
{
struct tree_common common;
union tree_binding_u {
tree GTY ((tag ("0"))) scope;
struct cp_binding_level * GTY ((tag ("1"))) level;

} GTY ((desc ("BINDING_HAS_LEVEL_P ((tree)&%0)"))) xscope;
tree value;

};

In this example, the value of BINDING HAS LEVEL P when applied to a
struct tree_binding * is presumed to be 0 or 1. If 1, the type mechanism
will treat the �eld level as being present and if 0, will treat the �eld scope as
being present.

param_is (type)

use_param

Sometimes it's convenient to de�ne some data structure to work on generic
pointers (that is, PTR) and then use it with a speci�c type. param_is speci�es
the real type pointed to, and use_param says where in the generic data structure
that type should be put.
For instance, to have a htab_t that points to trees, one would write the de�ni-
tion of htab_t like this:

typedef struct GTY(()) {
...
void ** GTY ((use_param, ...)) entries;
...

} htab_t;

and then declare variables like this:
static htab_t GTY ((param_is (union tree_node))) ict;

paramn_is (type)

use_paramn

In more complicated cases, the data structure might need to work on several
di�erent types, which might not necessarily all be pointers. For this, param1_is
through param9_is may be used to specify the real type of a �eld identi�ed by
use_param1 through use_param9.

use_params

When a structure contains another structure that is parameterized, there's no
need to do anything special, the inner structure inherits the parameters of the
outer one. When a structure contains a pointer to a parameterized structure,

454 GNU Compiler Collection (GCC) Internals

the type machinery won't automatically detect this (it could, it just doesn't
yet), so it's necessary to tell it that the pointed-to structure should use the
same parameters as the outer structure. This is done by marking the pointer
with the use_params option.

deletable

deletable, when applied to a global variable, indicates that when garbage
collection runs, there's no need to mark anything pointed to by this variable,
it can just be set to NULL instead. This is used to keep a list of free structures
around for re-use.

if_marked ("expression")

Suppose you want some kinds of object to be unique, and so you put them in a
hash table. If garbage collection marks the hash table, these objects will never
be freed, even if the last other reference to them goes away. GGC has special
handling to deal with this: if you use the if_marked option on a global hash
table, GGC will call the routine whose name is the parameter to the option on
each hash table entry. If the routine returns nonzero, the hash table entry will
be marked as usual. If the routine returns zero, the hash table entry will be
deleted.

The routine ggc_marked_p can be used to determine if an element has been
marked already; in fact, the usual case is to use if_marked ("ggc_marked_p").

maybe_undef

When applied to a �eld, maybe_undef indicates that it's OK if the structure
that this �elds points to is never de�ned, so long as this �eld is always NULL.
This is used to avoid requiring backends to de�ne certain optional structures.
It doesn't work with language frontends.

nested_ptr (type, "to expression", "from expression")

The type machinery expects all pointers to point to the start of an object.
Sometimes for abstraction purposes it's convenient to have a pointer which
points inside an object. So long as it's possible to convert the original object
to and from the pointer, such pointers can still be used. type is the type of the
original object, the to expression returns the pointer given the original object,
and the from expression returns the original object given the pointer. The
pointer will be available using the %h escape.

chain_next ("expression")

chain_prev ("expression")

It's helpful for the type machinery to know if objects are often chained together
in long lists; this lets it generate code that uses less stack space by iterating
along the list instead of recursing down it. chain_next is an expression for the
next item in the list, chain_prev is an expression for the previous item. For
singly linked lists, use only chain_next; for doubly linked lists, use both. The
machinery requires that taking the next item of the previous item gives the
original item.

reorder ("function name")

Some data structures depend on the relative ordering of pointers. If
the precompiled header machinery needs to change that ordering, it

Chapter 20: Memory Management and Type Information 455

will call the function referenced by the reorder option, before changing
the pointers in the object that's pointed to by the �eld the option
applies to. The function must take four arguments, with the signature
`void *, void *, gt_pointer_operator, void *'. The �rst parameter is a
pointer to the structure that contains the object being updated, or the object
itself if there is no containing structure. The second parameter is a cookie that
should be ignored. The third parameter is a routine that, given a pointer, will
update it to its correct new value. The fourth parameter is a cookie that must
be passed to the second parameter.

PCH cannot handle data structures that depend on the absolute values of point-
ers. reorder functions can be expensive. When possible, it is better to depend
on properties of the data, like an ID number or the hash of a string instead.

special ("name")

The special option is used to mark types that have to be dealt with by
special case machinery. The parameter is the name of the special case. See
`gengtype.c' for further details. Avoid adding new special cases unless there
is no other alternative.

20.2 Marking Roots for the Garbage Collector

In addition to keeping track of types, the type machinery also locates the global variables
(roots) that the garbage collector starts at. Roots must be declared using one of the
following syntaxes:

� extern GTY(([options])) type name;

� static GTY(([options])) type name;

The syntax

� GTY(([options])) type name;

is not accepted. There should be an extern declaration of such a variable in a header
somewhere|mark that, not the de�nition. Or, if the variable is only used in one �le, make
it static.

20.3 Source Files Containing Type Information

Whenever you add GTY markers to a source �le that previously had none, or create a new
source �le containing GTY markers, there are three things you need to do:

1. You need to add the �le to the list of source �les the type machinery scans. There are
four cases:

a. For a back-end �le, this is usually done automatically; if not, you should add it to
target_gtfiles in the appropriate port's entries in `config.gcc'.

b. For �les shared by all front ends, add the �lename to the GTFILES variable in
`Makefile.in'.

c. For �les that are part of one front end, add the �lename to the gtfiles variable de-
�ned in the appropriate `config-lang.in'. For C, the �le is `c-config-lang.in'.

d. For �les that are part of some but not all front ends, add the �lename to the
gtfiles variable of all the front ends that use it.

456 GNU Compiler Collection (GCC) Internals

2. If the �le was a header �le, you'll need to check that it's included in the right place to be
visible to the generated �les. For a back-end header �le, this should be done automati-
cally. For a front-end header �le, it needs to be included by the same �le that includes
`gtype-lang.h'. For other header �les, it needs to be included in `gtype-desc.c',
which is a generated �le, so add it to ifiles in open_base_file in `gengtype.c'.

For source �les that aren't header �les, the machinery will generate a header �le
that should be included in the source �le you just changed. The �le will be called
`gt-path.h' where path is the pathname relative to the `gcc' directory with slashes
replaced by -, so for example the header �le to be included in `cp/parser.c' is called
`gt-cp-parser.c'. The generated header �le should be included after everything else
in the source �le. Don't forget to mention this �le as a dependency in the `Makefile'!

For language frontends, there is another �le that needs to be included somewhere. It
will be called `gtype-lang.h', where lang is the name of the subdirectory the language is
contained in.

Funding Free Software 457

Funding Free Software

If you want to have more free software a few years from now, it makes sense for you to
help encourage people to contribute funds for its development. The most e�ective approach
known is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-
fee distributors to donate part of their selling price to free software developers|the Free
Software Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So
when you compare distributors, judge them partly by how much they give to free software
development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as,
\We will donate ten dollars to the Frobnitz project for each disk sold." Don't be satis�ed
with a vague promise, such as \A portion of the pro�ts are donated," since it doesn't give
a basis for comparison.

Even a precise fraction \of the pro�ts from this disk" is not very meaningful, since creative
accounting and unrelated business decisions can greatly alter what fraction of the sales price
counts as pro�t. If the price you pay is $50, ten percent of the pro�t is probably less than
a dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep
everyone honest, you need to inquire how much they do, and what kind. Some kinds of
development make much more long-term di�erence than others. For example, maintaining
a separate version of a program contributes very little; maintaining the standard version
of a program for the whole community contributes much. Easy new ports contribute little,
since someone else would surely do them; di�cult ports such as adding a new CPU to the
GNU Compiler Collection contribute more; major new features or packages contribute the
most.

By establishing the idea that supporting further development is \the proper thing to
do" when distributing free software for a fee, we can assure a steady
ow of resources into
making more free software.

Copyright c
 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.

458 GNU Compiler Collection (GCC) Internals

The GNU Project and GNU/Linux 459

The GNU Project and GNU/Linux

The GNU Project was launched in 1984 to develop a complete Unix-like operating system
which is free software: the GNU system. (GNU is a recursive acronym for \GNU's Not
Unix"; it is pronounced \guh-NEW".) Variants of the GNU operating system, which use the
kernel Linux, are now widely used; though these systems are often referred to as \Linux",
they are more accurately called GNU/Linux systems.
For more information, see:

http://www.gnu.org/
http://www.gnu.org/gnu/linux-and-gnu.html

http://www.gnu.org/
http://www.gnu.org/gnu/linux-and-gnu.html

460 GNU Compiler Collection (GCC) Internals

GNU GENERAL PUBLIC LICENSE 461

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c
 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software|to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation's software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) o�er you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modi�ed by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not re
ect on the original authors'
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
e�ect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modi�cation follow.

462 GNU Compiler Collection (GCC) Internals

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The \Program", below, refers to any such program or work, and a
\work based on the Program" means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modi�cations and/or translated into another language. (Hereinafter,
translation is included without limitation in the term \modi�cation".) Each licensee is
addressed as \you".

Activities other than copying, distribution and modi�cation are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option o�er warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modi�cations or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modi�ed �les to carry prominent notices stating that you
changed the �les and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modi�ed program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modi�ed work as a whole. If identi�able sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

GNU GENERAL PUBLIC LICENSE 463

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written o�er, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the o�er to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an o�er, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modi�-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface de�nition �les, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by o�ering access to copy from
a designated place, then o�ering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

464 GNU Compiler Collection (GCC) Internals

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients' exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may di�er in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program speci�es a
version number of this License which applies to it and \any later version", you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are di�erent, write to the author to ask for permission. For software

GNU GENERAL PUBLIC LICENSE 465

which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM \AS
IS" WITHOUTWARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THEQUALITY AND PERFORMANCE OF THE PROGRAM ISWITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

466 GNU Compiler Collection (GCC) Internals

Appendix: How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source �le to most e�ectively convey the exclusion of warranty; and each �le
should have at least the \copyright" line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than `show w' and `show c'; they could even be mouse-clicks or menu items|whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a \copyright disclaimer" for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

`Gnomovision' (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

GNU Free Documentation License 467

GNU Free Documentation License

Version 1.2, November 2002

Copyright c
 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the e�ective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modi�cations
made by others.

This License is a kind of \copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The \Document",
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as \you". You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A \Modi�ed Version" of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modi�cations and/or translated into
another language.

A \Secondary Section" is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document's overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The \Invariant Sections" are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

468 GNU Compiler Collection (GCC) Internals

under this License. If a section does not �t the above de�nition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The \Cover Texts" are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A \Transparent" copy of the Document means a machine-readable copy, represented
in a format whose speci�cation is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent �le format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modi�cation by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not \Transparent" is called \Opaque".

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modi�cation. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The \Title Page" means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, \Title Page"
means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

A section \Entitled XYZ" means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a speci�c section name mentioned below, such
as \Acknowledgements", \Dedications", \Endorsements", or \History".) To \Preserve
the Title" of such a section when you modify the Document means that it remains a
section \Entitled XYZ" according to this de�nition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
e�ect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

GNU Free Documentation License 469

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document's license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to �t legibly, you should put
the �rst ones listed (as many as �t reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modi�ed Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modi�ed Version under precisely
this License, with the Modi�ed Version �lling the role of the Document, thus licensing
distribution and modi�cation of the Modi�ed Version to whoever possesses a copy of
it. In addition, you must do these things in the Modi�ed Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

470 GNU Compiler Collection (GCC) Internals

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modi�cations in the Modi�ed Version, together with at least �ve
of the principal authors of the Document (all of its principal authors, if it has fewer
than �ve), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modi�ed Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modi�cations adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modi�ed Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled \History", Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modi�ed Version
as given on the Title Page. If there is no section Entitled \History" in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modi�ed Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
\History" section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled \Acknowledgements" or \Dedications", Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled \Endorsements". Such a section may not be included
in the Modi�ed Version.

N. Do not retitle any existing section to be Entitled \Endorsements" or to con
ict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modi�ed Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modi�ed Version's license notice. These
titles must be distinct from any other section titles.

GNU Free Documentation License 471

You may add a section Entitled \Endorsements", provided it contains nothing but
endorsements of your Modi�ed Version by various parties|for example, statements of
peer review or that the text has been approved by an organization as the authoritative
de�nition of a standard.

You may add a passage of up to �ve words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modi�ed
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modi�ed
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms de�ned in section 4 above for modi�ed versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodi�ed, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but di�erent contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled \History" in the vari-
ous original documents, forming one section Entitled \History"; likewise combine any
sections Entitled \Acknowledgements", and any sections Entitled \Dedications". You
must delete all sections Entitled \Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

472 GNU Compiler Collection (GCC) Internals

an \aggregate" if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation's users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document's Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modi�cation, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled \Acknowledgements", \Dedications", or \His-
tory", the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may di�er in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
speci�es that a particular numbered version of this License \or any later version"
applies to it, you have the option of following the terms and conditions either of that
speci�ed version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

GNU Free Documentation License 473

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ``GNU
Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
\with...Texts." line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

474 GNU Compiler Collection (GCC) Internals

Contributors to GCC 475

Contributors to GCC

The GCC project would like to thank its many contributors. Without them the project
would not have been nearly as successful as it has been. Any omissions in this list are
accidental. Feel free to contact law@redhat.com or gerald@pfeifer.com if you have been
left out or some of your contributions are not listed. Please keep this list in alphabetical
order.

� Analog Devices helped implement the support for complex data types and iterators.

� John David Anglin for threading-related �xes and improvements to libstdc++-v3, and
the HP-UX port.

� James van Artsdalen wrote the code that makes e�cient use of the Intel 80387 register
stack.

� Abramo and Roberto Bagnara for the SysV68 Motorola 3300 Delta Series port.

� Alasdair Baird for various bug �xes.

� Giovanni Bajo for analyzing lots of complicated C++ problem reports.

� Peter Barada for his work to improve code generation for new ColdFire cores.

� Gerald Baumgartner added the signature extension to the C++ front end.

� Godmar Back for his Java improvements and encouragement.

� Scott Bambrough for help porting the Java compiler.

� Wolfgang Bangerth for processing tons of bug reports.

� Jon Beniston for his Microsoft Windows port of Java.

� Daniel Berlin for better DWARF2 support, faster/better optimizations, improved alias
analysis, plus migrating GCC to Bugzilla.

� Geo� Berry for his Java object serialization work and various patches.

� Uros Bizjak for the implementation of x87 math built-in functions and for various
middle end and i386 back end improvements and bug�xes.

� Eric Blake for helping to make GCJ and libgcj conform to the speci�cations.

� Janne Blomqvist for contributions to GNU Fortran.

� Segher Boessenkool for various �xes.

� Hans-J. Boehm for his garbage collector, IA-64 lib� port, and other Java work.

� Neil Booth for work on cpplib, lang hooks, debug hooks and other miscellaneous clean-
ups.

� Steven Bosscher for integrating the GNU Fortran front end into GCC and for con-
tributing to the tree-ssa branch.

� Eric Botcazou for �xing middle- and backend bugs left and right.

� Per Bothner for his direction via the steering committee and various improvements
to the infrastructure for supporting new languages. Chill front end implementation.
Initial implementations of cpplib, �x-header, con�g.guess, libio, and past C++ library
(libg++) maintainer. Dreaming up, designing and implementing much of GCJ.

� Devon Bowen helped port GCC to the Tahoe.

� Don Bowman for mips-vxworks contributions.

mailto:law@redhat.com
mailto:gerald@pfeifer.com
http://www.hpl.hp.com/personal/Hans_Boehm/gc/

476 GNU Compiler Collection (GCC) Internals

� Dave Brolley for work on cpplib and Chill.

� Paul Brook for work on the ARM architecture and maintaining GNU Fortran.

� Robert Brown implemented the support for Encore 32000 systems.

� Christian Bruel for improvements to local store elimination.

� Herman A.J. ten Brugge for various �xes.

� Joerg Brunsmann for Java compiler hacking and help with the GCJ FAQ.

� Joe Buck for his direction via the steering committee.

� Craig Burley for leadership of the G77 Fortran e�ort.

� Stephan Buys for contributing Doxygen notes for libstdc++.

� Paolo Carlini for libstdc++ work: lots of e�ciency improvements to the C++ strings,
streambufs and formatted I/O, hard detective work on the frustrating localization
issues, and keeping up with the problem reports.

� John Carr for his alias work, SPARC hacking, infrastructure improvements, previous
contributions to the steering committee, loop optimizations, etc.

� Stephane Carrez for 68HC11 and 68HC12 ports.

� Steve Chamberlain for support for the Renesas SH and H8 processors and the PicoJava
processor, and for GCJ con�g �xes.

� Glenn Chambers for help with the GCJ FAQ.

� John-Marc Chandonia for various libgcj patches.

� Scott Christley for his Objective-C contributions.

� Eric Christopher for his Java porting help and clean-ups.

� Branko Cibej for more warning contributions.

� The GNU Classpath project for all of their merged runtime code.

� Nick Clifton for arm, mcore, fr30, v850, m32r work, `--help', and other random hack-
ing.

� Michael Cook for libstdc++ cleanup patches to reduce warnings.

� R. Kelley Cook for making GCC buildable from a read-only directory as well as other
miscellaneous build process and documentation clean-ups.

� Ralf Corsepius for SH testing and minor bug�xing.

� Stan Cox for care and feeding of the x86 port and lots of behind the scenes hacking.

� Alex Crain provided changes for the 3b1.

� Ian Dall for major improvements to the NS32k port.

� Paul Dale for his work to add uClinux platform support to the m68k backend.

� Dario Dariol contributed the four varieties of sample programs that print a copy of
their source.

� Russell Davidson for fstream and stringstream �xes in libstdc++.

� Bud Davis for work on the G77 and GNU Fortran compilers.

� Mo DeJong for GCJ and libgcj bug �xes.

� DJ Delorie for the DJGPP port, build and libiberty maintenance, various bug �xes,
and the M32C port.

http://www.gnu.org/software/classpath/

Contributors to GCC 477

� Arnaud Desitter for helping to debug GNU Fortran.

� Gabriel Dos Reis for contributions to G++, contributions and maintenance of GCC
diagnostics infrastructure, libstdc++-v3, including valarray<>, complex<>, maintain-
ing the numerics library (including that pesky <limits> :-) and keeping up-to-date
anything to do with numbers.

� Ulrich Drepper for his work on glibc, testing of GCC using glibc, ISO C99 support,
CFG dumping support, etc., plus support of the C++ runtime libraries including for all
kinds of C interface issues, contributing and maintaining complex<>, sanity checking
and disbursement, con�guration architecture, libio maintenance, and early math work.

� Zdenek Dvorak for a new loop unroller and various �xes.

� Richard Earnshaw for his ongoing work with the ARM.

� David Edelsohn for his direction via the steering committee, ongoing work with the
RS6000/PowerPC port, help cleaning up Haifa loop changes, doing the entire AIX
port of libstdc++ with his bare hands, and for ensuring GCC properly keeps working
on AIX.

� Kevin Ediger for the
oating point formatting of num put::do put in libstdc++.

� Phil Edwards for libstdc++ work including con�guration hackery, documentation main-
tainer, chief breaker of the web pages, the occasional iostream bug �x, and work on
shared library symbol versioning.

� Paul Eggert for random hacking all over GCC.

� Mark Elbrecht for various DJGPP improvements, and for libstdc++ con�guration sup-
port for locales and fstream-related �xes.

� Vadim Egorov for libstdc++ �xes in strings, streambufs, and iostreams.

� Christian Ehrhardt for dealing with bug reports.

� Ben Elliston for his work to move the Objective-C runtime into its own subdirectory
and for his work on autoconf.

� Marc Espie for OpenBSD support.

� Doug Evans for much of the global optimization framework, arc, m32r, and SPARC
work.

� Christopher Faylor for his work on the Cygwin port and for caring and feeding the
gcc.gnu.org box and saving its users tons of spam.

� Fred Fish for BeOS support and Ada �xes.

� Ivan Fontes Garcia for the Portuguese translation of the GCJ FAQ.

� Peter Gerwinski for various bug �xes and the Pascal front end.

� Kaveh R. Ghazi for his direction via the steering committee, amazing work to make `-W
-Wall -W* -Werror' useful, and continuously testing GCC on a plethora of platforms.
Kaveh extends his gratitude to the CAIP Center at Rutgers University for providing
him with computing resources to work on Free Software since the late 1980s.

� John Gilmore for a donation to the FSF earmarked improving GNU Java.

� Judy Goldberg for c++ contributions.

� Torbjorn Granlund for various �xes and the c-torture testsuite, multiply- and divide-
by-constant optimization, improved long long support, improved leaf function register
allocation, and his direction via the steering committee.

http://www.caip.rutgers.edu

478 GNU Compiler Collection (GCC) Internals

� Anthony Green for his `-Os' contributions and Java front end work.

� Stu Grossman for gdb hacking, allowing GCJ developers to debug Java code.

� Michael K. Gschwind contributed the port to the PDP-11.

� Ron Guilmette implemented the protoize and unprotoize tools, the support for
Dwarf symbolic debugging information, and much of the support for System V Re-
lease 4. He has also worked heavily on the Intel 386 and 860 support.

� Mostafa Hagog for Swing Modulo Scheduling (SMS) and post reload GCSE.

� Bruno Haible for improvements in the runtime overhead for EH, new warnings and
assorted bug �xes.

� Andrew Haley for his amazing Java compiler and library e�orts.

� Chris Hanson assisted in making GCC work on HP-UX for the 9000 series 300.

� Michael Hayes for various thankless work he's done trying to get the c30/c40 ports
functional. Lots of loop and unroll improvements and �xes.

� Dara Hazeghi for wading through myriads of target-speci�c bug reports.

� Kate Hedstrom for staking the G77 folks with an initial testsuite.

� Richard Henderson for his ongoing SPARC, alpha, ia32, and ia64 work, loop opts, and
generally �xing lots of old problems we've ignored for years,
ow rewrite and lots of
further stu�, including reviewing tons of patches.

� Aldy Hernandez for working on the PowerPC port, SIMD support, and various �xes.

� Nobuyuki Hikichi of Software Research Associates, Tokyo, contributed the support for
the Sony NEWS machine.

� Kazu Hirata for caring and feeding the Renesas H8/300 port and various �xes.

� Katherine Holcomb for work on GNU Fortran.

� Manfred Hollstein for his ongoing work to keep the m88k alive, lots of testing and bug
�xing, particularly of GCC con�gury code.

� Steve Holmgren for MachTen patches.

� Jan Hubicka for his x86 port improvements.

� Falk Hue�ner for working on C and optimization bug reports.

� Bernardo Innocenti for his m68k work, including merging of ColdFire improvements
and uClinux support.

� Christian Iseli for various bug �xes.

� Kamil Iskra for general m68k hacking.

� Lee Iverson for random �xes and MIPS testing.

� Andreas Jaeger for testing and benchmarking of GCC and various bug �xes.

� Jakub Jelinek for his SPARC work and sibling call optimizations as well as lots of bug
�xes and test cases, and for improving the Java build system.

� Janis Johnson for ia64 testing and �xes, her quality improvement sidetracks, and web
page maintenance.

� Kean Johnston for SCO OpenServer support and various �xes.

� Tim Josling for the sample language treelang based originally on Richard Kenner's
\toy" language.

Contributors to GCC 479

� Nicolai Josuttis for additional libstdc++ documentation.

� Klaus Kaempf for his ongoing work to make alpha-vms a viable target.

� Steven G. Kargl for work on GNU Fortran.

� David Kashtan of SRI adapted GCC to VMS.

� Ryszard Kabatek for many, many libstdc++ bug �xes and optimizations of strings,
especially member functions, and for auto ptr �xes.

� Geo�rey Keating for his ongoing work to make the PPC work for GNU/Linux and his
automatic regression tester.

� Brendan Kehoe for his ongoing work with G++ and for a lot of early work in just about
every part of libstdc++.

� Oliver M. Kellogg of Deutsche Aerospace contributed the port to the MIL-STD-1750A.

� Richard Kenner of the New York University Ultracomputer Research Laboratory wrote
the machine descriptions for the AMD 29000, the DEC Alpha, the IBM RT PC, and
the IBM RS/6000 as well as the support for instruction attributes. He also made
changes to better support RISC processors including changes to common subexpression
elimination, strength reduction, function calling sequence handling, and condition code
support, in addition to generalizing the code for frame pointer elimination and delay
slot scheduling. Richard Kenner was also the head maintainer of GCC for several years.

� Mumit Khan for various contributions to the Cygwin and Mingw32 ports and main-
taining binary releases for Microsoft Windows hosts, and for massive libstdc++ porting
work to Cygwin/Mingw32.

� Robin Kirkham for cpu32 support.

� Mark Klein for PA improvements.

� Thomas Koenig for various bug �xes.

� Bruce Korb for the new and improved �xincludes code.

� Benjamin Kosnik for his G++ work and for leading the libstdc++-v3 e�ort.

� Charles LaBrec contributed the support for the Integrated Solutions 68020 system.

� Asher Langton and Mike Kumbera for contributing Cray pointer support to GNU
Fortran, and for other GNU Fortran improvements.

� Je� Law for his direction via the steering committee, coordinating the entire egcs
project and GCC 2.95, rolling out snapshots and releases, handling merges from GCC2,
reviewing tons of patches that might have fallen through the cracks else, and random
but extensive hacking.

� Marc Lehmann for his direction via the steering committee and helping with analysis
and improvements of x86 performance.

� Victor Leikehman for work on GNU Fortran.

� Ted Lemon wrote parts of the RTL reader and printer.

� Kriang Lerdsuwanakij for C++ improvements including template as template parameter
support, and many C++ �xes.

� Warren Levy for tremendous work on libgcj (Java Runtime Library) and random work
on the Java front end.

� Alain Lichnewsky ported GCC to the MIPS CPU.

480 GNU Compiler Collection (GCC) Internals

� Oskar Liljeblad for hacking on AWT and his many Java bug reports and patches.

� Robert Lipe for OpenServer support, new testsuites, testing, etc.

� Weiwen Liu for testing and various bug �xes.

� Dave Love for his ongoing work with the Fortran front end and runtime libraries.

� Martin von L�owis for internal consistency checking infrastructure, various C++ improve-
ments including namespace support, and tons of assistance with libstdc++/compiler
merges.

� H.J. Lu for his previous contributions to the steering committee, many x86 bug reports,
prototype patches, and keeping the GNU/Linux ports working.

� Greg McGary for random �xes and (someday) bounded pointers.

� Andrew MacLeod for his ongoing work in building a real EH system, various code
generation improvements, work on the global optimizer, etc.

� Vladimir Makarov for hacking some ugly i960 problems, PowerPC hacking improve-
ments to compile-time performance, overall knowledge and direction in the area of
instruction scheduling, and design and implementation of the automaton based in-
struction scheduler.

� Bob Manson for his behind the scenes work on dejagnu.

� Philip Martin for lots of libstdc++ string and vector iterator �xes and improvements,
and string clean up and testsuites.

� All of the Mauve project contributors, for Java test code.

� Bryce McKinlay for numerous GCJ and libgcj �xes and improvements.

� Adam Megacz for his work on the Microsoft Windows port of GCJ.

� Michael Meissner for LRS framework, ia32, m32r, v850, m88k, MIPS, powerpc, haifa,
ECOFF debug support, and other assorted hacking.

� Jason Merrill for his direction via the steering committee and leading the G++ e�ort.

� Martin Michlmayr for testing GCC on several architectures using the entire Debian
archive.

� David Miller for his direction via the steering committee, lots of SPARC work, im-
provements in jump.c and interfacing with the Linux kernel developers.

� Gary Miller ported GCC to Charles River Data Systems machines.

� Alfred Minarik for libstdc++ string and ios bug �xes, and turning the entire libstdc++
testsuite namespace-compatible.

� Mark Mitchell for his direction via the steering committee, mountains of C++ work,
load/store hoisting out of loops, alias analysis improvements, ISO C restrict support,
and serving as release manager for GCC 3.x.

� Alan Modra for various GNU/Linux bits and testing.

� Toon Moene for his direction via the steering committee, Fortran maintenance, and his
ongoing work to make us make Fortran run fast.

� Jason Molenda for major help in the care and feeding of all the services on the
gcc.gnu.org (formerly egcs.cygnus.com) machine|mail, web services, ftp services, etc
etc. Doing all this work on scrap paper and the backs of envelopes would have been. . .
di�cult.

http://sourceware.org/cgi-bin/cvsweb.cgi/~checkout~/mauve/THANKS?rev=1.2&cvsroot=mauve&only_with_tag=HEAD

Contributors to GCC 481

� Catherine Moore for �xing various ugly problems we have sent her way, including the
haifa bug which was killing the Alpha & PowerPC Linux kernels.

� Mike Moreton for his various Java patches.

� David Mosberger-Tang for various Alpha improvements, and for the initial IA-64 port.

� Stephen Moshier contributed the
oating point emulator that assists in cross-
compilation and permits support for
oating point numbers wider than 64 bits and
for ISO C99 support.

� Bill Moyer for his behind the scenes work on various issues.

� Philippe De Muyter for his work on the m68k port.

� Joseph S. Myers for his work on the PDP-11 port, format checking and ISO C99
support, and continuous emphasis on (and contributions to) documentation.

� Nathan Myers for his work on libstdc++-v3: architecture and authorship through the
�rst three snapshots, including implementation of locale infrastructure, string, shadow
C headers, and the initial project documentation (DESIGN, CHECKLIST, and so
forth). Later, more work on MT-safe string and shadow headers.

� Felix Natter for documentation on porting libstdc++.

� Nathanael Nerode for cleaning up the con�guration/build process.

� NeXT, Inc. donated the front end that supports the Objective-C language.

� Hans-Peter Nilsson for the CRIS and MMIX ports, improvements to the search engine
setup, various documentation �xes and other small �xes.

� Geo� Noer for his work on getting cygwin native builds working.

� Diego Novillo for his work on Tree SSA, OpenMP, SPEC performance tracking web
pages and assorted �xes.

� David O'Brien for the FreeBSD/alpha, FreeBSD/AMD x86-64, FreeBSD/ARM,
FreeBSD/PowerPC, and FreeBSD/SPARC64 ports and related infrastructure
improvements.

� Alexandre Oliva for various build infrastructure improvements, scripts and amazing
testing work, including keeping libtool issues sane and happy.

� Stefan Olsson for work on mt alloc.

� Melissa O'Neill for various NeXT �xes.

� Rainer Orth for random MIPS work, including improvements to GCC's o32 ABI sup-
port, improvements to dejagnu's MIPS support, Java con�guration clean-ups and port-
ing work, etc.

� Hartmut Penner for work on the s390 port.

� Paul Petersen wrote the machine description for the Alliant FX/8.

� Alexandre Petit-Bianco for implementing much of the Java compiler and continued
Java maintainership.

� Matthias Pfaller for major improvements to the NS32k port.

� Gerald Pfeifer for his direction via the steering committee, pointing out lots of problems
we need to solve, maintenance of the web pages, and taking care of documentation
maintenance in general.

� Andrew Pinski for processing bug reports by the dozen.

482 GNU Compiler Collection (GCC) Internals

� Ovidiu Predescu for his work on the Objective-C front end and runtime libraries.

� Jerry Quinn for major performance improvements in C++ formatted I/O.

� Ken Raeburn for various improvements to checker, MIPS ports and various cleanups
in the compiler.

� Rolf W. Rasmussen for hacking on AWT.

� David Reese of Sun Microsystems contributed to the Solaris on PowerPC port.

� Volker Reichelt for keeping up with the problem reports.

� Joern Rennecke for maintaining the sh port, loop, regmove & reload hacking.

� Loren J. Rittle for improvements to libstdc++-v3 including the FreeBSD port, threading
�xes, thread-related con�gury changes, critical threading documentation, and solutions
to really tricky I/O problems, as well as keeping GCC properly working on FreeBSD
and continuous testing.

� Craig Rodrigues for processing tons of bug reports.

� Ola R�onnerup for work on mt alloc.

� Gavin Romig-Koch for lots of behind the scenes MIPS work.

� David Ronis inspired and encouraged Craig to rewrite the G77 documentation in texinfo
format by contributing a �rst pass at a translation of the old `g77-0.5.16/f/DOC' �le.

� Ken Rose for �xes to GCC's delay slot �lling code.

� Paul Rubin wrote most of the preprocessor.

� P�etur Run�olfsson for major performance improvements in C++ formatted I/O and large
�le support in C++ �lebuf.

� Chip Salzenberg for libstdc++ patches and improvements to locales, traits, Make�les,
libio, libtool hackery, and \long long" support.

� Juha Sarlin for improvements to the H8 code generator.

� Greg Satz assisted in making GCC work on HP-UX for the 9000 series 300.

� Roger Sayle for improvements to constant folding and GCC's RTL optimizers as well
as for �xing numerous bugs.

� Bradley Schatz for his work on the GCJ FAQ.

� Peter Schauer wrote the code to allow debugging to work on the Alpha.

� William Schelter did most of the work on the Intel 80386 support.

� Tobias Schl�uter for work on GNU Fortran.

� Bernd Schmidt for various code generation improvements and major work in the reload
pass as well a serving as release manager for GCC 2.95.3.

� Peter Schmid for constant testing of libstdc++|especially application testing, going
above and beyond what was requested for the release criteria|and libstdc++ header
�le tweaks.

� Jason Schroeder for jcf-dump patches.

� Andreas Schwab for his work on the m68k port.

� Lars Segerlund for work on GNU Fortran.

� Joel Sherrill for his direction via the steering committee, RTEMS contributions and
RTEMS testing.

Contributors to GCC 483

� Nathan Sidwell for many C++ �xes/improvements.

� Je�rey Siegal for helping RMS with the original design of GCC, some code which
handles the parse tree and RTL data structures, constant folding and help with the
original VAX & m68k ports.

� Kenny Simpson for prompting libstdc++ �xes due to defect reports from the LWG
(thereby keeping GCC in line with updates from the ISO).

� Franz Sirl for his ongoing work with making the PPC port stable for GNU/Linux.

� Andrey Slepuhin for assorted AIX hacking.

� Christopher Smith did the port for Convex machines.

� Danny Smith for his major e�orts on the Mingw (and Cygwin) ports.

� Randy Smith �nished the Sun FPA support.

� Scott Snyder for queue, iterator, istream, and string �xes and libstdc++ testsuite en-
tries. Also for providing the patch to G77 to add rudimentary support for INTEGER*1,
INTEGER*2, and LOGICAL*1.

� Brad Spencer for contributions to the GLIBCPP FORCE NEW technique.

� Richard Stallman, for writing the original GCC and launching the GNU project.

� Jan Stein of the Chalmers Computer Society provided support for Genix, as well as
part of the 32000 machine description.

� Nigel Stephens for various mips16 related �xes/improvements.

� Jonathan Stone wrote the machine description for the Pyramid computer.

� Graham Stott for various infrastructure improvements.

� John Stracke for his Java HTTP protocol �xes.

� Mike Stump for his Elxsi port, G++ contributions over the years and more recently his
vxworks contributions

� Je� Sturm for Java porting help, bug �xes, and encouragement.

� Shigeya Suzuki for this �xes for the bsdi platforms.

� Ian Lance Taylor for his mips16 work, general con�gury hacking, �xincludes, etc.

� Holger Teutsch provided the support for the Clipper CPU.

� Gary Thomas for his ongoing work to make the PPC work for GNU/Linux.

� Philipp Thomas for random bug �xes throughout the compiler

� Jason Thorpe for thread support in libstdc++ on NetBSD.

� Kresten Krab Thorup wrote the run time support for the Objective-C language and
the fantastic Java bytecode interpreter.

� Michael Tiemann for random bug �xes, the �rst instruction scheduler, initial C++
support, function integration, NS32k, SPARC and M88k machine description work,
delay slot scheduling.

� Andreas Tobler for his work porting libgcj to Darwin.

� Teemu Torma for thread safe exception handling support.

� Leonard Tower wrote parts of the parser, RTL generator, and RTL de�nitions, and of
the VAX machine description.

484 GNU Compiler Collection (GCC) Internals

� Tom Tromey for internationalization support and for his many Java contributions and
libgcj maintainership.

� Lassi Tuura for improvements to con�g.guess to determine HP processor types.

� Petter Urkedal for libstdc++ CXXFLAGS, math, and algorithms �xes.

� Andy Vaught for the design and initial implementation of the GNU Fortran front end.

� Brent Verner for work with the libstdc++ cshadow �les and their associated con�gure
steps.

� Todd Vierling for contributions for NetBSD ports.

� Jonathan Wakely for contributing libstdc++ Doxygen notes and XHTML guidance.

� Dean Wakerley for converting the install documentation from HTML to texinfo in time
for GCC 3.0.

� Krister Walfridsson for random bug �xes.

� Feng Wang for contributions to GNU Fortran.

� Stephen M. Webb for time and e�ort on making libstdc++ shadow �les work with the
tricky Solaris 8+ headers, and for pushing the build-time header tree.

� John Wehle for various improvements for the x86 code generator, related infrastructure
improvements to help x86 code generation, value range propagation and other work,
WE32k port.

� Ulrich Weigand for work on the s390 port.

� Zack Weinberg for major work on cpplib and various other bug �xes.

� Matt Welsh for help with Linux Threads support in GCJ.

� Urban Widmark for help �xing java.io.

� Mark Wielaard for new Java library code and his work integrating with Classpath.

� Dale Wiles helped port GCC to the Tahoe.

� Bob Wilson from Tensilica, Inc. for the Xtensa port.

� Jim Wilson for his direction via the steering committee, tackling hard problems in
various places that nobody else wanted to work on, strength reduction and other loop
optimizations.

� Paul Woegerer and Tal Agmon for the CRX port.

� Carlo Wood for various �xes.

� Tom Wood for work on the m88k port.

� Canqun Yang for work on GNU Fortran.

� Masanobu Yuhara of Fujitsu Laboratories implemented the machine description for the
Tron architecture (speci�cally, the Gmicro).

� Kevin Zachmann helped port GCC to the Tahoe.

� Ayal Zaks for Swing Modulo Scheduling (SMS).

� Xiaoqiang Zhang for work on GNU Fortran.

� Gilles Zunino for help porting Java to Irix.

The following people are recognized for their contributions to GNAT, the Ada front end
of GCC:

Contributors to GCC 485

� Bernard Banner

� Romain Berrendonner

� Geert Bosch

� Emmanuel Briot

� Joel Brobecker

� Ben Brosgol

� Vincent Celier

� Arnaud Charlet

� Chien Chieng

� Cyrille Comar

� Cyrille Crozes

� Robert Dewar

� Gary Dismukes

� Robert Du�

� Ed Falis

� Ramon Fernandez

� Sam Figueroa

� Vasiliy Fofanov

� Michael Friess

� Franco Gasperoni

� Ted Giering

� Matthew Gingell

� Laurent Guerby

� Jerome Guitton

� Olivier Hainque

� Jerome Hugues

� Hristian Kirtchev

� Jerome Lambourg

� Bruno Leclerc

� Albert Lee

� Sean McNeil

� Javier Miranda

� Laurent Nana

� Pascal Obry

� Dong-Ik Oh

� Laurent Pautet

� Brett Porter

� Thomas Quinot

� Nicolas Roche

486 GNU Compiler Collection (GCC) Internals

� Pat Rogers

� Jose Ruiz

� Douglas Rupp

� Sergey Rybin

� Gail Schenker

� Ed Schonberg

� Nicolas Setton

� Samuel Tardieu

The following people are recognized for their contributions of new features, bug reports,
testing and integration of classpath/libgcj for GCC version 4.1:

� Lillian Angel for JTree implementation and lots Free Swing additions and bug�xes.

� Wolfgang Baer for GapContent bug�xes.

� Anthony Balkissoon for JList, Free Swing 1.5 updates and mouse event �xes, lots of
Free Swing work including JTable editing.

� Stuart Ballard for RMI constant �xes.

� Go�redo Baroncelli for HTTPURLConnection �xes.

� Gary Benson for MessageFormat �xes.

� Daniel Bonniot for Serialization �xes.

� Chris Burdess for lots of gnu.xml and http protocol �xes, StAX and DOM xml:id support.

� Ka-Hing Cheung for TreePath and TreeSelection �xes.

� Archie Cobbs for build �xes, VM interface updates, URLClassLoader updates.

� Kelley Cook for build �xes.

� Martin Cordova for Suggestions for better SocketTimeoutException.

� David Daney for BitSet bug�xes, HttpURLConnection rewrite and improvements.

� Thomas Fitzsimmons for lots of upgrades to the gtk+ AWT and Cairo 2D support.
Lots of imageio framework additions, lots of AWT and Free Swing bug�xes.

� Jeroen Frijters for ClassLoader and nio cleanups, serialization �xes, better Proxy

support, bug�xes and IKVM integration.

� Santiago Gala for AccessControlContext �xes.

� Nicolas Geo�ray for VMClassLoader and AccessController improvements.

� David Gilbert for basic and metal icon and plaf support and lots of documenting,
Lots of Free Swing and metal theme additions. MetalIconFactory implementation.

� Anthony Green for MIDI framework, ALSA and DSSI providers.

� Andrew Haley for Serialization and URLClassLoader �xes, gcj build speedups.

� Kim Ho for JFileChooser implementation.

� Andrew John Hughes for Locale and net �xes, URI RFC2986 updates, Serialization
�xes, Properties XML support and generic branch work, VMIntegration guide update.

� Bastiaan Huisman for TimeZone bug�xing.

� Andreas Jaeger for mprec updates.

Contributors to GCC 487

� Paul Jenner for better `-Werror' support.

� Ito Kazumitsu for NetworkInterface implementation and updates.

� Roman Kennke for BoxLayout, GrayFilter and SplitPane, plus bug�xes all over.
Lots of Free Swing work including styled text.

� Simon Kitching for String cleanups and optimization suggestions.

� Michael Koch for con�guration �xes, Locale updates, bug and build �xes.

� Guilhem Lavaux for con�guration, thread and channel �xes and Ka�e integration. JCL
native Pointer updates. Logger bug�xes.

� David Lichteblau for JCL support library global/local reference cleanups.

� Aaron Luchko for JDWP updates and documentation �xes.

� Ziga Mahkovec for Graphics2D upgraded to Cairo 0.5 and new regex features.

� Sven de Marothy for BMP imageio support, CSS and TextLayout �xes. GtkImage

rewrite, 2D, awt, free swing and date/time �xes and implementing the Qt4 peers.

� Casey Marshall for crypto algorithm �xes, FileChannel lock, SystemLogger and
FileHandler rotate implementations, NIO FileChannel.map support, security and
policy updates.

� Bryce McKinlay for RMI work.

� Audrius Meskauskas for lots of Free Corba, RMI and HTML work plus testing and
documenting.

� Kalle Olavi Niemitalo for build �xes.

� Rainer Orth for build �xes.

� Andrew Overholt for File locking �xes.

� Ingo Proetel for Image, Logger and URLClassLoader updates.

� Olga Rodimina for MenuSelectionManager implementation.

� Jan Roehrich for BasicTreeUI and JTree �xes.

� Julian Scheid for documentation updates and gjdoc support.

� Christian Schlichtherle for zip �xes and cleanups.

� Robert Schuster for documentation updates and beans �xes, TreeNode enumerations
and ActionCommand and various �xes, XML and URL, AWT and Free Swing bug�xes.

� Keith Seitz for lots of JDWP work.

� Christian Thalinger for 64-bit cleanups, Con�guration and VM interface �xes and
CACAO integration, fdlibm updates.

� Gael Thomas for VMClassLoader boot packages support suggestions.

� Andreas Tobler for Darwin and Solaris testing and �xing, Qt4 support for Darwin/OS
X, Graphics2D support, gtk+ updates.

� Dalibor Topic for better DEBUG support, build cleanups and Ka�e integration. Qt4

build infrastructure, SHA1PRNG and GdkPixbugDecoder updates.

� Tom Tromey for Eclipse integration, generics work, lots of bug�xes and gcj integration
including coordinating The Big Merge.

� Mark Wielaard for bug�xes, packaging and release management, Clipboard implemen-
tation, system call interrupts and network timeouts and GdkPixpufDecoder �xes.

488 GNU Compiler Collection (GCC) Internals

In addition to the above, all of which also contributed time and energy in testing GCC,
we would like to thank the following for their contributions to testing:

� Michael Abd-El-Malek

� Thomas Arend

� Bonzo Armstrong

� Steven Ashe

� Chris Baldwin

� David Billinghurst

� Jim Blandy

� Stephane Bortzmeyer

� Horst von Brand

� Frank Braun

� Rodney Brown

� Sidney Cadot

� Bradford Castalia

� Jonathan Corbet

� Ralph Doncaster

� Richard Emberson

� Levente Farkas

� Graham Fawcett

� Mark Fernyhough

� Robert A. French

� J�orgen Freyh

� Mark K. Gardner

� Charles-Antoine Gauthier

� Yung Shing Gene

� David Gilbert

� Simon Gornall

� Fred Gray

� John Gri�n

� Patrik Hagglund

� Phil Hargett

� Amancio Hasty

� Takafumi Hayashi

� Bryan W. Headley

� Kevin B. Hendricks

� Joep Jansen

� Christian Joensson

� Michel Kern

Contributors to GCC 489

� David Kidd

� Tobias Kuipers

� Anand Krishnaswamy

� A. O. V. Le Blanc

� llewelly

� Damon Love

� Brad Lucier

� Matthias Klose

� Martin Knoblauch

� Rick Lutowski

� Jesse Macnish

� Stefan Morrell

� Anon A. Mous

� Matthias Mueller

� Pekka Nikander

� Rick Niles

� Jon Olson

� Magnus Persson

� Chris Pollard

� Richard Polton

� Derk Reefman

� David Rees

� Paul Reilly

� Tom Reilly

� Torsten Rueger

� Danny Sadino�

� Marc Schifer

� Erik Schnetter

� Wayne K. Schroll

� David Schuler

� Vin Shelton

� Tim Souder

� Adam Sulmicki

� Bill Thorson

� George Talbot

� Pedro A. M. Vazquez

� Gregory Warnes

� Ian Watson

� David E. Young

490 GNU Compiler Collection (GCC) Internals

� And many others

And �nally we'd like to thank everyone who uses the compiler, submits bug reports and
generally reminds us why we're doing this work in the �rst place.

Option Index 491

Option Index

GCC's command line options are indexed here without any initial `-' or `--'. Where an
option has both positive and negative forms (such as `-foption ' and `-fno-option '), rele-
vant entries in the manual are indexed under the most appropriate form; it may sometimes
be useful to look up both forms.

msoft-float . 12

492 GNU Compiler Collection (GCC) Internals

Concept Index 493

Concept Index

!
`!' in constraint . 216

#
`#' in constraint . 218
in template . 205
#pragma . 429, 430

%
`%' in constraint . 217
% in GTY option . 451
`%' in template . 205

&
`&' in constraint . 217

(
(nil) . 142
(void) . 383

*
* . 439
`*' in constraint . 218
* in template . 206
*TARGET_GET_PCH_VALIDITY 421

+
`+' in constraint . 217

-
`-fsection-anchors' 147, 368

/
`/c' in RTL dump . 151
`/f' in RTL dump . 151
`/i' in RTL dump . 152
`/j' in RTL dump . 152
`/s' in RTL dump . 151
`/u' in RTL dump . 152
`/v' in RTL dump . 152

<
`<' in constraint . 212

=
`=' in constraint . 217

>
`>' in constraint . 212

?
`?' in constraint . 216

__absvdi2 . 11
__absvsi2 . 11
__adddd3 . 16
__adddf3 . 12
__addsd3 . 16
__addsf3 . 12
__addtd3 . 16
__addtf3 . 12
__addvdi3 . 11
__addvsi3 . 11
__addxf3 . 12
__ashldi3. 9
__ashlsi3. 9
__ashlti3. 9
__ashrdi3. 9
__ashrsi3. 9
__ashrti3. 9
__builtin_args_info . 359
__builtin_classify_type 359
__builtin_next_arg . 359
__builtin_saveregs . 358
__clear_cache . 20
__clzdi2 . 11
__clzsi2 . 11
__clzti2 . 11
__cmpdf2 . 14
__cmpdi2 . 10
__cmpsf2 . 14
__cmptf2 . 14
__cmpti2 . 10
__CTOR_LIST__ . 399
__ctzdi2 . 11
__ctzsi2 . 11
__ctzti2 . 11
__divdc3 . 16
__divdd3 . 17
__divdf3 . 12
__divdi3 . 9
__divsc3 . 16
__divsd3 . 17
__divsf3 . 12

494 GNU Compiler Collection (GCC) Internals

__divsi3 . 9
__divtc3 . 16
__divtd3 . 17
__divtf3 . 12
__divti3 . 9
__divxc3 . 16
__divxf3 . 12
__DTOR_LIST__ . 399
__eqdd2 . 19
__eqdf2 . 15
__eqsd2 . 19
__eqsf2 . 15
__eqtd2 . 19
__eqtf2 . 15
__extendddtd2 . 17
__extendddxf . 17
__extenddfdd . 17
__extenddftd . 17
__extenddftf2 . 13
__extenddfxf2 . 13
__extendsddd2 . 17
__extendsddf . 17
__extendsdtd2 . 17
__extendsdxf . 17
__extendsfdd . 17
__extendsfdf2 . 13
__extendsfsd . 17
__extendsftd . 17
__extendsftf2 . 13
__extendsfxf2 . 13
__extendxftd . 17
__ffsdi2 . 11
__ffsti2 . 11
__fixdddi . 18
__fixddsi . 17
__fixdfdi . 13
__fixdfsi . 13
__fixdfti . 13
__fixsddi . 18
__fixsdsi . 17
__fixsfdi . 13
__fixsfsi . 13
__fixsfti . 13
__fixtddi . 18
__fixtdsi . 17
__fixtfdi . 13
__fixtfsi . 13
__fixtfti . 13
__fixunsdddi . 18
__fixunsddsi . 18
__fixunsdfdi . 13
__fixunsdfsi . 13
__fixunsdfti . 14
__fixunssddi . 18
__fixunssdsi . 18
__fixunssfdi . 13
__fixunssfsi . 13
__fixunssfti . 14

__fixunstddi . 18
__fixunstdsi . 18
__fixunstfdi . 13
__fixunstfsi . 13
__fixunstfti . 14
__fixunsxfdi . 13
__fixunsxfsi . 13
__fixunsxfti . 14
__fixxfdi . 13
__fixxfsi . 13
__fixxfti . 13
__floatdidd . 18
__floatdidf . 14
__floatdisd . 18
__floatdisf . 14
__floatditd . 18
__floatditf . 14
__floatdixf . 14
__floatsidd . 18
__floatsidf . 14
__floatsisd . 18
__floatsisf . 14
__floatsitd . 18
__floatsitf . 14
__floatsixf . 14
__floattidf . 14
__floattisf . 14
__floattitf . 14
__floattixf . 14
__floatundidf . 14
__floatundisf . 14
__floatunditf . 14
__floatundixf . 14
__floatunsdidd . 18
__floatunsdisd . 18
__floatunsditd . 18
__floatunsidf . 14
__floatunsisf . 14
__floatunsitf . 14
__floatunsixf . 14
__floatunssidd . 18
__floatunssisd . 18
__floatunssitd . 18
__floatuntidf . 14
__floatuntisf . 14
__floatuntitf . 14
__floatuntixf . 14
__gedd2 . 19
__gedf2 . 15
__gesd2 . 19
__gesf2 . 15
__getd2 . 19
__getf2 . 15
__gtdd2 . 19
__gtdf2 . 16
__gtsd2 . 19
__gtsf2 . 16
__gttd2 . 19

Concept Index 495

__gttf2 . 16
__ledd2 . 19
__ledf2 . 15
__lesd2 . 19
__lesf2 . 15
__letd2 . 19
__letf2 . 15
__lshrdi3. 9
__lshrsi3. 9
__lshrti3. 9
__ltdd2 . 19
__ltdf2 . 15
__ltsd2 . 19
__ltsf2 . 15
__lttd2 . 19
__lttf2 . 15
__main . 447
__moddi3 . 10
__modsi3 . 10
__modti3 . 10
__muldc3 . 16
__muldd3 . 17
__muldf3 . 12
__muldi3 . 10
__mulsc3 . 16
__mulsd3 . 17
__mulsf3 . 12
__mulsi3 . 10
__multc3 . 16
__multd3 . 17
__multf3 . 12
__multi3 . 10
__mulvdi3 . 11
__mulvsi3 . 11
__mulxc3 . 16
__mulxf3 . 12
__nedd2 . 19
__nedf2 . 15
__negdd2 . 17
__negdf2 . 12
__negdi2 . 10
__negsd2 . 17
__negsf2 . 12
__negtd2 . 17
__negtf2 . 12
__negti2 . 10
__negvdi2 . 11
__negvsi2 . 11
__negxf2 . 12
__nesd2 . 19
__nesf2 . 15
__netd2 . 19
__netf2 . 15
__paritydi2 . 11
__paritysi2 . 11
__parityti2 . 11
__popcountdi2 . 12
__popcountsi2 . 12

__popcountti2 . 12
__powidf2 . 16
__powisf2 . 16
__powitf2 . 16
__powixf2 . 16
__subdd3 . 16
__subdf3 . 12
__subsd3 . 16
__subsf3 . 12
__subtd3 . 16
__subtf3 . 12
__subvdi3 . 11
__subvsi3 . 11
__subxf3 . 12
__truncdddf . 17
__truncddsd2 . 17
__truncddsf . 17
__truncdfsd . 17
__truncdfsf2 . 13
__truncsdsf . 17
__trunctddd2 . 17
__trunctddf . 17
__trunctdsd2 . 17
__trunctdsf . 17
__trunctdxf . 17
__trunctfdf2 . 13
__trunctfsf2 . 13
__truncxfdd . 17
__truncxfdf2 . 13
__truncxfsd . 17
__truncxfsf2 . 13
__ucmpdi2 . 10
__ucmpti2 . 10
__udivdi3 . 10
__udivmoddi3 . 10
__udivsi3 . 10
__udivti3 . 10
__umoddi3 . 10
__umodsi3 . 10
__umodti3 . 10
__unorddd2 . 18
__unorddf2 . 15
__unordsd2 . 18
__unordsf2 . 15
__unordtd2 . 18
__unordtf2 . 15

\
\ . 205

0
`0' in constraint . 213

A
abort . 5

496 GNU Compiler Collection (GCC) Internals

abs . 165
abs and attributes . 275
ABS_EXPR . 92
absence_set . 285
absm2 instruction pattern 242
absolute value . 165
access to operands . 144
access to special operands 145
accessors . 144
ACCUMULATE_OUTGOING_ARGS 344
ACCUMULATE_OUTGOING_ARGS and stack frames

. 355
ADA_LONG_TYPE_SIZE . 313
ADDITIONAL_REGISTER_NAMES 403
addm3 instruction pattern 239
addmodecc instruction pattern 247
addr_diff_vec . 175
addr_diff_vec, length of . 280
ADDR_EXPR . 92
addr_vec . 175
addr_vec, length of . 280
address constraints. 214
address_operand . 209, 214
addressing modes . 364
addressof . 162
ADJUST_FIELD_ALIGN . 307
ADJUST_INSN_LENGTH . 280
AGGR_INIT_EXPR . 92
aggregates as return values 351
alias . 126
ALL_COP_ADDITIONAL_REGISTER_NAMES 421
ALL_REGS . 323
allocate_stack instruction pattern 252
alternate entry points . 179
anchored addresses. 368
and . 165
and and attributes . 275
and, canonicalization of . 262
andm3 instruction pattern 239
annotations . 116
APPLY_RESULT_SIZE . 351
ARG_POINTER_CFA_OFFSET 336
ARG_POINTER_REGNUM . 340
ARG_POINTER_REGNUM and virtual registers 159
arg_pointer_rtx . 341
ARGS_GROW_DOWNWARD . 333
argument passing . 7
arguments in registers . 345
arguments on stack . 343
arithmetic library . 12
arithmetic shift . 165
arithmetic shift with signed saturation 165
arithmetic, in RTL . 163
ARITHMETIC_TYPE_P . 73
array . 71
ARRAY_RANGE_REF . 92
ARRAY_REF . 92
ARRAY_TYPE . 71

AS_NEEDS_DASH_FOR_PIPED_INPUT 296
ashift . 165
ashift and attributes . 275
ashiftrt . 165
ashiftrt and attributes . 275
ashlm3 instruction pattern 241
ashrm3 instruction pattern 242
ASM_APP_OFF . 387
ASM_APP_ON . 387
ASM_COMMENT_START . 387
ASM_DECLARE_CLASS_REFERENCE 399
ASM_DECLARE_CONSTANT_NAME 394
ASM_DECLARE_FUNCTION_NAME 393
ASM_DECLARE_FUNCTION_SIZE 393
ASM_DECLARE_OBJECT_NAME 394
ASM_DECLARE_REGISTER_GLOBAL 394
ASM_DECLARE_UNRESOLVED_REFERENCE 399
ASM_FINAL_SPEC . 295
ASM_FINISH_DECLARE_OBJECT 394
ASM_FORMAT_PRIVATE_NAME 397
asm_fprintf . 404
ASM_FPRINTF_EXTENSIONS 404
ASM_GENERATE_INTERNAL_LABEL 397
asm_input . 175
asm_input and `/v' . 148
ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX 338
ASM_NO_SKIP_IN_TEXT . 410
asm_noperands . 181
asm_operands and `/v' . 148
asm_operands, RTL sharing 187
asm_operands, usage . 177
ASM_OUTPUT_ADDR_DIFF_ELT 405
ASM_OUTPUT_ADDR_VEC_ELT 406
ASM_OUTPUT_ALIGN . 410
ASM_OUTPUT_ALIGN_WITH_NOP 410
ASM_OUTPUT_ALIGNED_BSS 391
ASM_OUTPUT_ALIGNED_COMMON 391
ASM_OUTPUT_ALIGNED_DECL_COMMON 391
ASM_OUTPUT_ALIGNED_DECL_LOCAL 392
ASM_OUTPUT_ALIGNED_LOCAL 392
ASM_OUTPUT_ASCII . 389
ASM_OUTPUT_BSS . 391
ASM_OUTPUT_CASE_END . 406
ASM_OUTPUT_CASE_LABEL . 406
ASM_OUTPUT_COMMON . 390
ASM_OUTPUT_DEBUG_LABEL 397
ASM_OUTPUT_DEF . 398
ASM_OUTPUT_DEF_FROM_DECLS 398
ASM_OUTPUT_DWARF_DELTA 415
ASM_OUTPUT_DWARF_OFFSET 415
ASM_OUTPUT_DWARF_PCREL 415
ASM_OUTPUT_EXTERNAL . 396
ASM_OUTPUT_FDESC . 389
ASM_OUTPUT_IDENT . 387
ASM_OUTPUT_INTERNAL_LABEL 392
ASM_OUTPUT_LABEL . 392
ASM_OUTPUT_LABEL_REF. 396
ASM_OUTPUT_LABELREF . 396

Concept Index 497

ASM_OUTPUT_LOCAL . 391
ASM_OUTPUT_MAX_SKIP_ALIGN 410
ASM_OUTPUT_MEASURED_SIZE 393
ASM_OUTPUT_OPCODE . 403
ASM_OUTPUT_POOL_EPILOGUE 389
ASM_OUTPUT_POOL_PROLOGUE 389
ASM_OUTPUT_REG_POP . 405
ASM_OUTPUT_REG_PUSH . 405
ASM_OUTPUT_SIZE_DIRECTIVE 392
ASM_OUTPUT_SKIP . 410
ASM_OUTPUT_SOURCE_FILENAME 387
ASM_OUTPUT_SPECIAL_POOL_ENTRY 389
ASM_OUTPUT_SYMBOL_REF . 396
ASM_OUTPUT_TYPE_DIRECTIVE 393
ASM_OUTPUT_WEAK_ALIAS . 398
ASM_OUTPUT_WEAKREF . 395
ASM_PREFERRED_EH_DATA_FORMAT 338
ASM_SPEC . 295
ASM_STABD_OP . 412
ASM_STABN_OP . 412
ASM_STABS_OP . 411
ASM_WEAKEN_DECL . 395
ASM_WEAKEN_LABEL . 395
assemble_name . 392
assemble_name_raw . 392
assembler format . 386
assembler instructions in RTL 177
ASSEMBLER_DIALECT . 405
assigning attribute values to insns 277
assignment operator . 85
asterisk in template . 206
atan2m3 instruction pattern 242
attr . 277, 278
attr_flag . 276
attribute expressions . 274
attribute speci�cations . 278
attribute speci�cations example 278
attributes . 92
attributes, de�ning . 274
attributes, target-speci�c . 419
autoincrement addressing, availability 5
autoincrement/decrement addressing 212
automata_option . 286
automaton based pipeline description 282
automaton based scheduler 282
AVOID_CCMODE_COPIES . 321

B
backslash . 205
barrier . 179
barrier and `/f' . 149
barrier and `/i' . 149
barrier and `/v' . 148
BASE_REG_CLASS . 324
basic block . 189
basic-block.h . 189
basic_block . 189

BASIC_BLOCK . 189
BB_DIRTY, clear_bb_flags,

update_life_info_in_dirty_blocks 197
BB_HEAD, BB_END . 196
bcond instruction pattern 248
BIGGEST_ALIGNMENT . 307
BIGGEST_FIELD_ALIGNMENT 307
BImode . 153
BIND_EXPR . 92
BINFO_TYPE . 77
bit-�elds . 168
BIT_AND_EXPR . 92
BIT_IOR_EXPR . 92
BIT_NOT_EXPR . 92
BIT_XOR_EXPR . 92
BITFIELD_NBYTES_LIMITED 309
BITS_BIG_ENDIAN . 304
BITS_BIG_ENDIAN, e�ect on sign_extract 168
BITS_PER_UNIT . 305
BITS_PER_WORD . 305
bitwise complement . 165
bitwise exclusive-or . 165
bitwise inclusive-or. 165
bitwise logical-and . 165
BLKmode . 154
BLKmode, and function return values 186
block statement iterators 190, 195
BLOCK_FOR_INSN, bb_for_stmt 195
BLOCK_REG_PADDING . 349
Blocks . 110
bool . 385, 407, 408
BOOL_TYPE_SIZE . 313
BOOLEAN_TYPE . 71
branch prediction . 193
BRANCH_COST . 372
break_out_memory_refs . 366
BREAK_STMT . 88
bsi_commit_edge_inserts 196
bsi_end_p . 195
bsi_insert_after . 195
bsi_insert_before . 196
bsi_insert_on_edge . 196
bsi_last . 195
bsi_next . 195
bsi_prev . 195
bsi_remove . 196
bsi_start . 195
BSS_SECTION_ASM_OP . 382
btruncm2 instruction pattern 243
builtin_longjmp instruction pattern 253
builtin_setjmp_receiver instruction pattern

. 253
builtin_setjmp_setup instruction pattern . . . 253
byte_mode . 156
BYTES_BIG_ENDIAN . 304
BYTES_BIG_ENDIAN, e�ect on subreg 161

498 GNU Compiler Collection (GCC) Internals

C
C statements for assembler output 206
C/C++ Internal Representation 69
C_COMMON_OVERRIDE_OPTIONS 303
c_register_pragma . 429
c_register_pragma_with_expansion 429
C4X_FLOAT_FORMAT . 310
C99 math functions, implicit usage 364
call . 151, 172
call instruction pattern . 248
call usage . 186
call, in mem . 149
call-clobbered register 317, 318
call-saved register . 317, 318
call-used register . 317, 318
CALL_EXPR . 92
call_insn . 178
call_insn and `/f' . 149
call_insn and `/i' . 149
call_insn and `/j' . 150
call_insn and `/s' . 148, 150
call_insn and `/u' . 147, 148
call_insn and `/v' . 148
CALL_INSN_FUNCTION_USAGE 178
call_pop instruction pattern 248
CALL_POPS_ARGS . 345
CALL_REALLY_USED_REGISTERS 318
CALL_USED_REGISTERS . 317
call_used_regs . 318
call_value instruction pattern 248
call_value_pop instruction pattern 248
CALLER_SAVE_PROFITABLE 353
calling conventions . 333
calling functions in RTL . 186
CAN_DEBUG_WITHOUT_FP. 303
CAN_ELIMINATE . 343
can_fallthru . 189
canadian . 23
CANNOT_CHANGE_MODE_CLASS 330
canonicalization of instructions 262
CANONICALIZE_COMPARISON 370
canonicalize_funcptr_for_compare instruction

pattern . 251
CASE_USE_BIT_TESTS . 424
CASE_VALUES_THRESHOLD . 424
CASE_VECTOR_MODE . 423
CASE_VECTOR_PC_RELATIVE 423
CASE_VECTOR_SHORTEN_MODE 423
casesi instruction pattern 250
cbranchmode4 instruction pattern 248
cc_status . 369
CC_STATUS_MDEP . 369
CC_STATUS_MDEP_INIT . 369
cc0 . 161
cc0, RTL sharing . 187
cc0_rtx . 162
CC1_SPEC . 295
CC1PLUS_SPEC . 295

CCmode . 154
CDImode . 154
CEIL_DIV_EXPR . 92
CEIL_MOD_EXPR . 92
ceilm2 instruction pattern 243
CFA_FRAME_BASE_OFFSET . 336
CFG, Control Flow Graph. 189
cfghooks.h . 194
cgraph_finalize_function 55
chain_next . 454
chain_prev . 454
change_address . 237
char . 385, 421, 433, 436
CHAR_TYPE_SIZE . 313
check_stack instruction pattern 252
CHImode . 154
class . 77
class de�nitions, register. 323
class preference constraints 217
CLASS_LIKELY_SPILLED_P 330
CLASS_MAX_NREGS . 330
CLASS_TYPE_P . 73
classes of RTX codes . 142
CLASSTYPE_DECLARED_CLASS 77
CLASSTYPE_HAS_MUTABLE . 79
CLASSTYPE_NON_POD_P . 79
CLEANUP_DECL . 88
CLEANUP_EXPR . 88
CLEANUP_POINT_EXPR . 92
CLEANUP_STMT . 88
Cleanups . 111
CLEAR_BY_PIECES_P . 373
CLEAR_INSN_CACHE . 362
CLEAR_RATIO . 373
clobber . 172
clz . 166
CLZ_DEFINED_VALUE_AT_ZERO 428
clzm2 instruction pattern 243
cmpm instruction pattern . 244
cmpmemm instruction pattern 245
cmpstrm instruction pattern 245
cmpstrnm instruction pattern 245
code generation RTL sequences 263
code macros in `.md' �les . 291
code_label . 179
code_label and `/i' . 148, 149
code_label and `/v' . 148
CODE_LABEL_NUMBER . 179
codes, RTL expression . 141
COImode . 154
COLLECT_EXPORT_LIST . 434
COLLECT_SHARED_FINI_FUNC 401
COLLECT_SHARED_INIT_FUNC 401
COLLECT2_HOST_INITIALIZATION 441
combiner pass . 161
commit_edge_insertions 196
compare . 163
compare, canonicalization of 262

Concept Index 499

comparison_operator . 209
compiler passes and �les . 55
complement, bitwise . 165
COMPLEX_CST . 92
COMPLEX_EXPR . 92
COMPLEX_TYPE . 71
COMPONENT_REF . 92
Compound Expressions . 109
Compound Lvalues . 109
COMPOUND_EXPR . 92
COMPOUND_LITERAL_EXPR . 92
COMPOUND_LITERAL_EXPR_DECL 101
COMPOUND_LITERAL_EXPR_DECL_STMT 101
computed jump . 192
computing the length of an insn 279
cond . 167
cond and attributes . 275
cond_exec . 174
COND_EXPR . 92
condition code register . 161
condition code status . 369
condition codes . 166
conditional execution . 287
Conditional Expressions . 109
CONDITIONAL_REGISTER_USAGE 318
conditional_trap instruction pattern 254
conditions, in patterns . 200
con�guration �le . 440, 441
con�gure terms . 23
CONJ_EXPR . 92
const and `/i' . 149
CONST_DECL . 79
const_double . 157
const_double, RTL sharing 187
CONST_DOUBLE_CHAIN . 157
CONST_DOUBLE_LOW . 157
CONST_DOUBLE_MEM . 157
CONST_DOUBLE_OK_FOR_CONSTRAINT_P 332
CONST_DOUBLE_OK_FOR_LETTER_P 331
const_double_operand. 208
const_int . 156
const_int and attribute tests 275
const_int and attributes. 275
const_int, RTL sharing . 187
const_int_operand . 208
CONST_OK_FOR_CONSTRAINT_P 331
CONST_OK_FOR_LETTER_P . 331
CONST_OR_PURE_CALL_P. 147
const_string . 158
const_string and attributes 275
const_true_rtx . 157
const_vector . 157
const_vector, RTL sharing 187
const0_rtx . 156
CONST0_RTX . 157
const1_rtx . 156
CONST1_RTX . 157
const2_rtx . 156

CONST2_RTX . 157
constant attributes. 280
constant de�nitions . 288
CONSTANT_ADDRESS_P . 364
CONSTANT_ALIGNMENT . 307
CONSTANT_P . 364
CONSTANT_POOL_ADDRESS_P 147
CONSTANT_POOL_BEFORE_FUNCTION 389
constants in constraints . 212
constm1_rtx . 156
constraint modi�er characters. 217
constraint, matching . 213
CONSTRAINT_LEN . 331
constraint_num . 236
constraint_satisfied_p 236
constraints . 212
constraints, de�ning . 233
constraints, de�ning, obsolete method 331
constraints, machine speci�c 218
constraints, testing. 235
constructor . 85
CONSTRUCTOR . 92
constructors, automatic calls. 447
constructors, output of . 399
container . 71
CONTINUE_STMT . 88
contributors . 475
controlling register usage . 318
controlling the compilation driver 293
conventions, run-time . 7
conversions . 169
CONVERT_EXPR . 92
copy constructor . 85
copy_rtx . 366
copy_rtx_if_shared . 187
copysignm3 instruction pattern 243
cosm2 instruction pattern 242
costs of instructions . 371
CP_INTEGRAL_TYPE . 72
cp_namespace_decls . 77
CP_TYPE_CONST_NON_VOLATILE_P 72
CP_TYPE_CONST_P . 72
CP_TYPE_QUALS . 71, 72
CP_TYPE_RESTRICT_P . 72
CP_TYPE_VOLATILE_P . 72
CPLUSPLUS_CPP_SPEC . 295
CPP_SPEC . 295
CQImode . 154
cross compilation and
oating point 416
CRT_CALL_STATIC_FUNCTION 382
CRTSTUFF_T_CFLAGS . 443
CRTSTUFF_T_CFLAGS_S . 443
CSImode . 154
CTImode . 154
ctz . 166
CTZ_DEFINED_VALUE_AT_ZERO 428
ctzm2 instruction pattern 243
CUMULATIVE_ARGS . 347

500 GNU Compiler Collection (GCC) Internals

current_function_epilogue_delay_list 356
current_function_is_leaf 322
current_function_outgoing_args_size 344
current_function_pops_args 354
current_function_pretend_args_size 355
current_function_uses_only_leaf_regs 322
current_insn_predicate 287

D
data bypass . 283, 285
data dependence delays . 282
Data Dependency Analysis 137
data structures . 303
DATA_ALIGNMENT . 307
DATA_SECTION_ASM_OP . 381
DBR_OUTPUT_SEQEND . 404
dbr_sequence_length . 404
DBX_BLOCKS_FUNCTION_RELATIVE 413
DBX_CONTIN_CHAR . 412
DBX_CONTIN_LENGTH . 412
DBX_DEBUGGING_INFO . 411
DBX_FUNCTION_FIRST . 413
DBX_LINES_FUNCTION_RELATIVE 413
DBX_NO_XREFS . 412
DBX_OUTPUT_LBRAC . 413
DBX_OUTPUT_MAIN_SOURCE_FILE_END 414
DBX_OUTPUT_MAIN_SOURCE_FILENAME 414
DBX_OUTPUT_NFUN . 413
DBX_OUTPUT_NULL_N_SO_AT_MAIN_SOURCE_FILE_

END . 414
DBX_OUTPUT_RBRAC . 413
DBX_OUTPUT_SOURCE_LINE 413
DBX_REGISTER_NUMBER . 410
DBX_REGPARM_STABS_CODE 412
DBX_REGPARM_STABS_LETTER 413
DBX_STATIC_CONST_VAR_CODE 412
DBX_STATIC_STAB_DATA_SECTION 412
DBX_TYPE_DECL_STABS_CODE 412
DBX_USE_BINCL . 413
DCmode . 154
DDmode . 154
De Morgan's law. 262
dead_or_set_p . 271
DEBUG_SYMS_TEXT . 411
DEBUGGER_ARG_OFFSET . 411
DEBUGGER_AUTO_OFFSET. 411
decimal
oat library . 16
DECL_ALIGN . 79
DECL_ANTICIPATED . 85
DECL_ARGUMENTS . 87
DECL_ARRAY_DELETE_OPERATOR_P 87
DECL_ARTIFICIAL . 79, 85, 87
DECL_ASSEMBLER_NAME . 85
DECL_ATTRIBUTES . 92
DECL_BASE_CONSTRUCTOR_P 86
DECL_CLASS_SCOPE_P . 80
DECL_COMPLETE_CONSTRUCTOR_P 86

DECL_COMPLETE_DESTRUCTOR_P 86
DECL_CONST_MEMFUNC_P . 86
DECL_CONSTRUCTOR_P . 85, 86
DECL_CONTEXT . 77
DECL_CONV_FN_P . 85, 86
DECL_COPY_CONSTRUCTOR_P 86
DECL_DESTRUCTOR_P . 85, 86
DECL_EXTERN_C_FUNCTION_P 85
DECL_EXTERNAL . 79, 85
DECL_FUNCTION_MEMBER_P 85, 86
DECL_FUNCTION_SCOPE_P . 80
DECL_GLOBAL_CTOR_P . 85, 86
DECL_GLOBAL_DTOR_P . 85, 86
DECL_INITIAL . 79
DECL_LINKONCE_P . 85
DECL_LOCAL_FUNCTION_P . 85
DECL_MAIN_P . 85
DECL_NAME . 77, 79, 85
DECL_NAMESPACE_ALIAS . 77
DECL_NAMESPACE_SCOPE_P . 80
DECL_NAMESPACE_STD_P . 77
DECL_NON_THUNK_FUNCTION_P 87
DECL_NONCONVERTING_P . 86
DECL_NONSTATIC_MEMBER_FUNCTION_P 86
DECL_OVERLOADED_OPERATOR_P 85, 86
DECL_RESULT . 87
DECL_SIZE . 79
DECL_STATIC_FUNCTION_P . 86
DECL_STMT . 88
DECL_STMT_DECL . 88
DECL_THUNK_P . 86
DECL_VOLATILE_MEMFUNC_P 86
declaration . 79
declarations, RTL . 170
DECLARE_LIBRARY_RENAMES 363
decrement_and_branch_until_zero instruction

pattern . 250
default . 452
default_file_start . 386
DEFAULT_GDB_EXTENSIONS 411
DEFAULT_PCC_STRUCT_RETURN 352
DEFAULT_SIGNED_CHAR . 315
define_address_constraint 234
define_asm_attributes . 278
define_attr . 274
define_automaton . 282
define_bypass . 285
define_code_attr . 291
define_code_macro . 291
define_cond_exec . 287
define_constants . 288
define_constraint . 233
define_cpu_unit . 283
define_delay . 281
define_expand . 263
define_insn . 199
define_insn example . 200
define_insn_and_split . 268

Concept Index 501

define_insn_reservation 283
define_memory_constraint 234
define_mode_attr . 290
define_mode_macro . 289
define_peephole . 270
define_peephole2 . 272
define_predicate . 210
define_query_cpu_unit . 283
define_register_constraint 233
define_reservation . 284
define_special_predicate 210
define_split . 266
de�ning attributes and their values 274
de�ning constraints . 233
de�ning constraints, obsolete method 331
de�ning jump instruction patterns 259
de�ning looping instruction patterns 260
de�ning peephole optimizers 270
de�ning predicates . 210
de�ning RTL sequences for code generation . . . 263
delay slots, de�ning . 281
DELAY_SLOTS_FOR_EPILOGUE 355
deletable . 454
DELETE_IF_ORDINARY . 441
Dependent Patterns . 258
desc . 452
destructor . 85
destructors, output of . 399
deterministic �nite state automaton 282, 286
DF_SIZE . 314
DFmode . 154
digits in constraint . 213
DImode . 153
DIR_SEPARATOR . 440
DIR_SEPARATOR_2 . 440
directory options .md . 270
disabling certain registers 318
dispatch table . 405
div . 164
div and attributes . 275
division . 164
divm3 instruction pattern 239
divmodm4 instruction pattern 241
DO_BODY . 88
DO_COND . 88
DO_STMT . 88
DOLLARS_IN_IDENTIFIERS 430
doloop_begin instruction pattern 251
doloop_end instruction pattern 250
DONE . 264
DONT_USE_BUILTIN_SETJMP 408
DOUBLE_TYPE_SIZE . 314
driver . 293
DRIVER_SELF_SPECS . 294
DUMPFILE_FORMAT . 441
DWARF_ALT_FRAME_RETURN_COLUMN 335
DWARF_CIE_DATA_ALIGNMENT 408
DWARF_FRAME_REGISTERS . 341

DWARF_FRAME_REGNUM . 342
DWARF_REG_TO_UNWIND_COLUMN 342
DWARF_ZERO_REG . 335
DWARF2_ASM_LINE_DEBUG_INFO 415
DWARF2_DEBUGGING_INFO . 415
DWARF2_FRAME_INFO . 415
DWARF2_FRAME_REG_OUT. 342
DWARF2_UNWIND_INFO . 407
DYNAMIC_CHAIN_ADDRESS . 334

E
`E' in constraint . 213
earlyclobber operand . 217
edge . 190
edge in the
ow graph. 190
edge iterators. 190
edge splitting . 196
EDGE_ABNORMAL . 192
EDGE_ABNORMAL, EDGE_ABNORMAL_CALL 193
EDGE_ABNORMAL, EDGE_EH . 191
EDGE_ABNORMAL, EDGE_SIBCALL 192
EDGE_FALLTHRU, force_nonfallthru 191
EDOM, implicit usage . 363
EH_FRAME_IN_DATA_SECTION 407
EH_FRAME_SECTION_NAME . 407
eh_return instruction pattern 254
EH_RETURN_DATA_REGNO. 337
EH_RETURN_HANDLER_RTX . 337
EH_RETURN_STACKADJ_RTX 337
EH_TABLES_CAN_BE_READ_ONLY 407
EH_USES . 355
ei_edge . 191
ei_end_p . 190
ei_last . 190
ei_next . 190
ei_one_before_end_p . 190
ei_prev . 191
ei_safe_safe . 191
ei_start . 190
ELIGIBLE_FOR_EPILOGUE_DELAY 356
ELIMINABLE_REGS . 343
ELSE_CLAUSE . 88
EMIT_MODE_SET . 419
Empty Statements . 111
EMPTY_CLASS_EXPR . 88
EMPTY_FIELD_BOUNDARY. 308
ENABLE_EXECUTE_STACK. 362
ENDFILE_SPEC . 297
endianness . 5
ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR 189
enum machine_mode . 153
enum reg_class . 324
ENUMERAL_TYPE . 71
epilogue . 353
epilogue instruction pattern 254
EPILOGUE_USES . 355
eq . 167

502 GNU Compiler Collection (GCC) Internals

eq and attributes . 275
eq_attr . 276
EQ_EXPR . 92
equal . 167
errno, implicit usage . 364
EXACT_DIV_EXPR . 92
examining SSA NAMEs . 125
exception handling . 191, 337
exception_receiver instruction pattern 253
exclamation point. 216
exclusion_set . 285
exclusive-or, bitwise . 165
EXIT_EXPR . 92
EXIT_IGNORE_STACK . 355
expander de�nitions . 263
expm2 instruction pattern 242
expr_list . 185
EXPR_STMT . 88
EXPR_STMT_EXPR . 88
expression . 92
expression codes . 141
extendmn2 instruction pattern 246
extensible constraints . 214
EXTRA_ADDRESS_CONSTRAINT 332
EXTRA_CONSTRAINT . 332
EXTRA_CONSTRAINT_STR. 332
EXTRA_MEMORY_CONSTRAINT 332
EXTRA_SPECS . 297
extv instruction pattern . 246
extzv instruction pattern 247

F
`F' in constraint . 213
FAIL . 264
fall-thru . 191
FATAL_EXIT_CODE . 441
FDL, GNU Free Documentation License 467
features, optional, in system conventions 302
ffs . 166
ffsm2 instruction pattern 243
FIELD_DECL . 79
file_end_indicate_exec_stack 386
�les and passes of the compiler. 55
�les, generated . 455
final_absence_set . 285
FINAL_PRESCAN_INSN . 403
final_presence_set . 285
final_scan_insn . 356
final_sequence . 404
FIND_BASE_TERM . 365
FINI_ARRAY_SECTION_ASM_OP 382
FINI_SECTION_ASM_OP . 382
�nite state automaton minimization 286
FIRST_PARM_OFFSET . 334
FIRST_PARM_OFFSET and virtual registers 159
FIRST_PSEUDO_REGISTER . 317
FIRST_STACK_REG . 323

FIRST_VIRTUAL_REGISTER 159
fix . 170
FIX_TRUNC_EXPR . 92
fix_truncmn2 instruction pattern 246
�xed register . 317
FIXED_REGISTERS . 317
fixed_regs . 318
fixmn2 instruction pattern 246
FIXUNS_TRUNC_LIKE_FIX_TRUNC 424
fixuns_truncmn2 instruction pattern 246
fixunsmn2 instruction pattern 246

ags in RTL expression . 147
float . 170
FLOAT_EXPR . 92
float_extend . 169
FLOAT_LIB_COMPARE_RETURNS_BOOL 363
FLOAT_STORE_FLAG_VALUE 427
float_truncate . 170
FLOAT_TYPE_SIZE . 313
FLOAT_WORDS_BIG_ENDIAN 305
FLOAT_WORDS_BIG_ENDIAN, (lack of) e�ect on

subreg . 161

oating point and cross compilation 416
Floating Point Emulation 443

oating point emulation library, US Software

GOFAST . 363
floatmn2 instruction pattern 246
floatunsmn2 instruction pattern 246
FLOOR_DIV_EXPR . 92
FLOOR_MOD_EXPR . 92
floorm2 instruction pattern 242

ow-insensitive alias analysis 126

ow-sensitive alias analysis 126
FOR_BODY . 88
FOR_COND . 88
FOR_EXPR . 88
FOR_INIT_STMT . 88
FOR_STMT . 88
FORCE_CODE_SECTION_ALIGN 383
force_reg . 237
frame layout . 333
FRAME_ADDR_RTX . 335
FRAME_GROWS_DOWNWARD. 333
FRAME_GROWS_DOWNWARD and virtual registers . . 159
FRAME_POINTER_CFA_OFFSET 336
frame_pointer_needed. 353
FRAME_POINTER_REGNUM. 340
FRAME_POINTER_REGNUM and virtual registers . . 160
FRAME_POINTER_REQUIRED 342
frame_pointer_rtx . 341
frame_related . 151
frame_related, in insn, call_insn, jump_insn,

barrier, and set . 149
frame_related, in mem . 148
frame_related, in reg . 149
frame_related, in symbol_ref. 150
frequency, count, BB_FREQ_BASE 193
ftruncm2 instruction pattern 246

Concept Index 503

function . 84
function body . 88
function call conventions . 7
function entry and exit . 353
function entry point, alternate function entry point

. 193
function-call insns . 186
FUNCTION_ARG . 345
FUNCTION_ARG_ADVANCE. 348
FUNCTION_ARG_BOUNDARY . 349
FUNCTION_ARG_PADDING. 348
FUNCTION_ARG_REGNO_P. 349
FUNCTION_BOUNDARY . 306
FUNCTION_DECL . 84
FUNCTION_INCOMING_ARG . 346
FUNCTION_MODE . 428
FUNCTION_OUTGOING_VALUE 351
FUNCTION_PROFILER . 357
FUNCTION_TYPE . 71
FUNCTION_VALUE . 350
FUNCTION_VALUE_REGNO_P 351
functions, leaf . 321
fundamental type . 71

G
`g' in constraint . 213
`G' in constraint . 213
GCC and portability . 5
GCC_DRIVER_HOST_INITIALIZATION 441
gcov_type . 194
ge . 167
ge and attributes . 275
GE_EXPR . 92
GEN_ERRNO_RTX . 364
gencodes . 63
general_operand . 209
GENERAL_REGS . 323
generated �les . 455
generating assembler output 206
generating insns . 201
GENERIC . 55, 56, 107
generic predicates . 208
genflags . 63
get_attr . 276
get_attr_length . 280
GET_CLASS_NARROWEST_MODE 156
GET_CODE . 141
get_frame_size . 342
get_insns . 177
get_last_insn . 177
GET_MODE . 155
GET_MODE_ALIGNMENT . 156
GET_MODE_BITSIZE . 156
GET_MODE_CLASS . 156
GET_MODE_MASK . 156
GET_MODE_NAME . 156
GET_MODE_NUNITS . 156

GET_MODE_SIZE . 156
GET_MODE_UNIT_SIZE . 156
GET_MODE_WIDER_MODE . 156
GET_RTX_CLASS . 142
GET_RTX_FORMAT . 144
GET_RTX_LENGTH . 144
geu . 167
geu and attributes . 275
GGC . 451
GIMPLE . 55, 56, 107
GIMPLE Example . 112
GIMPLE Exception Handling. 112
GIMPLE Expressions . 109
gimpli�cation . 55, 56, 108
gimpli�er . 55
gimplify_expr . 56
gimplify_function_tree . 56
GLOBAL_INIT_PRIORITY 85, 87
global_live_at_start, global_live_at_end

. 197
global_regs . 318
GO_IF_LEGITIMATE_ADDRESS 365
GO_IF_MODE_DEPENDENT_ADDRESS 367
GOFAST,
oating point emulation library 363
gofast_maybe_init_libfuncs 363
greater than . 167
gt . 167
gt and attributes . 275
GT_EXPR . 92
gtu . 167
gtu and attributes . 275
GTY . 451

H
`H' in constraint . 213
HANDLE_PRAGMA_PACK_PUSH_POP 430
HANDLE_PRAGMA_PACK_WITH_EXPANSION 430
HANDLE_SYSV_PRAGMA . 429
HANDLER . 88
HANDLER_BODY . 88
HANDLER_PARMS . 88
hard registers. 159
HARD_FRAME_POINTER_REGNUM 340
HARD_REGNO_CALL_PART_CLOBBERED 318
HARD_REGNO_CALLER_SAVE_MODE 353
HARD_REGNO_MODE_OK . 320
HARD_REGNO_NREGS . 319
HARD_REGNO_NREGS_HAS_PADDING 320
HARD_REGNO_NREGS_WITH_PADDING 320
HARD_REGNO_RENAME_OK. 321
HAS_INIT_SECTION . 401
HAS_LONG_COND_BRANCH. 423
HAS_LONG_UNCOND_BRANCH 423
HAVE_DOS_BASED_FILE_SYSTEM 440
HAVE_POST_DECREMENT . 364
HAVE_POST_INCREMENT . 364
HAVE_POST_MODIFY_DISP . 364

504 GNU Compiler Collection (GCC) Internals

HAVE_POST_MODIFY_REG. 364
HAVE_PRE_DECREMENT . 364
HAVE_PRE_INCREMENT . 364
HAVE_PRE_MODIFY_DISP. 364
HAVE_PRE_MODIFY_REG . 364
HCmode . 154
HFmode . 153
high . 158
HImode . 153
HImode, in insn . 181
host con�guration . 439
host functions . 439
host hooks . 439
host make�le fragment . 445
HOST_BIT_BUCKET . 440
HOST_EXECUTABLE_SUFFIX 440
HOST_HOOKS_EXTRA_SIGNALS 439
HOST_HOOKS_GT_PCH_ALLOC_GRANULARITY 439
HOST_HOOKS_GT_PCH_USE_ADDRESS 439
HOST_LACKS_INODE_NUMBERS 441
HOST_LONG_LONG_FORMAT . 442
HOST_OBJECT_SUFFIX . 440
HOST_WIDE_INT . 368
HOT_TEXT_SECTION_NAME . 381

I
`i' in constraint . 212
`I' in constraint . 213
IBM_FLOAT_FORMAT . 310
identi�er . 70
IDENTIFIER_LENGTH . 71
IDENTIFIER_NODE . 70
IDENTIFIER_OPNAME_P . 71
IDENTIFIER_POINTER . 71
IDENTIFIER_TYPENAME_P . 71
IEEE-754R . 16
IEEE_FLOAT_FORMAT . 310
IF_COND . 88
if_marked . 454
IF_STMT . 88
if_then_else . 167
if_then_else and attributes 275
if_then_else usage . 171
IFCVT_EXTRA_FIELDS . 432
IFCVT_INIT_EXTRA_FIELDS 432
IFCVT_MODIFY_CANCEL . 432
IFCVT_MODIFY_FINAL . 432
IFCVT_MODIFY_INSN . 432
IFCVT_MODIFY_MULTIPLE_TESTS 432
IFCVT_MODIFY_TESTS . 432
IMAGPART_EXPR . 92
Immediate Uses . 121
immediate_operand . 208
IMMEDIATE_PREFIX . 404
in_struct . 151
in_struct, in code_label and note 148

in_struct, in insn and jump_insn and call_insn
. 148

in_struct, in insn, jump_insn and call_insn
. 150

in_struct, in mem . 148
in_struct, in subreg . 150
include . 269
INCLUDE_DEFAULTS . 300
inclusive-or, bitwise . 165
INCOMING_FRAME_SP_OFFSET 336
INCOMING_REGNO . 318
INCOMING_RETURN_ADDR_RTX 335
INDEX_REG_CLASS . 325
indirect_jump instruction pattern 250
indirect_operand . 209
INDIRECT_REF . 92
INIT_ARRAY_SECTION_ASM_OP 382
INIT_CUMULATIVE_ARGS. 347
INIT_CUMULATIVE_INCOMING_ARGS 348
INIT_CUMULATIVE_LIBCALL_ARGS 348
INIT_ENVIRONMENT . 299
INIT_EXPANDERS . 304
INIT_EXPR . 92
init_machine_status . 304
init_one_libfunc . 363
INIT_SECTION_ASM_OP 382, 400
INITIAL_ELIMINATION_OFFSET 343
INITIAL_FRAME_ADDRESS_RTX 334
INITIAL_FRAME_POINTER_OFFSET 342
initialization routines . 399
INITIALIZE_TRAMPOLINE . 361
inlining . 420
insert_insn_on_edge . 196
insn . 178
insn and `/f' . 149
insn and `/i' . 149
insn and `/j' . 150
insn and `/s' . 148, 150
insn and `/u' . 148
insn and `/v' . 148
insn attributes . 274
insn canonicalization . 262
insn includes . 269
insn lengths, computing . 279
insn splitting . 266
insn-attr.h . 274
INSN_ANNULLED_BRANCH_P 148
INSN_CODE . 181
INSN_DELETED_P . 148
INSN_FROM_TARGET_P . 148
insn_list . 185
insn_list and `/i' . 149
INSN_REFERENCES_ARE_DELAYED 431
INSN_SETS_ARE_DELAYED . 430
INSN_UID . 177
insns. 177
insns, generating . 201
insns, recognizing . 201

Concept Index 505

instruction attributes . 274
instruction latency time 282, 283, 285
instruction patterns . 199
instruction splitting . 266
insv instruction pattern . 247
int . 302
INT_TYPE_SIZE . 313
INTEGER_CST . 92
INTEGER_TYPE . 71
integrated . 152
integrated, in insn, call_insn, jump_insn,

barrier, code_label, insn_list, const, and
note . 149

integrated, in reg . 149
integrated, in symbol_ref 151
Interdependence of Patterns 258
interfacing to GCC output . 7
interlock delays . 282
intermediate representation lowering 55
INTMAX_TYPE . 315
introduction . 1
INVOKE__main . 401
ior . 165
ior and attributes . 275
ior, canonicalization of . 262
iorm3 instruction pattern 239
IS_ASM_LOGICAL_LINE_SEPARATOR 390
IV analysis on GIMPLE . 135
IV analysis on RTL . 135

J
jump . 152
jump instruction pattern . 248
jump instruction patterns 259
jump instructions and set 171
jump, in call_insn . 150
jump, in insn . 150
jump, in mem . 148
JUMP_ALIGN . 409
jump_insn . 178
jump_insn and `/f' . 149
jump_insn and `/i' . 149
jump_insn and `/s' . 148, 150
jump_insn and `/u' . 148
jump_insn and `/v' . 148
JUMP_LABEL . 178
JUMP_TABLES_IN_TEXT_SECTION 383
Jumps . 111

L
LABEL_ALIGN . 409
LABEL_ALIGN_AFTER_BARRIER 409
LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 409
LABEL_ALIGN_MAX_SKIP. 409
LABEL_ALT_ENTRY_P . 179
LABEL_ALTERNATE_NAME. 193

LABEL_DECL . 79
LABEL_KIND . 179
LABEL_NUSES . 179
LABEL_PRESERVE_P . 148
label_ref . 158
label_ref and `/v' . 148
label_ref, RTL sharing . 187
LABEL_REF_NONLOCAL_P. 148
lang_hooks.gimplify_expr 56
lang_hooks.parse_file . 55
language-independent intermediate representation

. 55
large return values . 351
LARGEST_EXPONENT_IS_NORMAL 312
LAST_STACK_REG . 323
LAST_VIRTUAL_REGISTER . 159
LCSSA . 134
LD_FINI_SWITCH . 401
LD_INIT_SWITCH . 401
LDD_SUFFIX . 402
le . 167
le and attributes . 275
LE_EXPR . 92
leaf functions . 321
leaf_function_p . 249
LEAF_REG_REMAP . 322
LEAF_REGISTERS . 322
left rotate . 165
left shift . 165
LEGITIMATE_CONSTANT_P . 367
LEGITIMATE_PIC_OPERAND_P 386
LEGITIMIZE_ADDRESS . 366
LEGITIMIZE_RELOAD_ADDRESS 366
length . 452
less than . 167
less than or equal . 167
leu . 167
leu and attributes . 275
LIB_SPEC . 296
LIB2FUNCS_EXTRA . 443
LIBCALL_VALUE . 351
`libgcc.a' . 363
LIBGCC_SPEC . 296
LIBGCC2_CFLAGS . 443
LIBGCC2_HAS_DF_MODE . 314
LIBGCC2_HAS_TF_MODE . 314
LIBGCC2_HAS_XF_MODE . 314
LIBGCC2_LONG_DOUBLE_TYPE_SIZE 314
LIBGCC2_WORDS_BIG_ENDIAN 304
library subroutine names . 363
LIBRARY_PATH_ENV . 431
LIMIT_RELOAD_CLASS . 327
Linear loop transformations framework 139
LINK_COMMAND_SPEC . 298
LINK_EH_SPEC . 296
LINK_ELIMINATE_DUPLICATE_LDIRECTORIES . . . 298
LINK_GCC_C_SEQUENCE_SPEC 298
LINK_LIBGCC_SPECIAL_1 . 298

506 GNU Compiler Collection (GCC) Internals

LINK_SPEC . 296
linkage . 85
list . 71
Liveness representation . 196
lo_sum . 163
load address instruction . 214
LOAD_EXTEND_OP . 424
load_multiple instruction pattern 238
LOCAL_ALIGNMENT . 308
LOCAL_CLASS_P . 78
LOCAL_INCLUDE_DIR . 299
LOCAL_LABEL_PREFIX . 404
LOCAL_REGNO . 318
LOG_LINKS . 181
Logical Operators . 110
logical-and, bitwise . 165
logm2 instruction pattern 242
LONG_DOUBLE_TYPE_SIZE . 314
LONG_LONG_TYPE_SIZE . 313
LONG_TYPE_SIZE . 313
longjmp and automatic variables 7
Loop analysis. 131
Loop manipulation. 133
Loop querying . 132
Loop representation . 131
Loop-closed SSA form . 134
LOOP_ALIGN . 409
LOOP_ALIGN_MAX_SKIP . 409
LOOP_EXPR . 92
looping instruction patterns 260
Loops . 111
lowering, language-dependent intermediate

representation . 55
LSHIFT_EXPR . 92
lshiftrt . 165
lshiftrt and attributes . 275
lshrm3 instruction pattern 242
lt . 167
lt and attributes . 275
LT_EXPR . 92
LTGT_EXPR . 92
ltu . 167

M
`m' in constraint . 212
machine attributes . 419
machine description macros 293
machine descriptions . 199
machine mode conversions 169
machine modes . 153
machine speci�c constraints 218
machine-independent predicates 208
machine_mode . 371
macros in `.md' �les . 289
macros, target description 293
maddmn4 instruction pattern 241
MAKE_DECL_ONE_ONLY . 395

make_safe_from . 265
make�le fragment . 443
make�le targets . 27
marking roots . 455
MASK_RETURN_ADDR . 407
match_dup . 202, 273
match_dup and attributes. 279
match_op_dup . 203
match_operand . 201
match_operand and attributes 275
match_operator . 202
match_par_dup . 204
match_parallel . 204
match_scratch . 202, 273
matching constraint . 213
matching operands . 205
math library . 12
math, in RTL . 163
MATH_LIBRARY . 431
matherr . 363
MAX_BITS_PER_WORD . 305
MAX_CONDITIONAL_EXECUTE 432
MAX_FIXED_MODE_SIZE . 310
MAX_MOVE_MAX . 425
MAX_OFILE_ALIGNMENT . 307
MAX_REGS_PER_ADDRESS. 365
maxm3 instruction pattern 239
may_trap_p, tree_could_trap_p 192
maybe_undef . 454
mcount . 357
MD_CAN_REDIRECT_BRANCH 434
MD_EXEC_PREFIX . 298
MD_FALLBACK_FRAME_STATE_FOR 338
MD_HANDLE_UNWABI . 338
MD_STARTFILE_PREFIX . 299
MD_STARTFILE_PREFIX_1 . 299
MD_UNWIND_SUPPORT . 338
mem . 162
mem and `/c' . 149
mem and `/f' . 148
mem and `/j' . 148
mem and `/s' . 148
mem and `/u' . 149
mem and `/v' . 148
mem, RTL sharing . 187
MEM_ALIAS_SET . 145
MEM_ALIGN . 146
MEM_EXPR . 145
MEM_IN_STRUCT_P . 148
MEM_KEEP_ALIAS_SET_P. 148
MEM_NOTRAP_P . 149
MEM_OFFSET . 145
MEM_READONLY_P . 149
MEM_SCALAR_P . 148
MEM_SIZE . 145
MEM_VOLATILE_P . 148
MEMBER_TYPE_FORCES_BLK 309
memory reference, nono�settable 215

Concept Index 507

memory references in constraints 212
memory_barrier instruction pattern 255
MEMORY_MOVE_COST . 372
memory_operand . 209
METHOD_TYPE . 71
MIN_UNITS_PER_WORD . 305
MINIMUM_ATOMIC_ALIGNMENT 307
minm3 instruction pattern 239
minus . 163
minus and attributes . 275
minus, canonicalization of 262
MINUS_EXPR . 92
MIPS coprocessor-de�nition macros 421
mod . 164
mod and attributes . 275
mode classes . 155
mode macros in `.md' �les 289
mode switching . 418
MODE_AFTER . 419
MODE_BASE_REG_CLASS . 324
MODE_BASE_REG_REG_CLASS 324
MODE_CC . 155
MODE_CODE_BASE_REG_CLASS 325
MODE_COMPLEX_FLOAT . 155
MODE_COMPLEX_INT . 155
MODE_DECIMAL_FLOAT . 155
MODE_ENTRY . 419
MODE_EXIT . 419
MODE_FLOAT . 155
MODE_FUNCTION . 155
MODE_HAS_INFINITIES . 311
MODE_HAS_NANS . 311
MODE_HAS_SIGN_DEPENDENT_ROUNDING 311
MODE_HAS_SIGNED_ZEROS . 311
MODE_INDEX_REG_CLASS. 325
MODE_INT . 155
MODE_NEEDED . 419
MODE_PARTIAL_INT . 155
MODE_PRIORITY_TO_MODE . 419
MODE_RANDOM . 155
MODES_TIEABLE_P . 321
modi�ers in constraints . 217
MODIFY_EXPR . 92
MODIFY_JNI_METHOD_CALL 434
MODIFY_TARGET_NAME . 299
modm3 instruction pattern 239
modulo scheduling . 65
MOVE_BY_PIECES_P . 373
MOVE_MAX . 425
MOVE_MAX_PIECES . 373
MOVE_RATIO . 373
movm instruction pattern . 236
movmemm instruction pattern 244
movmisalignm instruction pattern 238
movmodecc instruction pattern 247
movstr instruction pattern 244
movstrictm instruction pattern 238
msubmn4 instruction pattern 241

mulhisi3 instruction pattern 240
mulm3 instruction pattern 239
mulqihi3 instruction pattern 240
mulsidi3 instruction pattern 240
mult . 164
mult and attributes . 275
mult, canonicalization of . 262
MULT_EXPR . 92
MULTILIB_DEFAULTS . 298
MULTILIB_DIRNAMES . 444
MULTILIB_EXCEPTIONS . 444
MULTILIB_EXTRA_OPTS . 444
MULTILIB_MATCHES . 444
MULTILIB_OPTIONS . 443
multiple alternative constraints 216
MULTIPLE_SYMBOL_SPACES 431
multiplication . 164
MUST_USE_SJLJ_EXCEPTIONS 408

N
`n' in constraint . 212
N_REG_CLASSES . 324
name . 70
named patterns and conditions 200
names, pattern . 236
namespace . 76
namespace, class, scope . 76
NAMESPACE_DECL . 76, 79
NATIVE_SYSTEM_HEADER_DIR 444
ne . 167
ne and attributes . 275
NE_EXPR . 92
nearbyintm2 instruction pattern 243
neg . 164
neg and attributes . 275
neg, canonicalization of . 262
NEGATE_EXPR . 92
negation . 164
negation with signed saturation 164
negm2 instruction pattern 242
nested functions, trampolines for 360
nested_ptr . 454
next_bb, prev_bb, FOR_EACH_BB 189
next_cc0_user . 259
NEXT_INSN . 177
NEXT_OBJC_RUNTIME . 364
nil . 142
NO_DBX_BNSYM_ENSYM . 414
NO_DBX_FUNCTION_END . 414
NO_DBX_GCC_MARKER . 414
NO_DBX_MAIN_SOURCE_DIRECTORY 414
NO_DOLLAR_IN_LABEL . 430
NO_DOT_IN_LABEL . 430
NO_FUNCTION_CSE . 374
NO_IMPLICIT_EXTERN_C. 428
no_new_pseudos . 237
NO_PROFILE_COUNTERS . 357

508 GNU Compiler Collection (GCC) Internals

NO_REGS . 323
NON_LVALUE_EXPR . 92
nondeterministic �nite state automaton 286
nonimmediate_operand. 209
nonlocal goto handler . 193
nonlocal_goto instruction pattern 252
nonlocal_goto_receiver instruction pattern

. 253
nonmemory_operand . 209
nono�settable memory reference 215
nop instruction pattern . 250
NOP_EXPR . 92
normal predicates . 207
not . 165
not and attributes . 275
not equal . 167
not, canonicalization of . 262
note . 179
note and `/i' . 148, 149
note and `/v' . 148
NOTE_INSN_BASIC_BLOCK, CODE_LABEL, notes

. 189
NOTE_INSN_BLOCK_BEG . 180
NOTE_INSN_BLOCK_END . 180
NOTE_INSN_DELETED . 180
NOTE_INSN_DELETED_LABEL 180
NOTE_INSN_EH_REGION_BEG 180
NOTE_INSN_EH_REGION_END 180
NOTE_INSN_FUNCTION_BEG 180
NOTE_INSN_FUNCTION_END 180
NOTE_INSN_LOOP_BEG . 180
NOTE_INSN_LOOP_CONT . 180
NOTE_INSN_LOOP_END . 180
NOTE_INSN_LOOP_VTOP . 180
NOTE_LINE_NUMBER . 179
NOTE_SOURCE_FILE . 179
NOTICE_UPDATE_CC . 369
NUM_MACHINE_MODES . 155
NUM_MODES_FOR_MODE_SWITCHING 418
Number of iterations analysis 136

O
`o' in constraint . 212
OBJC_GEN_METHOD_LABEL . 398
OBJC_JBLEN . 437
OBJECT_FORMAT_COFF . 402
OFFSET_TYPE . 71
o�settable address . 212
OImode . 153
OMP_ATOMIC . 92
OMP_CLAUSE . 92
OMP_CONTINUE . 92
OMP_CRITICAL . 92
OMP_FOR . 92
OMP_MASTER . 92
OMP_ORDERED . 92
OMP_PARALLEL . 92

OMP_RETURN . 92
OMP_SECTION . 92
OMP_SECTIONS . 92
OMP_SINGLE . 92
one_cmplm2 instruction pattern 244
operand access . 144
Operand Access Routines 118
operand constraints . 212
Operand Iterators . 118
operand predicates . 207
operand substitution . 205
operands . 117
operands . 200
operator predicates . 207
Optimization infrastructure for GIMPLE 107
OPTIMIZATION_OPTIONS. 303
OPTIMIZE_MODE_SWITCHING 418
option speci�cation �les . 51
OPTION_DEFAULT_SPECS. 295
optional hardware or system features 302
options, directory search . 270
`opts.sh' . 51
order of register allocation 319
ORDER_REGS_FOR_LOCAL_ALLOC 319
ORDERED_EXPR . 92
Ordering of Patterns . 257
ORIGINAL_REGNO . 146
other register constraints . 214
OUTGOING_REG_PARM_STACK_SPACE 344
OUTGOING_REGNO . 318
output of assembler code . 386
output statements . 206
output templates . 205
OUTPUT_ADDR_CONST_EXTRA 388
output_asm_insn . 206
OUTPUT_QUOTED_STRING. 387
OVERLOAD . 84
OVERRIDE_OPTIONS . 302
OVL_CURRENT . 84
OVL_NEXT . 84

P
`p' in constraint . 214
PAD_VARARGS_DOWN . 348
parallel . 173
param_is . 453
parameters, c++ abi . 422
parameters, miscellaneous 423
parameters, precompiled headers 421
paramn_is . 453
parity . 166
paritym2 instruction pattern 244
PARM_BOUNDARY . 306
PARM_DECL . 79
PARSE_LDD_OUTPUT . 402
passes and �les of the compiler. 55
passing arguments . 7

Concept Index 509

PATH_SEPARATOR . 440
PATTERN . 181
pattern conditions . 200
pattern names . 236
Pattern Ordering . 257
patterns . 199
pc . 162
pc and attributes . 279
pc, RTL sharing . 187
PC_REGNUM . 319
pc_rtx . 162
PCC_BITFIELD_TYPE_MATTERS 308
PCC_STATIC_STRUCT_RETURN 352
PDImode . 153
peephole optimization, RTL representation . . . 174
peephole optimizer de�nitions 270
per-function data . 303
percent sign . 205
PHI_ARG_DEF . 123
PHI_ARG_EDGE . 123
PHI_ARG_ELT . 123
PHI_NUM_ARGS . 123
PHI_RESULT . 123
PIC . 385
PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 386
PIC_OFFSET_TABLE_REGNUM 385
pipeline hazard recognizer 282
plus . 163
plus and attributes . 275
plus, canonicalization of . 262
PLUS_EXPR . 92
Pmode . 428
pmode_register_operand 208
pointer . 71
POINTER_SIZE . 305
POINTER_TYPE . 71
POINTERS_EXTEND_UNSIGNED 305
pop_operand . 209
popcount . 166
popcountm2 instruction pattern 244
portability . 5
position independent code 385
post_dec . 176
post_inc . 176
post_modify . 176
POSTDECREMENT_EXPR . 92
POSTINCREMENT_EXPR . 92
POWI_MAX_MULTS . 435
powm3 instruction pattern 242
pragma . 429, 430
pre_dec . 175
PRE_GCC3_DWARF_FRAME_REGISTERS 341
pre_inc . 176
pre_modify . 176
PREDECREMENT_EXPR . 92
prede�ned macros . 301
predicates . 207
predicates and machine modes 207

predication . 287
predict.def . 193
PREFERRED_DEBUGGING_TYPE 411
PREFERRED_OUTPUT_RELOAD_CLASS 326
PREFERRED_RELOAD_CLASS 326
PREFERRED_STACK_BOUNDARY 306
prefetch . 175
prefetch instruction pattern 255
PREINCREMENT_EXPR . 92
presence_set . 285
preserving SSA form . 123
preserving virtual SSA form 125
prev_active_insn . 271
prev_cc0_setter . 259
PREV_INSN . 177
PRINT_OPERAND . 403
PRINT_OPERAND_ADDRESS . 404
PRINT_OPERAND_PUNCT_VALID_P 404
processor functional units 282, 283
processor pipeline description 282
product . 164
pro�le feedback . 193
pro�le representation. 193
PROFILE_BEFORE_PROLOGUE 357
PROFILE_HOOK . 357
pro�ling, code generation . 357
program counter . 162
prologue . 353
prologue instruction pattern 254
PROMOTE_FUNCTION_MODE . 306
PROMOTE_MODE . 305
pseudo registers . 159
PSImode . 153
PTRDIFF_TYPE . 315
PTRMEM_CST . 92
PTRMEM_CST_CLASS . 92
PTRMEM_CST_MEMBER . 92
purge_dead_edges . 191, 196
push address instruction. 214
PUSH_ARGS . 343
PUSH_ARGS_REVERSED . 344
push_operand . 209
push_reload . 366
PUSH_ROUNDING . 344
pushm1 instruction pattern 239
PUT_CODE . 141
PUT_MODE . 155
PUT_REG_NOTE_KIND . 182
PUT_SDB_... 416

Q
QCmode . 154
QFmode . 153
QImode . 153
QImode, in insn . 181
quali�ed type . 71
querying function unit reservations 283

510 GNU Compiler Collection (GCC) Internals

question mark . 216
quotient . 164

R
`r' in constraint . 212
RANGE_TEST_NON_SHORT_CIRCUIT 374
RDIV_EXPR . 92
READONLY_DATA_SECTION_ASM_OP 382
real operands . 117
REAL_ARITHMETIC . 417
REAL_CST . 92
REAL_LIBGCC_SPEC . 296
REAL_NM_FILE_NAME . 402
REAL_TYPE . 71
REAL_VALUE_ABS . 418
REAL_VALUE_ATOF . 417
REAL_VALUE_FIX . 417
REAL_VALUE_FROM_INT . 418
REAL_VALUE_ISINF . 417
REAL_VALUE_ISNAN . 417
REAL_VALUE_NEGATE . 418
REAL_VALUE_NEGATIVE . 417
REAL_VALUE_TO_INT . 418
REAL_VALUE_TO_TARGET_DECIMAL128 390
REAL_VALUE_TO_TARGET_DECIMAL32 390
REAL_VALUE_TO_TARGET_DECIMAL64 390
REAL_VALUE_TO_TARGET_DOUBLE 390
REAL_VALUE_TO_TARGET_LONG_DOUBLE 390
REAL_VALUE_TO_TARGET_SINGLE 390
REAL_VALUE_TRUNCATE . 418
REAL_VALUE_TYPE . 417
REAL_VALUE_UNSIGNED_FIX 417
REAL_VALUES_EQUAL . 417
REAL_VALUES_LESS . 417
REALPART_EXPR . 92
recog_data.operand . 403
recognizing insns . 201
RECORD_TYPE . 71, 77
redirect_edge_and_branch 194
redirect_edge_and_branch, redirect_jump

. 196
reduc_smax_m instruction pattern 239
reduc_smin_m instruction pattern 239
reduc_splus_m instruction pattern 240
reduc_umax_m instruction pattern 240
reduc_umin_m instruction pattern 240
reduc_uplus_m instruction pattern 240
reference . 71
REFERENCE_TYPE . 71
reg . 159
reg and `/f' . 149
reg and `/i' . 149
reg and `/v' . 149
reg, RTL sharing . 187
REG_ALLOC_ORDER . 319
REG_BR_PRED . 185
REG_BR_PROB . 185

REG_BR_PROB_BASE, BB_FREQ_BASE, count 194
REG_BR_PROB_BASE, EDGE_FREQUENCY 194
REG_CC_SETTER . 185
REG_CC_USER . 185
reg_class . 327
reg_class_contents . 318
REG_CLASS_CONTENTS . 324
REG_CLASS_FROM_CONSTRAINT 331
REG_CLASS_FROM_LETTER . 331
REG_CLASS_NAMES . 324
REG_CROSSING_JUMP . 183
REG_DEAD . 182
REG_DEAD, REG_UNUSED . 197
REG_DEP_ANTI . 185
REG_DEP_OUTPUT . 185
REG_EH_REGION, EDGE_ABNORMAL_CALL 192
REG_EQUAL . 183
REG_EQUIV . 183
REG_EXPR . 146
REG_FRAME_RELATED_EXPR 185
REG_FUNCTION_VALUE_P. 149
REG_INC . 182
REG_LABEL . 183
reg_label and `/v' . 148
REG_LIBCALL . 184
reg_names . 318, 403
REG_NO_CONFLICT . 182
REG_NONNEG . 182
REG_NOTE_KIND . 182
REG_NOTES . 181
REG_OFFSET . 146
REG_OK_STRICT . 365
REG_PARM_STACK_SPACE. 344
REG_PARM_STACK_SPACE, and FUNCTION_ARG . . . 346
REG_POINTER . 149
REG_RETVAL . 184
REG_SETJMP . 183
REG_UNUSED . 182
REG_USERVAR_P . 149
regclass_for_constraint 236
register allocation order . 319
register class de�nitions . 323
register class preference constraints 217
register pairs . 320
Register Transfer Language (RTL) 141
register usage. 317
REGISTER_MOVE_COST . 371
REGISTER_NAMES . 402
register_operand . 208
REGISTER_PREFIX . 404
REGISTER_TARGET_PRAGMAS 429
registers arguments . 345
registers in constraints . 212
REGMODE_NATURAL_SIZE. 320
REGNO_MODE_CODE_OK_FOR_BASE_P 325
REGNO_MODE_OK_FOR_BASE_P 325
REGNO_MODE_OK_FOR_INDEX_P 326
REGNO_MODE_OK_FOR_REG_BASE_P 325

Concept Index 511

REGNO_OK_FOR_BASE_P . 325
REGNO_OK_FOR_INDEX_P. 326
REGNO_REG_CLASS . 324
regs_ever_live . 353
regular expressions . 282, 283
relative costs . 371
RELATIVE_PREFIX_NOT_LINKDIR 298
reload pass . 161
reload_completed . 249
reload_in instruction pattern 238
reload_in_progress . 237
reload_out instruction pattern 238
reloading . 66
remainder . 164
reorder . 454
representation of RTL . 141
reservation delays . 282
rest_of_decl_compilation 55
rest_of_type_compilation 55
restore_stack_block instruction pattern 251
restore_stack_function instruction pattern

. 251
restore_stack_nonlocal instruction pattern

. 251
RESULT_DECL . 79
return . 171
return instruction pattern 249
return values in registers . 350
RETURN_ADDR_IN_PREVIOUS_FRAME 335
RETURN_ADDR_OFFSET . 337
RETURN_ADDR_RTX . 335
RETURN_ADDRESS_POINTER_REGNUM 340
RETURN_EXPR . 88
RETURN_POPS_ARGS . 344
RETURN_STMT . 88
returning aggregate values 351
returning structures and unions 7
reverse probability . 194
REVERSE_CONDEXEC_PREDICATES_P 371
REVERSE_CONDITION . 370
REVERSIBLE_CC_MODE . 370
right rotate . 165
right shift . 165
rintm2 instruction pattern 243
RISC . 282, 285
roots, marking . 455
rotate . 165
rotatert . 165
rotlm3 instruction pattern 242
rotrm3 instruction pattern 242
Rough GIMPLE Grammar 114
ROUND_DIV_EXPR . 92
ROUND_MOD_EXPR . 92
ROUND_TOWARDS_ZERO . 311
ROUND_TYPE_ALIGN . 310
roundm2 instruction pattern 243
RSHIFT_EXPR . 92
RTL addition . 163

RTL addition with signed saturation 163
RTL addition with unsigned saturation 163
RTL classes . 142
RTL comparison . 163
RTL comparison operations 166
RTL constant expression types 156
RTL constants. 156
RTL declarations . 170
RTL di�erence . 163
RTL expression . 141
RTL expressions for arithmetic 163
RTL format . 143
RTL format characters . 143
RTL function-call insns . 186
RTL insn template . 201
RTL integers . 141
RTL memory expressions . 158
RTL object types . 141
RTL postdecrement . 175
RTL postincrement . 175
RTL predecrement . 175
RTL preincrement . 175
RTL register expressions . 158
RTL representation . 141
RTL side e�ect expressions 170
RTL strings . 141
RTL structure sharing assumptions 186
RTL subtraction . 163
RTL subtraction with signed saturation 163
RTL subtraction with unsigned saturation 163
RTL sum . 163
RTL vectors . 141
RTX (See RTL) . 141
RTX codes, classes of . 142
RTX_FRAME_RELATED_P . 149
run-time conventions . 7
run-time target speci�cation 301

S
`s' in constraint . 213
same_type_p . 73
satisfies_constraint_m 236
SAVE_EXPR . 92
save_stack_block instruction pattern 251
save_stack_function instruction pattern 251
save_stack_nonlocal instruction pattern 251
SBSS_SECTION_ASM_OP . 382
Scalar evolutions . 135
scalars, returned as values 350
SCHED_GROUP_P . 150
SCmode . 154
scond instruction pattern 247
scratch . 161
scratch operands . 161
scratch, RTL sharing . 187
scratch_operand . 208
SDATA_SECTION_ASM_OP. 382

512 GNU Compiler Collection (GCC) Internals

SDB_ALLOW_FORWARD_REFERENCES 416
SDB_ALLOW_UNKNOWN_REFERENCES 416
SDB_DEBUGGING_INFO . 415
SDB_DELIM . 416
SDB_OUTPUT_SOURCE_LINE 416
SDmode . 154
sdot_prodm instruction pattern 240
search options . 270
SECONDARY_INPUT_RELOAD_CLASS 328
SECONDARY_MEMORY_NEEDED 329
SECONDARY_MEMORY_NEEDED_MODE 329
SECONDARY_MEMORY_NEEDED_RTX 329
SECONDARY_OUTPUT_RELOAD_CLASS 328
SECONDARY_RELOAD_CLASS 328
SELECT_CC_MODE . 370
Selection Statements . 111
sequence . 174
set . 171
set and `/f' . 149
SET_ASM_OP . 398
set_attr . 277
set_attr_alternative. 278
SET_BY_PIECES_P . 373
SET_DEST . 171
SET_IS_RETURN_P . 150
SET_LABEL_KIND . 179
set_optab_libfunc . 363
SET_RATIO . 373
SET_SRC . 171
setmemm instruction pattern 245
SETUP_FRAME_ADDRESSES . 334
SF_SIZE . 314
SFmode . 153
sharing of RTL components 186
shift . 165
SHIFT_COUNT_TRUNCATED . 425
SHORT_IMMEDIATES_SIGN_EXTEND 424
SHORT_TYPE_SIZE . 313
sibcall_epilogue instruction pattern 254
sibling call . 192
SIBLING_CALL_P . 150
sign_extend . 169
sign_extract . 168
sign_extract, canonicalization of 263
signed division. 164
signed maximum . 165
signed minimum . 165
SImode . 153
simple constraints . 212
sinm2 instruction pattern 242
SIZE_ASM_OP . 392
SIZE_TYPE . 315
skip . 452
SLOW_BYTE_ACCESS . 372
SLOW_UNALIGNED_ACCESS . 372
SMALL_REGISTER_CLASSES 330
smax . 165
smin . 165

sms, swing, software pipelining 65
smulm3_highpart instruction pattern 241
soft
oat library . 12
special . 455
special predicates . 207
SPECS . 445
speed of instructions . 371
split_block . 196
splitting instructions . 266
sqrt . 166
sqrtm2 instruction pattern 242
square root . 166
ss_ashift . 165
ss_minus . 163
ss_neg . 164
ss_plus . 163
ss_truncate . 169
SSA . 122
SSA_NAME_DEF_STMT . 125
SSA_NAME_VERSION . 125
ssum_widenm3 instruction pattern 240
stack arguments . 343
stack frame layout . 333
stack smashing protection 358
STACK_ALIGNMENT_NEEDED 333
STACK_BOUNDARY . 306
STACK_CHECK_BUILTIN . 339
STACK_CHECK_FIXED_FRAME_SIZE 339
STACK_CHECK_MAX_FRAME_SIZE 339
STACK_CHECK_MAX_VAR_SIZE 340
STACK_CHECK_PROBE_INTERVAL 339
STACK_CHECK_PROBE_LOAD 339
STACK_CHECK_PROTECT . 339
STACK_DYNAMIC_OFFSET. 334
STACK_DYNAMIC_OFFSET and virtual registers . . 160
STACK_GROWS_DOWNWARD. 333
STACK_PARMS_IN_REG_PARM_AREA 344
STACK_POINTER_OFFSET. 334
STACK_POINTER_OFFSET and virtual registers . . 160
STACK_POINTER_REGNUM. 340
STACK_POINTER_REGNUM and virtual registers . . 160
stack_pointer_rtx . 341
stack_protect_set instruction pattern. 257
stack_protect_test instruction pattern 257
STACK_PUSH_CODE . 333
STACK_REGS . 323
STACK_SAVEAREA_MODE . 310
STACK_SIZE_MODE . 310
standard pattern names . 236
STANDARD_INCLUDE_COMPONENT 300
STANDARD_INCLUDE_DIR. 300
STANDARD_STARTFILE_PREFIX 299
STANDARD_STARTFILE_PREFIX_1 299
STANDARD_STARTFILE_PREFIX_2 299
STARTFILE_SPEC . 297
STARTING_FRAME_OFFSET . 333
STARTING_FRAME_OFFSET and virtual registers

. 160

Concept Index 513

Statement Sequences . 111
statements . 88
Statements . 110
Static pro�le estimation . 193
static single assignment . 122
STATIC_CHAIN . 341
STATIC_CHAIN_INCOMING . 341
STATIC_CHAIN_INCOMING_REGNUM 341
STATIC_CHAIN_REGNUM . 341
`stdarg.h' and register arguments 346
STDC_0_IN_SYSTEM_HEADERS 428
STMT_EXPR . 92
STMT_IS_FULL_EXPR_P . 88
storage layout . 304
STORE_BY_PIECES_P . 374
STORE_FLAG_VALUE . 426
`store_multiple' instruction pattern 239
strcpy . 307
STRICT_ALIGNMENT . 308
strict_low_part . 170
strict_memory_address_p 366
STRING_CST . 92
STRING_POOL_ADDRESS_P . 150
strlenm instruction pattern 245
structure value address . 351
STRUCTURE_SIZE_BOUNDARY 308
structures, returning . 7
subm3 instruction pattern 239
SUBOBJECT . 88
SUBOBJECT_CLEANUP . 88
subreg . 160
subreg and `/s' . 150
subreg and `/u' . 150
subreg and `/u' and `/v' . 150
subreg, in strict_low_part 170
subreg, special reload handling 161
SUBREG_BYTE . 161
SUBREG_PROMOTED_UNSIGNED_P 150
SUBREG_PROMOTED_UNSIGNED_SET 150
SUBREG_PROMOTED_VAR_P . 150
SUBREG_REG . 161
SUCCESS_EXIT_CODE . 441
SUPPORTS_INIT_PRIORITY 401
SUPPORTS_ONE_ONLY . 395
SUPPORTS_WEAK . 395
SWITCH_BODY . 88
SWITCH_COND . 88
SWITCH_CURTAILS_COMPILATION 294
SWITCH_STMT . 88
SWITCH_TAKES_ARG . 293
SWITCHES_NEED_SPACES. 294
SYMBOL_FLAG_ANCHOR . 147
SYMBOL_FLAG_EXTERNAL. 146
SYMBOL_FLAG_FUNCTION. 146
SYMBOL_FLAG_HAS_BLOCK_INFO 147
SYMBOL_FLAG_LOCAL . 146
SYMBOL_FLAG_SMALL . 147
SYMBOL_FLAG_TLS_SHIFT . 147

symbol_ref . 158
symbol_ref and `/f' . 150
symbol_ref and `/i' . 151
symbol_ref and `/u' . 147
symbol_ref and `/v' . 151
symbol_ref, RTL sharing 187
SYMBOL_REF_ANCHOR_P . 147
SYMBOL_REF_BLOCK . 147
SYMBOL_REF_BLOCK_OFFSET 147
SYMBOL_REF_CONSTANT . 146
SYMBOL_REF_DATA . 146
SYMBOL_REF_DECL . 146
SYMBOL_REF_EXTERNAL_P . 146
SYMBOL_REF_FLAG . 151
SYMBOL_REF_FLAG, in

TARGET_ENCODE_SECTION_INFO 384
SYMBOL_REF_FLAGS . 146
SYMBOL_REF_FUNCTION_P . 146
SYMBOL_REF_HAS_BLOCK_INFO_P 147
SYMBOL_REF_LOCAL_P . 146
SYMBOL_REF_SMALL_P . 147
SYMBOL_REF_TLS_MODEL. 147
SYMBOL_REF_USED . 150
SYMBOL_REF_WEAK . 151
symbolic label . 187
sync_addmode instruction pattern 255
sync_andmode instruction pattern 255
sync_compare_and_swap_ccmode instruction

pattern . 255
sync_compare_and_swapmode instruction pattern

. 255
sync_iormode instruction pattern 255
sync_lock_releasemode instruction pattern . . 257
sync_lock_test_and_setmode instruction pattern

. 256
sync_nandmode instruction pattern 255
sync_new_addmode instruction pattern 256
sync_new_andmode instruction pattern 256
sync_new_iormode instruction pattern 256
sync_new_nandmode instruction pattern 256
sync_new_submode instruction pattern 256
sync_new_xormode instruction pattern 256
sync_old_addmode instruction pattern 256
sync_old_andmode instruction pattern 256
sync_old_iormode instruction pattern 256
sync_old_nandmode instruction pattern 256
sync_old_submode instruction pattern 256
sync_old_xormode instruction pattern 256
sync_submode instruction pattern 255
sync_xormode instruction pattern 255
SYSROOT_HEADERS_SUFFIX_SPEC 297
SYSROOT_SUFFIX_SPEC . 297
SYSTEM_INCLUDE_DIR . 300

T
`t-target ' . 443
table jump . 189

514 GNU Compiler Collection (GCC) Internals

tablejump instruction pattern 250
tag . 452
tagging insns . 277
tail calls . 357
target attributes . 419
target description macros . 293
target functions . 293
target hooks . 293
target make�le fragment . 443
target speci�cations . 301
TARGET_ADDRESS_COST . 375
TARGET_ADJUST_REG_ALLOC_ORDER 319
TARGET_ALIGN_ANON_BITFIELDS 309
TARGET_ALLOCATE_INITIAL_VALUE 434
TARGET_ARG_PARTIAL_BYTES 346
TARGET_ARM_EABI_UNWINDER 408
TARGET_ASM_ALIGNED_DI_OP 388
TARGET_ASM_ALIGNED_HI_OP 388
TARGET_ASM_ALIGNED_SI_OP 388
TARGET_ASM_ALIGNED_TI_OP 388
TARGET_ASM_ASSEMBLE_VISIBILITY 395
TARGET_ASM_BYTE_OP . 388
TARGET_ASM_CAN_OUTPUT_MI_THUNK 357
TARGET_ASM_CLOSE_PAREN 390
TARGET_ASM_CONSTRUCTOR 401
TARGET_ASM_DESTRUCTOR . 402
TARGET_ASM_EMIT_EXCEPT_TABLE_LABEL 406
TARGET_ASM_EMIT_UNWIND_LABEL 406
TARGET_ASM_EXTERNAL_LIBCALL 396
TARGET_ASM_FILE_END . 386
TARGET_ASM_FILE_START . 386
TARGET_ASM_FILE_START_APP_OFF 386
TARGET_ASM_FILE_START_FILE_DIRECTIVE 386
TARGET_ASM_FUNCTION_BEGIN_EPILOGUE 354
TARGET_ASM_FUNCTION_END_PROLOGUE 354
TARGET_ASM_FUNCTION_EPILOGUE 354
TARGET_ASM_FUNCTION_EPILOGUE and trampolines

. 361
TARGET_ASM_FUNCTION_PROLOGUE 353
TARGET_ASM_FUNCTION_PROLOGUE and trampolines

. 361
TARGET_ASM_FUNCTION_RODATA_SECTION 384
TARGET_ASM_GLOBALIZE_LABEL 394
TARGET_ASM_INIT_SECTIONS 383
TARGET_ASM_INTEGER . 388
TARGET_ASM_INTERNAL_LABEL 397
TARGET_ASM_MARK_DECL_PRESERVED 396
TARGET_ASM_NAMED_SECTION 387
TARGET_ASM_OPEN_PAREN . 390
TARGET_ASM_OUTPUT_ANCHOR 368
TARGET_ASM_OUTPUT_DWARF_DTPREL 415
TARGET_ASM_OUTPUT_MI_THUNK 356
TARGET_ASM_SELECT_RTX_SECTION 384
TARGET_ASM_SELECT_SECTION 383
TARGET_ASM_TTYPE . 408
TARGET_ASM_UNALIGNED_DI_OP 388
TARGET_ASM_UNALIGNED_HI_OP 388
TARGET_ASM_UNALIGNED_SI_OP 388

TARGET_ASM_UNALIGNED_TI_OP 388
TARGET_ASM_UNIQUE_SECTION 384
TARGET_ATTRIBUTE_TABLE 419
TARGET_BINDS_LOCAL_P. 385
TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED

. 435
TARGET_BRANCH_TARGET_REGISTER_CLASS 435
TARGET_BUILD_BUILTIN_VA_LIST 349
TARGET_BUILTIN_SETJMP_FRAME_VALUE 334
TARGET_C99_FUNCTIONS. 364
TARGET_CALLEE_COPIES. 347
TARGET_CANNOT_FORCE_CONST_MEM 367
TARGET_CANNOT_MODIFY_JUMPS_P 435
TARGET_COMMUTATIVE_P. 434
TARGET_COMP_TYPE_ATTRIBUTES 419
TARGET_CPU_CPP_BUILTINS 301
TARGET_CXX_ADJUST_CLASS_AT_DEFINITION . . . 423
TARGET_CXX_CDTOR_RETURNS_THIS 422
TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT 423
TARGET_CXX_COOKIE_HAS_SIZE 422
TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY

. 422
TARGET_CXX_GET_COOKIE_SIZE 422
TARGET_CXX_GUARD_MASK_BIT 422
TARGET_CXX_GUARD_TYPE . 422
TARGET_CXX_IMPORT_EXPORT_CLASS 422
TARGET_CXX_KEY_METHOD_MAY_BE_INLINE 422
TARGET_CXX_USE_AEABI_ATEXIT 423
TARGET_DECIMAL_FLOAT_SUPPORTED_P 312
TARGET_DECLSPEC . 420
TARGET_DEFAULT_PACK_STRUCT 430
TARGET_DEFAULT_SHORT_ENUMS 315
TARGET_DEFERRED_OUTPUT_DEFS 398
TARGET_DELEGITIMIZE_ADDRESS 367
TARGET_DLLIMPORT_DECL_ATTRIBUTES 420
TARGET_DWARF_CALLING_CONVENTION 415
TARGET_DWARF_HANDLE_FRAME_UNSPEC 335
TARGET_DWARF_REGISTER_SPAN 408
TARGET_EDOM . 363
TARGET_ENCODE_SECTION_INFO 384
TARGET_ENCODE_SECTION_INFO and address

validation . 365
TARGET_ENCODE_SECTION_INFO usage 404
TARGET_EXECUTABLE_SUFFIX 434
TARGET_EXPAND_BUILTIN . 433
TARGET_EXPAND_BUILTIN_SAVEREGS 359
TARGET_EXPR . 92
TARGET_EXTRA_INCLUDES . 435
TARGET_EXTRA_LIVE_ON_ENTRY 358
TARGET_EXTRA_PRE_INCLUDES 436
TARGET_FIXED_CONDITION_CODE_REGS 371
target_flags . 302
TARGET_FLOAT_FORMAT . 310
TARGET_FLT_EVAL_METHOD 314
TARGET_FOLD_BUILTIN . 433
TARGET_FORMAT_TYPES . 436
TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P . . . 420
TARGET_FUNCTION_OK_FOR_SIBCALL 357

Concept Index 515

TARGET_FUNCTION_VALUE . 350
TARGET_GIMPLIFY_VA_ARG_EXPR 349
TARGET_HANDLE_OPTION. 302
TARGET_HAVE_CTORS_DTORS 401
TARGET_HAVE_NAMED_SECTIONS 387
TARGET_HAVE_SWITCHABLE_BSS_SECTIONS 387
TARGET_IN_SMALL_DATA_P 385
TARGET_INIT_BUILTINS. 433
TARGET_INIT_DWARF_REG_SIZES_EXTRA 408
TARGET_INIT_LIBFUNCS. 363
TARGET_INSERT_ATTRIBUTES 420
TARGET_INVALID_BINARY_OP 437
TARGET_INVALID_CONVERSION 436
TARGET_INVALID_UNARY_OP 436
TARGET_LIB_INT_CMP_BIASED 363
TARGET_LIBGCC_SDATA_SECTION 383
TARGET_MACHINE_DEPENDENT_REORG 432
TARGET_MANGLE_FUNDAMENTAL_TYPE 312
TARGET_MD_ASM_CLOBBERS 431
TARGET_MEM_REF . 92
TARGET_MERGE_DECL_ATTRIBUTES 420
TARGET_MERGE_TYPE_ATTRIBUTES 420
TARGET_MIN_DIVISIONS_FOR_RECIP_MUL 424
TARGET_MODE_REP_EXTENDED 426
TARGET_MS_BITFIELD_LAYOUT_P 312
TARGET_MUST_PASS_IN_STACK 346
TARGET_MUST_PASS_IN_STACK, and FUNCTION_ARG

. 346
TARGET_N_FORMAT_TYPES . 436
TARGET_NARROW_VOLATILE_BITFIELDS 309
TARGET_OBJECT_SUFFIX. 434
TARGET_OBJFMT_CPP_BUILTINS 302
TARGET_OPTF . 436
TARGET_OPTION_TRANSLATE_TABLE 294
TARGET_OS_CPP_BUILTINS 302
TARGET_PASS_BY_REFERENCE 347
TARGET_POSIX_IO . 431
TARGET_PRETEND_OUTGOING_VARARGS_NAMED . . . 360
TARGET_PROMOTE_FUNCTION_ARGS 306
TARGET_PROMOTE_FUNCTION_RETURN 306
TARGET_PROMOTE_PROTOTYPES 343
TARGET_PTRMEMFUNC_VBIT_LOCATION 316
TARGET_RELAXED_ORDERING 436
TARGET_RESOLVE_OVERLOADED_BUILTIN 433
TARGET_RETURN_IN_MEMORY 352
TARGET_RETURN_IN_MSB. 351
TARGET_RTX_COSTS . 374
TARGET_SCALAR_MODE_SUPPORTED_P 349
TARGET_SCHED_ADJUST_COST 376
TARGET_SCHED_ADJUST_COST_2 379
TARGET_SCHED_ADJUST_PRIORITY 376
TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK

. 377
TARGET_SCHED_DFA_NEW_CYCLE 379
TARGET_SCHED_DFA_POST_CYCLE_ADVANCE 378
TARGET_SCHED_DFA_POST_CYCLE_INSN 378
TARGET_SCHED_DFA_PRE_CYCLE_ADVANCE 378
TARGET_SCHED_DFA_PRE_CYCLE_INSN 378

TARGET_SCHED_FINISH . 377
TARGET_SCHED_FINISH_GLOBAL 378
TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_

LOOKAHEAD . 378
TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_

LOOKAHEAD_GUARD . 379
TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_

LOOKAHEAD_GUARD_SPEC 380
TARGET_SCHED_GEN_CHECK 380
TARGET_SCHED_H_I_D_EXTENDED 380
TARGET_SCHED_INIT . 377
TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN . . . 378
TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN 378
TARGET_SCHED_INIT_GLOBAL 377
TARGET_SCHED_IS_COSTLY_DEPENDENCE 379
TARGET_SCHED_ISSUE_RATE 376
TARGET_SCHED_NEEDS_BLOCK_P 380
TARGET_SCHED_REORDER. 376
TARGET_SCHED_REORDER2 . 377
TARGET_SCHED_SET_SCHED_FLAGS 380
TARGET_SCHED_SPECULATE_INSN 380
TARGET_SCHED_VARIABLE_ISSUE 376
TARGET_SECTION_TYPE_FLAGS 388
TARGET_SET_DEFAULT_TYPE_ATTRIBUTES 419
TARGET_SETUP_INCOMING_VARARGS 360
TARGET_SHIFT_TRUNCATION_MASK 425
TARGET_SPLIT_COMPLEX_ARG 349
TARGET_STACK_PROTECT_FAIL 358
TARGET_STACK_PROTECT_GUARD 358
TARGET_STRICT_ARGUMENT_NAMING 360
TARGET_STRUCT_VALUE_RTX 352
TARGET_UNWIND_EMIT . 406
TARGET_UNWIND_INFO . 407
TARGET_USE_ANCHORS_FOR_SYMBOL_P 369
TARGET_USE_BLOCKS_FOR_CONSTANT_P 367
TARGET_USE_JCR_SECTION 437
TARGET_USE_LOCAL_THUNK_ALIAS_P 436
TARGET_USES_WEAK_UNWIND_INFO 338
TARGET_VALID_DLLIMPORT_ATTRIBUTE_P 420
TARGET_VALID_POINTER_MODE 349
TARGET_VECTOR_MODE_SUPPORTED_P 350
TARGET_VECTOR_OPAQUE_P 312
TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD . . 367
TARGET_VERSION . 302
TARGET_VTABLE_DATA_ENTRY_DISTANCE 317
TARGET_VTABLE_ENTRY_ALIGN 316
TARGET_VTABLE_USES_DESCRIPTORS 316
TARGET_WEAK_NOT_IN_ARCHIVE_TOC 396
targetm . 293
targets, make�le . 27
TCmode . 154
TDmode . 154
TEMPLATE_DECL . 79
Temporaries . 108
termination routines . 399
testing constraints . 235
TEXT_SECTION_ASM_OP . 381
TF_SIZE . 314

516 GNU Compiler Collection (GCC) Internals

TFmode . 154
THEN_CLAUSE . 88
THREAD_MODEL_SPEC . 297
THROW_EXPR . 92
THUNK_DECL . 79
THUNK_DELTA . 79
TImode . 153
TImode, in insn . 181
`tm.h' macros . 293
TQFmode . 153
TRAMPOLINE_ADJUST_ADDRESS 361
TRAMPOLINE_ALIGNMENT. 361
TRAMPOLINE_SECTION . 361
TRAMPOLINE_SIZE . 361
TRAMPOLINE_TEMPLATE . 361
trampolines for nested functions 360
TRANSFER_FROM_TRAMPOLINE 362
trap instruction pattern . 254
tree . 69, 70
Tree SSA . 107
TREE_CODE . 69
TREE_FILENAME . 79
tree_int_cst_equal . 92
TREE_INT_CST_HIGH . 92
TREE_INT_CST_LOW . 92
tree_int_cst_lt . 92
TREE_LINENO . 79
TREE_LIST . 71
TREE_OPERAND . 92
TREE_PUBLIC . 85
TREE_PURPOSE . 71
TREE_STRING_LENGTH . 92
TREE_STRING_POINTER . 92
TREE_TYPE . 71, 79, 87, 92
TREE_VALUE . 71
TREE_VEC . 71
TREE_VEC_ELT . 71
TREE_VEC_LENGTH . 71
Trees . 69
TRULY_NOOP_TRUNCATION . 426
TRUNC_DIV_EXPR . 92
TRUNC_MOD_EXPR . 92
truncate . 169
truncmn2 instruction pattern 246
TRUTH_AND_EXPR . 92
TRUTH_ANDIF_EXPR . 92
TRUTH_NOT_EXPR . 92
TRUTH_OR_EXPR . 92
TRUTH_ORIF_EXPR . 92
TRUTH_XOR_EXPR . 92
TRY_BLOCK . 88
TRY_HANDLERS . 88
TRY_STMTS . 88
tstm instruction pattern . 244
type . 71
type declaration . 79
TYPE_ALIGN . 71, 72
TYPE_ARG_TYPES . 71

TYPE_ASM_OP . 393
TYPE_ATTRIBUTES . 92
TYPE_BINFO . 77
TYPE_BUILT_IN . 73
TYPE_CONTEXT . 71
TYPE_DECL . 79
TYPE_FIELDS . 71, 77
TYPE_HAS_ARRAY_NEW_OPERATOR 79
TYPE_HAS_DEFAULT_CONSTRUCTOR 78
TYPE_HAS_MUTABLE_P . 79
TYPE_HAS_NEW_OPERATOR . 79
TYPE_MAIN_VARIANT . 71, 72
TYPE_MAX_VALUE . 71
TYPE_METHOD_BASETYPE . 71
TYPE_METHODS . 77
TYPE_MIN_VALUE . 71
TYPE_NAME . 71, 72
TYPE_NOTHROW_P . 87
TYPE_OFFSET_BASETYPE . 71
TYPE_OPERAND_FMT . 393
TYPE_OVERLOADS_ARRAY_REF 79
TYPE_OVERLOADS_ARROW . 79
TYPE_OVERLOADS_CALL_EXPR 79
TYPE_POLYMORPHIC_P . 78
TYPE_PRECISION . 71
TYPE_PTR_P . 73
TYPE_PTRFN_P . 73
TYPE_PTRMEM_P . 71, 73
TYPE_PTROB_P . 73
TYPE_PTROBV_P . 71
TYPE_QUAL_CONST . 71
TYPE_QUAL_RESTRICT . 71
TYPE_QUAL_VOLATILE . 71
TYPE_RAISES_EXCEPTIONS . 87
TYPE_SIZE . 71, 72
TYPE_UNQUALIFIED . 71
TYPE_VFIELD . 77
TYPENAME_TYPE . 71
TYPENAME_TYPE_FULLNAME . 71
TYPEOF_TYPE . 71

U
udiv . 164
udivm3 instruction pattern 239
udivmodm4 instruction pattern 241
udot_prodm instruction pattern 240
UINTMAX_TYPE . 316
umaddmn4 instruction pattern 241
umax . 165
umaxm3 instruction pattern 239
umin . 165
uminm3 instruction pattern 239
umod . 164
umodm3 instruction pattern 239
umsubmn4 instruction pattern 241
umulhisi3 instruction pattern 240
umulm3_highpart instruction pattern 241

Concept Index 517

umulqihi3 instruction pattern 240
umulsidi3 instruction pattern 240
unchanging . 152
unchanging, in call_insn 147
unchanging, in jump_insn, call_insn and insn

. 148
unchanging, in mem . 149
unchanging, in subreg . 150
unchanging, in symbol_ref 147
UNEQ_EXPR . 92
UNGE_EXPR . 92
UNGT_EXPR . 92
UNION_TYPE . 71, 77
unions, returning . 7
UNITS_PER_SIMD_WORD . 305
UNITS_PER_WORD . 305
UNKNOWN_TYPE . 71
UNLE_EXPR . 92
UNLIKELY_EXECUTED_TEXT_SECTION_NAME 381
UNLT_EXPR . 92
UNORDERED_EXPR . 92
unshare_all_rtl . 187
unsigned division . 164
unsigned greater than . 167
unsigned less than . 167
unsigned minimum and maximum 165
unsigned_fix . 170
unsigned_float . 170
unspec . 175
unspec_volatile . 175
untyped_call instruction pattern 249
untyped_return instruction pattern 249
UPDATE_PATH_HOST_CANONICALIZE (path) 440
update_ssa . 123
update_stmt . 117
US Software GOFAST,
oating point emulation

library . 363
us_minus . 163
us_plus . 163
US_SOFTWARE_GOFAST . 363
us_truncate . 169
use . 173
USE_C_ALLOCA . 441
USE_LD_AS_NEEDED . 296
USE_LOAD_POST_DECREMENT 374
USE_LOAD_POST_INCREMENT 374
USE_LOAD_PRE_DECREMENT 374
USE_LOAD_PRE_INCREMENT 374
use_param . 453
use_paramn . 453
use_params . 453
USE_SELECT_SECTION_FOR_FUNCTIONS 384
USE_STORE_POST_DECREMENT 374
USE_STORE_POST_INCREMENT 374
USE_STORE_PRE_DECREMENT 374
USE_STORE_PRE_INCREMENT 374
used . 152
used, in symbol_ref . 150

USER_LABEL_PREFIX . 404
USING_DECL . 79
USING_STMT . 88
usmulhisi3 instruction pattern 240
usmulqihi3 instruction pattern 240
usmulsidi3 instruction pattern 240
usum_widenm3 instruction pattern 240

V
`V' in constraint . 212
VA_ARG_EXPR . 92
values, returned by functions 350
VAR_DECL . 79, 92
varargs implementation . 358
variable . 79
VAX_FLOAT_FORMAT . 310
vec_concat . 169
vec_duplicate . 169
vec_extractm instruction pattern 239
vec_initm instruction pattern 239
vec_merge . 168
vec_select . 168
vec_setm instruction pattern 239
vec_shl_m instruction pattern 240
vec_shr_m instruction pattern 240
vector . 71
vector operations . 168
VECTOR_CST . 92
VECTOR_STORE_FLAG_VALUE 427
virtual operands . 117
VIRTUAL_INCOMING_ARGS_REGNUM 159
VIRTUAL_OUTGOING_ARGS_REGNUM 160
VIRTUAL_STACK_DYNAMIC_REGNUM 160
VIRTUAL_STACK_VARS_REGNUM 159
VLIW . 282, 285
VMS . 440
VMS_DEBUGGING_INFO . 416
VOID_TYPE . 71
VOIDmode . 154
volatil . 152
volatil, in insn, call_insn, jump_insn,

code_label, barrier, and note. 148
volatil, in label_ref and reg_label 148
volatil, in mem, asm_operands, and asm_input

. 148
volatil, in reg . 149
volatil, in subreg . 150
volatil, in symbol_ref . 151
volatile memory references 152
voting between constraint alternatives 217

W
walk_dominator_tree . 126
walk_use_def_chains . 126
WCHAR_TYPE . 315
WCHAR_TYPE_SIZE . 315

518 GNU Compiler Collection (GCC) Internals

which_alternative . 206
WHILE_BODY . 88
WHILE_COND . 88
WHILE_STMT . 88
WIDEST_HARDWARE_FP_SIZE 314
WINT_TYPE . 315
word_mode . 156
WORD_REGISTER_OPERATIONS 424
WORD_SWITCH_TAKES_ARG . 293
WORDS_BIG_ENDIAN . 304
WORDS_BIG_ENDIAN, e�ect on subreg 160

X
`X' in constraint . 213
`x-host ' . 445
XCmode . 154
XCOFF_DEBUGGING_INFO. 411
XEXP . 144

XF_SIZE . 314
XFmode . 154
XINT . 144
`xm-machine.h'. 440, 441
xor . 165
xor, canonicalization of . 263
xorm3 instruction pattern 239
XSTR . 144
XVEC . 145
XVECEXP . 145
XVECLEN . 145
XWINT . 144

Z
zero_extend . 169
zero_extendmn2 instruction pattern. 246
zero_extract . 168
zero_extract, canonicalization of 263

	Introduction
	Contributing to GCC Development
	GCC and Portability
	Interfacing to GCC Output
	The GCC low-level runtime library
	Routines for integer arithmetic
	Arithmetic functions
	Comparison functions
	Trapping arithmetic functions
	Bit operations

	Routines for floating point emulation
	Arithmetic functions
	Conversion functions
	Comparison functions
	Other floating-point functions

	Routines for decimal floating point emulation
	Arithmetic functions
	Conversion functions
	Comparison functions

	Language-independent routines for exception handling
	Miscellaneous runtime library routines
	Cache control functions

	Language Front Ends in GCC
	Source Tree Structure and Build System
	Configure Terms and History
	Top Level Source Directory
	The gcc Subdirectory
	Subdirectories of gcc
	Configuration in the gcc Directory
	Scripts Used by configure
	The config.build; config.host; and config.gcc Files
	Files Created by configure

	Build System in the gcc Directory
	Makefile Targets
	Library Source Files and Headers under the gcc Directory
	Headers Installed by GCC
	Building Documentation
	Texinfo Manuals
	Man Page Generation
	Miscellaneous Documentation

	Anatomy of a Language Front End
	The Front End language Directory
	The Front End config-lang.in File

	Anatomy of a Target Back End

	Testsuites
	Idioms Used in Testsuite Code
	Directives used within DejaGnu tests
	Ada Language Testsuites
	C Language Testsuites
	The Java library testsuites.
	Support for testing gcov
	Support for testing profile-directed optimizations
	Support for testing binary compatibility

	Option specification files
	Option file format
	Option properties

	Passes and Files of the Compiler
	Parsing pass
	Gimplification pass
	Pass manager
	Tree-SSA passes
	RTL passes

	Trees: The intermediate representation used by the C and C++ front ends
	Deficiencies
	Overview
	Trees
	Identifiers
	Containers

	Types
	Scopes
	Namespaces
	Classes

	Declarations
	Working with declarations
	Internal structure
	Current structure hierarchy
	Adding new DECL node types

	Functions
	Function Basics
	Function Bodies
	Statements

	Attributes in trees
	Expressions

	Analysis and Optimization of GIMPLE Trees
	GENERIC
	GIMPLE
	Interfaces
	Temporaries
	Expressions
	Compound Expressions
	Compound Lvalues
	Conditional Expressions
	Logical Operators

	Statements
	Blocks
	Statement Sequences
	Empty Statements
	Loops
	Selection Statements
	Jumps
	Cleanups
	Exception Handling

	GIMPLE Example
	Rough GIMPLE Grammar

	Annotations
	Statement Operands
	Operand Iterators And Access Routines
	Immediate Uses

	Static Single Assignment
	Preserving the SSA form
	Preserving the virtual SSA form
	Examining SSA_NAME nodes
	Walking use-def chains
	Walking the dominator tree

	Alias analysis

	Analysis and Representation of Loops
	Loop representation
	Loop querying
	Loop manipulation
	Loop-closed SSA form
	Scalar evolutions
	IV analysis on RTL
	Number of iterations analysis
	Data Dependency Analysis
	Linear loop transformations framework

	RTL Representation
	RTL Object Types
	RTL Classes and Formats
	Access to Operands
	Access to Special Operands
	Flags in an RTL Expression
	Machine Modes
	Constant Expression Types
	Registers and Memory
	RTL Expressions for Arithmetic
	Comparison Operations
	Bit-Fields
	Vector Operations
	Conversions
	Declarations
	Side Effect Expressions
	Embedded Side-Effects on Addresses
	Assembler Instructions as Expressions
	Insns
	RTL Representation of Function-Call Insns
	Structure Sharing Assumptions
	Reading RTL

	Control Flow Graph
	Basic Blocks
	Edges
	Profile information
	Maintaining the CFG
	Liveness information

	Machine Descriptions
	Overview of How the Machine Description is Used
	Everything about Instruction Patterns
	Example of define_insn
	RTL Template
	Output Templates and Operand Substitution
	C Statements for Assembler Output
	Predicates
	Machine-Independent Predicates
	Defining Machine-Specific Predicates

	Operand Constraints
	Simple Constraints
	Multiple Alternative Constraints
	Register Class Preferences
	Constraint Modifier Characters
	Constraints for Particular Machines
	Defining Machine-Specific Constraints
	Testing constraints from C

	Standard Pattern Names For Generation
	When the Order of Patterns Matters
	Interdependence of Patterns
	Defining Jump Instruction Patterns
	Defining Looping Instruction Patterns
	Canonicalization of Instructions
	Defining RTL Sequences for Code Generation
	Defining How to Split Instructions
	Including Patterns in Machine Descriptions.
	RTL Generation Tool Options for Directory Search

	Machine-Specific Peephole Optimizers
	RTL to Text Peephole Optimizers
	RTL to RTL Peephole Optimizers

	Instruction Attributes
	Defining Attributes and their Values
	Attribute Expressions
	Assigning Attribute Values to Insns
	Example of Attribute Specifications
	Computing the Length of an Insn
	Constant Attributes
	Delay Slot Scheduling
	Specifying processor pipeline description

	Conditional Execution
	Constant Definitions
	Macros
	Mode Macros
	Defining Mode Macros
	Substitution in Mode Macros
	Mode Macro Examples

	Code Macros

	Target Description Macros and Functions
	The Global targetm Variable
	Controlling the Compilation Driver, gcc
	Run-time Target Specification
	Defining data structures for per-function information.
	Storage Layout
	Layout of Source Language Data Types
	Register Usage
	Basic Characteristics of Registers
	Order of Allocation of Registers
	How Values Fit in Registers
	Handling Leaf Functions
	Registers That Form a Stack

	Register Classes
	Obsolete Macros for Defining Constraints
	Stack Layout and Calling Conventions
	Basic Stack Layout
	Exception Handling Support
	Specifying How Stack Checking is Done
	Registers That Address the Stack Frame
	Eliminating Frame Pointer and Arg Pointer
	Passing Function Arguments on the Stack
	Passing Arguments in Registers
	How Scalar Function Values Are Returned
	How Large Values Are Returned
	Caller-Saves Register Allocation
	Function Entry and Exit
	Generating Code for Profiling
	Permitting tail calls
	Stack smashing protection

	Implementing the Varargs Macros
	Trampolines for Nested Functions
	Implicit Calls to Library Routines
	Addressing Modes
	Anchored Addresses
	Condition Code Status
	Describing Relative Costs of Operations
	Adjusting the Instruction Scheduler
	Dividing the Output into Sections (Texts, Data, ...{})
	Position Independent Code
	Defining the Output Assembler Language
	The Overall Framework of an Assembler File
	Output of Data
	Output of Uninitialized Variables
	Output and Generation of Labels
	How Initialization Functions Are Handled
	Macros Controlling Initialization Routines
	Output of Assembler Instructions
	Output of Dispatch Tables
	Assembler Commands for Exception Regions
	Assembler Commands for Alignment

	Controlling Debugging Information Format
	Macros Affecting All Debugging Formats
	Specific Options for DBX Output
	Open-Ended Hooks for DBX Format
	File Names in DBX Format
	Macros for SDB and DWARF Output
	Macros for VMS Debug Format

	Cross Compilation and Floating Point
	Mode Switching Instructions
	Defining target-specific uses of __attribute__
	Defining coprocessor specifics for MIPS targets.
	Parameters for Precompiled Header Validity Checking
	C++ ABI parameters
	Miscellaneous Parameters

	Host Configuration
	Host Common
	Host Filesystem
	Host Misc

	Makefile Fragments
	Target Makefile Fragments
	Host Makefile Fragments

	collect2
	Standard Header File Directories
	Memory Management and Type Information
	The Inside of a GTY(())
	Marking Roots for the Garbage Collector
	Source Files Containing Type Information

	Funding Free Software
	The GNU Project and GNU/Linux
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	Appendix: How to Apply These Terms to Your New Programs

	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Contributors to GCC
	Option Index
	Concept Index

